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ABSTRACT
We propose a general framework to index very large datasets
of spatial data in a distributed system. Our proposal is
built on the recently proposed Scalable Distributed Rtree
(SD-Rtree) [4] and addresses specifically the server alloca-
tion problem. In SD-Rtree, a new server is assigned to the
network whenever a split of a full node is required. We de-
scribe a more flexible allocation protocol which copes with
a temporary shortage of storage resources. Our algorithm is
especially based on k-NN query processing we introduce as
well. We analyze the cost of this protocol, describe its fea-
tures, and propose practical hints to use it. We also present
experiments validating our approach.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures

General Terms
Performance

Keywords
Distributed index, storage balancing, kNN-query

1. INTRODUCTION
Spatial indexing has been studied intensively since the

early works on Rtrees and Quadtree at the beginning of
the 80’s [14]. It constitutes now an integrated part of most
database system engines which usually adopt the simple,
flexible and efficient Rtree structure (e.g., Oracle, MySQL).
Recently, the advent of popular distributed systems for shar-
ing resources across large numbers of computers has encour-
aged research to extend centralized indexing techniques to
queries in such contexts. Since index structures are central
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to efficient data retrieval, it is important to provide index-
ing support for distributed processing of common spatial
queries.

In [4] we describe a distributed indexing framework named
SD-Rtree, based on the Rtree principles, which supports all
the crucial operations found in centralized systems : inser-
tions (without duplication or clipping) and deletions; point
and window queries. We measure their complexity as the
number of messages exchanged between nodes, and show
that this complexity is logarithmic in the number of nodes.
Our structure is adapted from the centralized one by as-
suming that (i) no central directory is used for data ad-
dressing and (ii) nodes communicate only through point-to-
point messages. These are strong but necessary assumptions
which allow us to address a wide range of shared-nothing ar-
chitectures. It means in particular that we aim at an even
distribution of the computing and storage load over the par-
ticipating servers, and avoid to rely on “super peers” or hi-
erarchical network topologies. We propose specialized com-
ponents to deal with these specific constraints. In particular
each node maintains in a local cache the image of the global
tree, and bases the addressing of messages on this image.

The insertion algorithm proposed in [4] requires a split op-
eration whenever a server becomes full, and the re-assignment
of half of the objects from S to a newly allocated server
S′. This assumes that a server is available each time it
is requested. This may be difficult to achieve in settings
where new storage availability cannot be guaranteed. In-
deed, adding storage dynamically requires time, manpower,
and a network management policy under control by a reli-
able institution.

Below we address this issue and extend the design of our
SD-Rtree structure with a storage balancing method which
redistributes objects from a full server and reorganizes ac-
cordingly the distributed tree. The method deals with sit-
uations where an incoming flow of insertions is sent to a
network of servers that cannot, temporarily or definitely,
extend itself by allocating more storage resources. In short,
our contributions is:

1. we introduce a k-NN algorithm in the SD-Rtree frame-
work; this algorithm turns out to be useful for our goal;

2. we describe a redistribution algorithm which saves the
necessity of adding systematically new servers, at the
cost of additional messages;

3. we discuss and analyze the impact of storage balanc-
ing on the insertion cost, and propose a simple param-
eter to achieve a trade-off between a full-split policy



without balancing, and a full-balancing policy without
split;

4. finally we report several experiments conducted on the
SD-Rtree platform.

Our proposal constitutes a flexible storage allocation method
for a distributed spatial index. The insertion policy can be
tuned dynamically to cope with periods of storage shortage.
In such cases storage balancing should be favored for better
space utilization, at the price of extra message exchanges
between servers. When server availability is not a problem,
storage balancing should be avoided or used very sparsely
for better performance.

Related work

Until recently, most of the spatial indexing design efforts
have been devoted to centralized systems [5] although, for
non-spatial data, research devoted to an efficient distribu-
tion of large datasets is well-established [3, 2]. Distributed
index structure are either hash-based [12], or use a Dis-
tributed Hash Table (DHT) [3]. Some others are range parti-
tioned [8]. There were also proposals based on quadtrees like
hQT* [10]. [11] describes an adaptive index method which
offers dynamic load balancing of servers and distributed col-
laboration. However the structure requires a coordinator
which maintains the load of each server.

The work in [9] proposes an ambitious framework termed
VBI. VBI is a distributed dynamic binary tree with nodes
at peers. VBI seems aiming at the efficient manipulation
of multi-dimensional points. Our framework rather targets
the spatial (non-zero surface) objects, as R-trees specifically.
Consequently, we enlarge a region synchronously with any
insert needing it. VBI framework advocates instead the stor-
ing of the corresponding point inserts in routing nodes, as
so-called discrete data. It seems an open question how far
one can apply this facet of VBI to spatial objects. Another
recent theoretical contribution to the field is [1].

The rest of the paper recalls first the structure of the
SD-Rtree and its construction (Section 2). The storage bal-
ancing method is described and discussed in Section 3. Ex-
periments are reported in Section 4. Section 5 concludes the
paper.

2. BACKGROUND: THE SD-RTREE
In this section we briefly describe the aspects of the SD-

Rtree which are useful to understand our extensions. A
longer presentation can be found in [4].

2.1 Structure of the SD-Rtree
The SD-Rtree is a binary tree mapped to a set of servers.

It is conceptually similar to the classical AVL tree, although
the data organization principles are taken from the Rtree
spatial containment relationship. Each internal node, or
routing node, refers to exactly two children whose heights
differ by at most one. This ensures that the height of a
SD-Rtree is logarithmic in the number of servers. A routing
node maintains also left and right directory rectangles (dr)
which are the minimal bounding boxes of, respectively, the
left and right subtrees. Finally each leaf node, or data node,
stores a subset of the indexed objects.

Figure 1 shows an example with three successive evolu-
tions. Initially (part A) there is one data node d0 stored
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Figure 1: Basic features of the SD-Rtree

on server 0. After the first split (part B), a new server S1

stores the pair (r1, d1) where r1 is a routing node and d1

a data node. The objects have been distributed among the
two servers and the tree r1(d0, d1) follows the classical Rtree
organization based on rectangle containment. The directory
rectangle of r1 is a, and the directory rectangles of d0 and
d1 are respectively b and c, with a = mbb(b ∪ c). The rect-
angles a, b and c are kept on r1 in order to guide insert
and search operations. If the server S1 must split in turn,
its directory rectangle c is further divided and the objects
distributed among S1 and a new server S2 which stores a
new routing node r2 and a new data node d2. r2 keeps its
directory rectangle c and the dr of its left and right children,
d and e, with c = mbb(d ∪ e). Each directory rectangle of
a node is therefore represented exactly twice: on the node,
and on its parent.

A routing node maintains the id of its parent node, and
links to its left and right children. A link is a quadruplet
(id, dr, height, type), where id is the id of the server
that stores the referenced node, dr is the directory rectangle
of the referenced node, height is the height of the subtree
rooted at the referenced node and type is either data or
routing. Whenever the type of a link is data, it refers
to the data node stored on server id, else it refers to the
routing node. Note that a node can be identified by its
type (data or routing) together with the id of the server
where it resides. When no ambiguity arises, we will blur the
distinction between a node id and its server id.

The description of a routing node is as follows:

Type: RoutingNode

height, dr: description of the routing node
left, right: links to the left and right children
parent id: id of the parent routing node
OC: the overlapping coverage

The routing node provides an exact local description of
the tree. In particular the directory rectangle is always the
geometric union of left.dr and right.dr, and the height is
Max(left.height, right.height)+1. OC, the overlapping
coverage, to be described next, is an array that contains the
part of the directory rectangle shared with other servers.
The type of a data node is as follows:

Type: DataNode

data: the local dataset
dr: the directory rectangle
parent id: id of the parent routing node
OC: the overlapping coverage

2.2 The image
An important concern when designing a distributed tree

is the load of the servers that store the routing nodes lo-
cated at or near the root. These servers are likely to receive



proportionately much more messages. In the worst case all
the messages must be first routed to the root. This is unac-
ceptable in a scalable data structure which must distribute
evenly the work over all the servers.

An application that accesses an SD-Rtree maintains an
image of the distributed tree. This image provides a view
which may be partial and/or outdated. During an insertion,
the user/application estimates from its image the address of
the target server which is the most likely to store the object.
If the image is obsolete, the insertion can be routed to an
incorrect server. The structure delivers then the insertion
to the correct server using its actual routing node at the
servers. The correct server sends back an image adjustment
message (IAM) to the requester.

2.3 Overlapping coverage
Our search operations attempt to find directly, without

requiring a top-down traversal, a data node d whose direc-
tory rectangle dr satisfies the search predicate. However this
strategy is not sufficient with spatial structures that permit
overlapping, because d does not contain all the objects cov-
ered by dr. We must therefore be able to forward the query
to all the servers that potentially match the search pred-
icate. This requires the distributed maintenance of some
redundant information regarding the parts of the indexed
area shared by several nodes, called overlapping coverage
(OC) in the present paper. So each data node N maintains
all the directory rectangle of the sibling of its ancestors Ni

(called in the following outer nodes) on the path from N to
the root of the tree. This information is stored as an array
of the form [1 : oc1, 2 : oc2, · · · , n : ocn], such that oci is
outerN(Ni).dr. Note that we have to trigger a maintenance
operation only when this overlapping changes.

2.4 Insertion
We now describe insertions in the distributed tree. Recall

that all these operations rely on an image of the structure
(see above) which helps to remain as much as possible near
the leaves level in the tree, thereby avoiding root overload-
ing. Moreover, as a side effect of these operations, the image
is adjusted through IAMs to better reflect the current state
of the structure.

Assume that a client application C requires the insertion
of an object o with rectangle mbb in the distributed tree. C

searches its local image I and determines from the links in
I a data node which can store o without any enlargement.
If no such node exist, the link whose dr is the closest to mbb

is chosen1. If the selected link is of type data, C addresses
a message Insert-In-Leaf to S; else the link refers to a
routing node and C sends a message Insert-In-Subtree to
S.

• (Insert-In-Leaf message) S receives the message; if
the directory rectangle of its data node dS covers ac-
tually o.mbb, S can take the decision to insert o in its
local repository; there is no need to make any other
modification in the distributed tree (if no split occurs);
else the message is out of range, and a message Insert-

In-Subtree is routed to the parent S′ of dS;

• (Insert-In-Subtree message) when a server S′ re-
ceives such a message, it first consults its routing node

1The image is initially empty. C must know at least one
node N , and send the insertion request to N .

rS′ to check whether its directory rectangle covers o; if
no the message is forwarded to the parent until a satis-
fying subtree is found (in the worst case one reaches the
root); if yes the insertion is carried out from rS′ using
the classical Rtree top-down insertion algorithm. Dur-
ing the top-down traversal, the directory rectangles of
the routing nodes may have to be enlarged.

If the insertion could not be performed in one hop, the
server that finally inserts o sends an acknowledgment to C,
along with an IAM containing all the links collected from
the visited servers. C can then refresh its image.

The insertion process is shown on Figure 2. The client
chooses to send the insertion message to S2. Assume that
S2 cannot make the decision to insert o, because o.mbb is not
contained in d2.dr. Then S2 initiates a bottom-up traversal
of the SD-Rtree until a routing node whose dr covers o is
found (node c on the figure). A classical insertion algorithm
is performed on the subtree rooted at c. The out-of-range
path (ORP) consists of all the servers involved in this chain
of messages. Their routing and data links constitute the
IAM which is sent back to C.
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Figure 2: The insertion algorithm

In the worst case an insertion costs 3 log n message, where
n is the number of servers. However, if the image is reason-
ably accurate, the insertion is routed to the part of the tree
which should host the inserted object, and this results in a
short out-of-range path with few messages. As shown by the
experiments reported in [4], this strategy reduces drastically
the workload of the root node.

2.5 Node splitting
When a server S is overloaded by new insertions in its data

repository, a split must be carried out. A new server S′ is
added to the system, and the data stored on S is divided
in two approximately equal subsets using a split algorithm
similar to that of the classical Rtree [7] One subset is moved
to the data repository of S′. A new routing node rS′ is
stored on S′ and becomes the immediate parent of the data
nodes respectively stored on S and S′.

An example of management and distribution of routing
and data nodes is detailed on Figure 3 that corresponds to
Figure 1. Initially (part A), the system consists of a single
server, with id 0. Every insertion is routed to this server,
until its capacity is exceeded. After the first split (part B),
the routing node r1 (the tree root), stored on server 1, keeps
the following information (we ignore the management of the
overlapping coverage for the time being):

• the left and right fields; both are data links that
reference respectively servers 0 and 1,

• its height (equal to 1) and its directory rectangle (equal
to mbb(left.dr, right.dr)),
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Figure 3: Split operations

• the parent id of the data nodes 0 and 1 is 1, the id
of the server that host their common parent routing
node.

Since both the left and right links are of type data links,
the referenced servers are accessed as data nodes (leaves)
during a tree traversal.

Continuing with the same example, insertions are now
routed either to server 0 or to server 1, using a Rtree-like
ChooseSubtree procedure. When the server 1 becomes
full again, the split generates a new routing node r2 on the
server 2, with its left and right data links pointing respec-
tively to server 1 and to server 2, and its parent id field
referring to server 1. At this point the tree is still balanced.
It may happen that splits make the tree imbalanced. In [4]
we describe a rotation mechanism to preserve the balance of
the tree at a very low extra-cost.

3. STORAGE BALANCING
The insertion algorithm described above requires a split

each time a server is full. This adds systematically a new
server to the network. The institution that manages the
network must be ready to allocate resource at any moment
(in the case of a cluster of servers), or a free server has
to be available (in the case of an unsupervised network).
We present in this section a storage balancing scheme which
allows a full node to transfer part of its data to lightly loaded
servers whenever new storage resources cannot be allocated.

3.1 k-NN queries
Our technique is partially based on a k-NN querying al-

gorithm decomposed in two steps:

1. find a data node N that contains the query point P

and evaluate locally the k-NN query;

2. from N , explore all the other data nodes which poten-
tially contain an object closer to P than those found
locally.

The first step is a simple point-query. Assume that a data
node N containing P is found. The k-NN query is evaluated

locally, i.e., without any extra-message, using a classical k-
closest neighbors algorithm [13]. The initial list of neighbors,
found locally, is stored into an ordered list neighbors(P, k).

Obviously, some closer neighbors may also be located in
other nodes, which may lead to an update of neighbor(P, k).
In order to determine which servers must be contacted, the
following strategies can be considered.

Range querying

The first approach performs a range query over the tree,
the range r being the distance between P and the farthest
object in neighbors(P, k). This is illustrated on Figure 4 (for
the sake of simplicity we represent on this figure objects as
points). The local search in node N finds a set of neighbors,
the farthest being object O. We assume here that k remains
small compared to node capacity. So the distance from P

to O determines the range of the query.
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P
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r’

O

Range
query

than O

Directory rectangle
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than O

Figure 4: Range query to retrieve objects from other

nodes

Now, still referring to Figure 4, nodes N ′ and N ′′ fall
into this range. Thus N sends to N ′ and N ′′ a query with
P and the radius r. The contacted nodes send back to N

the object(s) that can replace one or many element(s) of
neighbors(P, k). For example object O′, found in the space
covered by N ′ turns out to be closer to P than O. N ′

searches its local space for all objects whose distance to P

is less than r. Object O′ is found and returned to N . The
same process holds for N ′′, which returns object O′′. Given
the list of all objects retrieved through this process, server N

determines the final list of nearest neighbors. Still referring
to Figure 4, and assuming k = 5, the final list contains O′

but neither O nor O′′.

Improved k-NN search

The above algorithm broadcasts the query to all the nodes
that may potentially improve the kNN list. However some
messages tend to be useless, as illustrated on Figure 5. As-
sume node N ′ is contacted first. It sends back to N object
O′ which improves the nearest neighbors list, and reduces
the maximal radius to r′. Let r′′ be the distance between P

and the directory rectangle of N ′′. Since r′′ > r′, there is
clearly no hope to get any closer neighbor from N ′′.

The improved strategy, presented below, generates a chain
of messages which contact the nodes in an order which is
estimated to deliver the quickest convergence towards the
final result. This is likely to limit the number of servers to
contact. We first recall some useful distance measures for
k-NN queries, as proposed in [13] and illustrated in Figure 6.

Let R be the bounding box of a set of rectangles. First
let minDist denote the minimal distance between a point P
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and R. Second note that each of R’s edges shares at least one
point with one of its inner rectangles. Figure 6 shows the two
extreme positions for a rectangle r1 inside R with respect to
the edge closest to P . The maximal distance D among d1

and d2 guarantees there is an object within R at a distance
less or equal to D. D is denoted minMaxDist(P, R).

Now, given a list neighbors(P, k), let dmax be the distance
between P and the last (farthest) object in neighbors(P, k).
Recall from Section 2 that the overlapping coverage (OC)
is an array of the form [1 : oc1, 2 : oc2, · · · , n : ocn],
such that oci is outerN (Ni).dr. If N ′ is a node in the
overlapping coverage of S, the object closest to P in N ′

is at best at distance minDist(P, N.dr), and at worst
at distance minMaxDist(P, N.dr). Therefore if dmax <

minDist(P, N.dr), there is no hope to improve the current
list of neighbors by contacting N ′.

When processing a k-NN query, we compute the minDist

and minMaxDist distances from P to all the mbb of the
nodes in the OC list. We build a list Lmd (resp. Lmmd) of
pairs (idi, di) where idi is the id of the node Ni and di the
value of minDist(P, Ni.dr) (resp. minMaxDist(P, Ni.dr)).
Lmd and Lmmd are sorted on di in ascending order. To deter-
mine which server must be contacted we simply compare the
distance from P to the farthest object in neighbors(P, k),
denoted dmax, and the distances in Lmd and Lmmd. Our
algorithm relies on the two following observations:

i) if dmax < minDist(P, Ni.dr) we do not have to visit
node Ni;

ii) if minMaxDist(P, Ni.dr) < dmax we must visit node
Ni because it contains an object closer to P that the
farthest object from neighbors(P, k).

The algorithm maintains an ordered list of the nodes that
need to be visited. The first node of the list is then con-
tacted. If it is a data node, a local search is carried out,
which possibly modifies neighbor(P, k), as well as the lists

Lmd and Lmmd. If it is a routing node, it computes for its
two children the distances minDist and minMaxDist, and
updates Lmd and Lmmd accordingly. This is illustrated in
Figure 7 where the routing node N has to be visited, re-
garding either its minMaxDist dM

N or its minDist dm
N with

query point P . When N is contacted, it removes first dM
N

(resp. dm
N ) from the list Lmmd (resp. Lmd). Since N knows

the mbb of its two children, Nr and Nl, it is able to compute
the minMaxDist dM

Nr
(resp. dM

Nl
) and minDist dm

Nr
(resp.

dm
Nl

) for Nr (resp. Nl). It inserts each of these distances in
the appropriate ordered list (Lmmd or Lmd) and visits w.r.t.
these lists the next node in the list.
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Figure 7: Updating Lmmd and Lmd

In both cases, the next server in the list is contacted in
turn, until no possible improvement of the nearest neighbors
can be obtained. The message transmitted from one server
to another contains P , the list neighbor(P, k) at the current
step of the algorithm, and the lists Lmd and Lmmd.

An heuristic consists in contacting first the server with
the minimal minMaxDist since we know for sure that this
modifies neighbor(P, k) and reduces dmax. When all the
servers have been explored with respect to minMaxDist,
the remaining ones are contacted with respect to minDist.

Althought this improved strategy is expected to reduce
the cost of the kNN algorithm, its worst case is still that of
the simple range query approach.

3.2 Revisited insertion
Assume that an object o must be inserted in a full node N .

N may require a redistribution balancing as follows. First
it contacts, by sending bottom-up messages, its nearest an-
cestor NP which has at least one non-full descendant, called
the pivot node. If no such ancestor is found, the tree is full.
We must then proceed to a node split of N , as presented
previously. Otherwise, since NP is the nearest non-full an-
cestor, one of its two subtrees (say, L) contains only full
nodes, including N . The other subtree (say, R) contains at
least one non-full node (Figure 8).

NP must move some objects from L rooted at NL to R

rooted at NR. For simplicity we describe the technique for
a single object but it may be extended for redistributing
larger sets.

We need additional information to detect the pivot node.
We use two flags, Fullleft and Fullright, one for each child,
added to the routing node type. Flag Fulli is set to 1 when
the subtree rooted at child i is full. Flag values are main-
tained as follows. When a leaf becomes full, a message is
sent to the server that hosts its parent node to set the cor-
responding flag to 1. This one may in turn, if its companion
flag is already set to 1, alert its parent, and so on, possibly
up to the root, i.e., log(n) messages (effectively, quite unfre-
quent since this implies a full tree). The flags are maintained
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similarly for deletions.
In order to minimize the overlap between the mbb of L and

R, we need to redistribute the object indexed by L which is
the closest to R. This can be achieved with a 1-NN query
in L.

The query point P is the centroid of the directory rectan-
gle of NR. With that choice the query will return an object
producing a small enlargement of the overlapping coverage.
The 1-NN algorithm is then initiated by NR, which sets ini-
tially Lmmd and Lmd to NL (we want our algorithm visits
NL), and neighbors(P, 1) to ∅. NR re-inserts then the ob-
ject obtained as the result of this query in its subtree. This
redistribution impacts the two subtrees NL and NR in two
ways.

First, the reinserted object may have to be assigned to a
full data node in the subtree rooted at NR. This triggers
another redistribution. However, since NR was marked as
non-full, we know that the pivot node will be found in the
subtree rooted at NR. Consider for instance Figure 8, and
assume that a reinserted object must be put in the full node
N ′′′. Since there exists at least one non-full node in NR (N ′′

for our example), the pivot node has to be a descendant of
NR.

Second the node N where the initial object o had to be
put may become full in turn. So the redistribution algorithm
has to be iterated. For the very same reasons, we know that
the pivot node has to be a descendant of NL. The load
balancing stops when the chain of redistribution stops.

Redistribute (N : node)
Input: a full node N
begin

if (no ancestor NP such that NP .Fullright = 0) then

Split(N)
else

while (N is full) do

// Assume wlog that right nodes are outer nodes
Find an ancestor NP such that NP .Fullright = 0
Set Ni.Fullleft to 1 on that path
// Find the object to transfer
Determine P the centroid of the dr of (NR)
Lmd := Lmmd := NL; neighbors(P,1) := ∅

o := result of k-NN query with these parameters;
// Reinsert o in NR.
Insert-In-Subtree(o, NR)
Update flags in NR if needed

endwhile

endif

end

Figure 9 illustrates the algorithm when the height of the

case (a)

(b) H=2(a) H=1

pivot detection
message

1−NN query
message

reinsert
message

Figure 9: Redistributing data

pivot node is respectively 1 (a) and 2 (b). The algorithm
analysis is as follows. When a node N gets full, we need H

messages to find the pivot node NP , where H is the height of
NP . Then we need H messages to find the object that must
be moved from the left subtree in NP , NL, to the right one,
NR. The reinsertion of an object costs H messages. After
this first step, we possibly have to iterate the algorithm for
the two insertions, respectively in NL and NR (see Figure 9
for the example with H = 2). In both cases the pivot node’s
height is at most H − 1. This yields the recursive formula:
cost(H) = 3H + 2 × cost(H − 1). So finally, cost(H) =
∑H−1

i=0
2i × 3(H − i) = O(H.2H). In the worst case, H =

log
2
n (i.e., the pivot node is the root) and this results in

O(n log
2
n) messages, where n is the number of servers.

3.3 Discussion
The redistribution is costly, its main advantage being to

save some splits, and thus the necessity to add servers to the
structure. Note that we may simply not have the choice, if
no storage resource is available! In general, we can choose
between two extreme strategies: one that performs system-
atically a split (and adds a new server) and one that delays
any split until all the servers are full. This latter clearly re-
quires a lot of exchanges, whereas the former is not always
possible. It seems convenient to provide a mean to adopt a
trade-off between splits and redistributions.

The basic idea is to proceed only to “local” reorganization
by limiting data redistribution to the close siblings of a full
node, and not to the whole structure. As shown by the
above analysis, the redistribution cost is in the worst case
exponential in the height of the pivot node. By bounding
this height, we limit the cost of redistribution at the price
or more frequent splits, and less effective storage utilization.
Let ν represent the maximal height for a pivot node. The
Redistribute(N) algorithm is simply modified as follows:

• if height(NP ) > ν then split N

• else, apply Redistribute(N)

The choice ν = 0 corresponds to a strategy where we
split whenever a node is full, without any data redistribu-
tion. This minimizes the number of messages exchanged.
An opposite choice is to set ν to ∞, allowing to choose any
ancestor of a full node as a pivot, including the root, which
results in a likely perfect storage utilization, but to a maxi-
mal number of messages, since a split occurs only when all
the servers are full.

Parameter ν can easily be changed dynamically, which
makes possible to adapt the behavior of the distributed tree



to specific circumstances (i.e., a highly loaded period). As-
sume for instance that an initial pool of m servers is avail-
able. ν can be set to 0, thereby minimizing the number of
network exchanges. When the m servers are in use, and a
new one is required by a split, storage balancing can be en-
abled by setting ν to 1. Depending on the time necessary
to allocate new servers to the pool, ν can be progressively
raised, as the servers get full, until new storage space be-
comes available. Then it can be set to 0 again to disable the
storage balancing option. So ν is a tuning parameter that
brings flexibility since it allows to adapt the behavior of the
system with respect to the available resources.

4. EXPERIMENTAL VALIDATION
We report several experiments that evaluate the perfor-

mance of our proposed architecture over large datasets of 2-
dimensional rectangles, using a distributed structure simula-
tor written in C. Our datasets include both data produced
by the GSTD generator [15], and real data corresponding
to the MBRs of 556,696 census blocks (polygons) of Iowa,
Kansa, Missouri and Nebraska, provided by Tiger [6]. For
comparison purpose the number of synthetic objects, gen-
erated following a uniform or a skewed distribution, is also
set to 556,696. The capacity of each server is set to 2,000
objects.

4.1 Cost of the redistribution
A first experiment is performed to stress the impact of the

maximal pivot height allowed for the data redistribution.

(a) Number of servers

(b) Number of messages

Figure 10: Impact of the maximal height for the

pivot node

First note that with our setting, whatever the distribution
is, the height of the tree is 10. Figure 10a shows that our re-
distribution algorithm highly reduces the number of servers
requested, even for small values of the maximal height ν of
a pivot node. For instance with a uniform distribution, the
number of servers without redistribution is 440. With ν set
to 1, this number falls to 350, so a gain of 21% of the re-
quired resources. With higher values for ν, the number of
servers can reach 291, so a gain of 34%. We observe similar
results with other distributions.

The skewed distribution leads to a lower number of servers
if we do not use redistribution, compared to other datasets.
The reason is that insertions are concentrated on a specific
part of the indexing area, hence concerns mostly a subset of
the pool. These nodes fill in up to their capacity, then split
and, since they still cover the dense insertion area, remain
subject to high insertions load. With uniform distribution,
each node newly created is initially half-empty, and its prob-
ability to receive new insertion requests is similar to that of
the other nodes. This leads to a lower average space occu-
pancy (63%) than with skewed data (69%), and therefore so
a higher number of servers (Figure 11).

Using the redistribution algorithm, one achieves a high
fill-in rate for the servers, i.e. up to 96% with uniform
distribution, 98% with skewed distribution, and 93% with
real data (Figure 11). This value is already reached with
a medium value of ν like 4 or 5. With ν set to 1, the im-
provement is still noteworthy, e.g., 79%, 78% and 75% for
respectively uniform, skewed and real datasets.

Figure 11: Average server’s occupancy rate w.r.t.

maximal pivot’s height

Figure 10b shows the cost in number of messages of the
redistribution strategy. Depending on the distribution, a
rebalancing with a maximal pivot’s height set to 1 requires
between 2 and 4 times more messages. If we allow the pivot
node to be at any height, possibly up to the root, the number
of messages reaches a value 30 times higher with our data!
Indeed, with this complete flexibility, the tree is almost full
and a new insertion generally leads to a costly iterative re-
distribution process, that may affect all the nodes of the tree
in the worst case. Analysis of Figures 10a-b suggests that
setting ν to 4 provides generally a number of servers very
close to the best possible space occupancy, with a number
of messages “only” 10 times higher than without redistribu-
tion.

4.2 Analysis of server allocation profiles



The second set of experiments illustrates how our solu-
tion may be deployed in architectures supporting a mixed
strategy. We make now the practical assumption that the
“traditional” insertion mechanism (without redistribution)
is used when there are servers available. If, at some point,
the system lacks of storage resource, it dynamically switches
to the redistribution mode, until new servers are added. We
call “server allocation profile” the set of parameters that de-
scribe this evolution, including the initial size of the server
pool, the average time necessary to extend the pool, and the
number of servers added during an extension.

The experiment assumes that the system consists initially
of 200 servers. When new resources are requested, a set of
additional 25 servers is allocated. The shortage period be-
tween the request for new servers and their effective alloca-
tion corresponds to a forced redistribution mode and consti-
tutes the variable parameter that we analyze. We measure
the behavior of the system as the total number of servers
and messages required, the maximal height for the pivot
node being set to 1, 2 or 3.

(a) Number of servers

(b) Number of messages

Figure 12: Impact of the number of inserted objects

during a shortage period

As expected, the higher the allowed height for the pivot
node is, the lower is the number of requested servers (Fig-
ure 12.a). Obviously, the impact is opposite on the number
of messages (Figure 12.b). Both figures show that the sys-
tem can handle a shortage of servers during a period corre-
sponding to up to 100,000 insertions with a limited cost (here
at most 3 times the cost without shortage). The decreas-
ing aspect of the curves in Figure 12a is due to the storage

balancing effect: with a long shortage period, many objects
are inserted and they trigger a redistribution, thereby opti-
mizing servers capacity. The amount of storage balancing
increases, and so does the total number of messages.

5. CONCLUSION
Our framework enables a Rtree-based indexing structure

for large spatial data sets stored over interconnected servers.
We present a k-NN querying algorithm and a data distribu-
tion algorithm that limits the number of servers and improve
the storage utilization, at the cost of additional messages.
We believe that the scheme should fit the needs of new ap-
plications using endlessly larger sets of spatial data.
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