
Web Architectures for Scalable Moving Object Servers

Cédric du Mouza
CNAM, Paris, France

dumouza@cnam.fr

Philippe Rigaux
LRI, Univ. Paris-Sud Orsay, France

rigaux@lri.fr

ABSTRACT
The paper describes how the Web can be used as a support for in-
tensive querying and display of large moving objects databases. We
present first an architecture for a system which integrates incoming
events provided by GPS servers in a spatio-temporal database, and
permits to register queries over this database. We focus on continu-
ous queries that allow users to receive notification of events affect-
ing the initial result, and discuss the process of matching queries
and events in order to perform this notification. Finally a prototype
implementing a simplified version of this architecture is described.
It uses standard XML-based languages in order to visualize the re-
sult of a query as dynamic maps where the motions can be tracked
in real time.

General Terms
Performance

Categories and Subject Descriptors
D2 [Software]: Domain-specific architectures

1. INTRODUCTION
The focus of research in Geographic Information Systems (GIS)

has strongly evolved, in the past few years, from traditional as-
pects of data management (modeling, indexing, querying) to novel
and exciting challenges raised by the emergence of new technolo-
gies. Two of the major recent achievements of these technologies,
namely the World Wide Web and the development of accurate po-
sitionning systems, have a strong impact on GIS.

The Web encourages exchange and integration of data. These
features create new opportunities for the distributed and cooper-
ative processing of geographic data, promoted by several institu-
tions, grouped in the Open GIS Consortium (OGC) [7]. Positioning
systems constitute another challenging area. The Global Position-
ing System (GPS) and the European Galileo project (its launching
has been decided very recently, at the end of March 2002), are able
to determine the position of an object with a very high precision
(a few centimeters). Cars, mobiles phones, boats, planes can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GIS’02, November 8–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-XXX-X/02/0011 ...$5.00.

coupled with localisation devices. This will generate, in a near fu-
ture, the development of new applications for traffic monitoring,
assistance, and the management of mobile services.

In this paper we examine architectural issues for Moving Ob-
ject Servers (MOS) providing the following Web-based services:
(i) integration of information provided by GPS or Gallileo servers
related to the trajectories of (possibly large) sets of moving objects
and (ii) notification of this information to several actors connected
to the server. The system handles therefore two types of informa-
tion, transmitted via the network:

• Events are the new locations of moving objects continuously
provided by GPS or Gallileo server to the MOS.

• Queries are notification requests registered by an actor in the
MOS for a given period, in order to monitor the activities of
moving objects.

Typical examples of queries are “notify me whenever a truck en-
ters this area in the next 2 days” or “show me all the planes around
the airport during the next 2 hours”. Such queries, often called
“continuous” [18, 5], are peculiar. They do not correspond to fixed
results, but rather involve a periodic maintenance of the answer to
take into account the movements of objects. We denote as match-
ing the process of determining, given an event, the set of queries
whose result might be affected. The performance of the system,
and in particular its ability to serve a lot of queries under an inten-
sive incoming of events, depends on the efficiency of the matching
process.

These functionalities are close to web data-intensive applications
relying on a subscribe/publish mechanism, as decribed for instance
in [6, 9]. However, moving objects tracking raises some specific
problems not found in traditional e-commerce applications. First
an object might belong to the result of a query at time t and not at
time t + 1, (and conversely) because of its time-varying location.
In other words, updates of the database are not the only events that
trigger an actualisation of a result, and thus require a notification to
the client. We propose in this paper some simple data structures and
algorithms supporting matching operations in the specific context
of moving objects servers, and providing the scalability expected
in a world-open application.

Second we need to integrate in the system a visualization mech-
anism tighly coupled with the server and to take into account no-
tifications in real time. In the last part of this paper we describe
a prototype, implementing a simplified version of our architecture,
which provides both communication, visualization and animation
of data with SVG, an XML-based language dedicated to graphical
display (including the animation on the map).

The rest of the paper is organized as follows. In Section 2 we
outline the architecture and define more precisely the concepts of

Map
server

GPS
Server

GPS
Server

Storage and
indexing

In
te

gr
at

io
n

GML

events

events

Client

Client

register(query 1)

register(query 2)

pull(query 2)

pull(query 1)
MOS

data

Update of
query results

algorithms)
matching
support +
(query

STDB

m
at

ch
in

g
ev

en
t/q

ue
ri

es

Vizualisation
of results

Figure 1: Architecture for Moving Object Server

events, queries and query results. The structures and operations
supporting the matching of queries and events are described in Sec-
tion 3. Section 4 is devoted to the prototype and Section 5 to related
work.

2. CONTINUOUS QUERIES
The global architecture is depicted in Fig. 1. It consists of a

central part, the Moving Object Server (MOS) which sends queries
to a spatio-temporal database (STDB), receives events from data
sources and processes queries registered by Web clients. We first
define the role of these modules, before focusing on the process of
matching queries with events.

Architecture
The spatio-temporal database (STDB) stores a set of moving ob-
jects and a network which can be used as a layer supporting the
object trajectories. We need only some simple and quite common
assumptions on the representation of data and on the querying fea-
tures of the STDB, summarized below.

A trajectory is a piecewise linear function which can be repre-
sented as a set of pairwise connected segments in a 3-dimensional
space, with constant speed on each segment. It can be viewed as an
infinite set of points in R

3 whose finite representation is obtained
from a set P of sample positions Pi(t, x, y). The sample points are
provided by the GPS servers as described below.

traj. in the 2D space

t0

t1

t2

t3

query x

y

time

P1(5,10)

P2(10,10)

P4(15,20)

P0(0,0)

Figure 2: A trajectory

The representation of a trajectory used in the following is a list <

[I1, f
x
1 , f

y
1
], . . . [In, fx

n , fy
n] > where (i) each Ii is a time interval,

(ii) the intervals {Ii, i ∈ [1, n]} are pairwise distinct and (iii) each
fx

i (resp. f
y

i) is a linear function defined only on Ii, from time t to
abcissa x (resp. ordinate y). The position of an object at any time
instant t in Ii is a point (fx

i (t), fy
i (t)), denoted loci(t).

Note that we do not require the time interval to form a partition
of the lifespan of an object. This offers more flexibility to represent
the result of a query which might consist of non-adjacent intervals.
In fig. 2 for instance, the object belongs to the result of the window
query at two distinct time intervals.

We denote by O the set of moving objects and by T the set
of all trajectories. A moving object relation (MOR) R is a pair
(OR, trajR) where OR is a finite subset of O and trajR a map-
ping from OR to T .

Data sources consist either in Map servers or in GPS servers.
Map servers provide mainly networks. GPS servers constitute the
second type of data source. Each of these servers collects informa-
tion by inspecting continuously a set of moving objects, and trans-
mits events to the MOS. We assume the following definition for
events:

Definition 1. An event is a tuple < id, t, loc, speed, direction >

where id denotes the identifier of a moving object o, t the instant
when o was inspected, and loc, speed and direction denote re-
spectively the location, speed and direction of o at time t.

An integration module receives the events from one or several
servers. Its role is to associate, given the location and direction
components, the object whose identification is id with a path of
the underlying network. This defines a new piece of the object’s
trajectory which is then inserted in the spatio-temporal database.

Let us turn now to queries. There exists several propositions
for a spatio-temporal query language handling moving objects, in-
cludind the MOST model [18], spatio-temporal data types [12, 10]
and the constraint-based approach of [11]. We restrict our attention
in this paper to window queries of the form q(rect, I) where rect

is a rectangle on the map, and I a time interval starting at Imin, the
time instant when the query is registered, and ending at Imax.

Definition 2. Let M(OM , trajM) be a moving object relation
in the database. The result set of a query q(rect, I) over M is a
moving object relation RES(Oq, trajq) such that (i) trajq is the
mapping defined as trajq(o) = trajM (o)∩ [rect× I] and (ii) Oq

is the set of objects o in OM such that trajq(o) 6= ∅

The trajectory of an object in the result set of a query may be split
in several, non-connected segments, with non-adjacent time inter-
vals (for instance an object quits the query rectangle and comes
back after a while). The fact that an object enters or leaves a query
rectangle relates to its movement and is therefore partially inde-
pendent of events received from the GPS servers. Thus the MOS
should watch for such occurrences in order to notify clients.

Notification strategy
There exists two traditional models of notification: pull(), where
the client explicitely asks the server for new events, and push()
where the server sends all new events to clients as soon as they are
received. We consider here the pull() model, a natural choice in
the case of web client/server communication where the client tends
to intepret data pushed by the server as new documents replacing
the current one, a behavior which is not convenient for an incre-
mental construction. Fig. 1 shows clients sending pull() requests
to the MOS. These requests are handled by the matching module
whose task is to inform queries of the updates affecting their result

q1

q2

q3

o

Figure 3: Matching a trajectory with a set of queries

set that occured since the previous pull() call (denoted the ∆-result
in the following) . In summary, here is the functional architecture
of the server, and the main functions it handles.

1. AddQuery (q (rect, I)) is the function that registers a new
query. We assume that q contains all the information needed
to communicate and identify a query.

2. AddEvent(evt) is the function that inserts a new event in the
server.

3. pull(q) is the function that returns the ∆-result for a query q.

Computation of result sets
A first solution to update the result set when a pull() is issued is to
apply a replace policy. In that case the query resulset is computed
periodically, and sent to the client in order to replace the previous
one. This might be considered in situations where the objects move
so fast that the result set is subject to drastic changes in very short
periods.

In this paper we assume that the objects speed is small with re-
spect to the query’s size, and thus that the result set changes slowly.
We follow therefore a quite different approach, based on an incre-
mental computation of the result sets, described below. When the
query q(rect, I) is first registered (i.e., at time t = Imin), an ini-
tial result set res

q
0

is created with all the objects whose position lie
in rect at t = Imin. With each object is associated a path on the
network (determined after the integration process described above)
where the object is assumed to travel at constant speed. This initial
result is transmitted to the client. It must be updated when one of
the following conditions is met: (i) an event received by the MOS
tells that an object has moved on another path or (ii) an object quits
or enters the query rectangle.

It turns out that it is not sufficient to wait for an event, check,
in the list of active queries, those which are affected by the event,
and put the event in a queue. Consider the situation of Fig. 3. The
object’s trajectory leads first to (the rectangle of) query q1, then to
query q2 and finally to query q3. So we expect that the object will
soon enter in turn each of these rectangles and prepare the system
to notify the clients of these events, assuming that no update of the
object’s position is received by the MOS.

On the other hand, since we have to cope with possible updates
of the trajectory, such an anticipation of query movements is dif-
ficult to manage. Indeed, imagine that we associate object o with
the event list of queries q1, q2 and q3, together with the period of
time during which the object is expected to come across their re-
spective rectangles. Then, whenever an update of o is received, we
should search for all the queries for which the position has been
anticipated.

More generally, an object (and consequently the events associ-
ated with this object) is possibly shared by many queries, and a
query is likely to be the target of a lot of events. In an intensive

1

2

3

6

4

5

Q1

Q2

11 16 21 26 31 36 41
32 37

Q3
o1

o2

o3

Z
oo

m

34

Q2

Q3

Figure 4: The grid, with queries and events

application dealing with a large number of queries over a massive
set of moving objects, a poorly designed management of the asso-
ciation between queries and events will lead to bad performances
and possibly to improper information communicated to the clients.

3. EVENTS/QUERIES MATCHING
We describe in this section the data structures and operations

used to associate queries and moving objects. They consist of the
following components: (1) a spatial data structure which serves
as an index on the set of queries, and permits to determine easily
whether a given event affects a given query, (2) a uniform handling
of the two types of events identified previously, namely those pro-
vided by GPS servers, and the quit/enter event of an object in a
query rectangle, (3) operations to add queries and events, and to
implement the pull() operation.

The spatial data structure
In a traditional approach, the data is indexed, and the evaluation of
a query relies on the index to retrieve the result. However, in that
case, we are dealing with a large number of persistent queries over a
spatio-temporal database. It turns out that it is much more difficult
to deal with moving objects, because of their intensive updates and
of their continuous movement, than with queries which are fixed
rectangles and require no update.

Thus, instead of defining a structure that indexes events and us-
ing this structure to evaluate a query, we propose a structure that
indexes queries, and use this structure to find all the queries af-
fected by an event. The data structure is based on the fixed grid [3],
a simple spatial index which decomposes the search space into rect-
angular cells. Each cell covers a rectangle rect and is identified by
a label l which can be obtained by scanning the structure in a con-
venient order. We rely on the grid to match queries with events as
follows:

• Indexing of queries. The set of queries can be viewed as
a set of rectangles, and can therefore be indexed with the
fixed grid. The technique is traditional: for each query q we
compute the set of labels l

q
1
, l

q
2
, . . . lqn of the cells intersected

by q.rect. We obtain a set Q of pairs (q, l) where q is a query
and l one of its labels.

• Partitioning of events. We assign to each cell c the mov-
ing object relation, c.O, containing all the objects that come
across the cell’s rectangle, with the fragment of their trajec-
tory that intersects c.rect. This fragments starts from the
instant when the objects entered the cell, and stops at the in-
stant when the object is expected to quit the cell, denoted
tquit in the following.

The structure is illustrated in Fig. 4. The grid is a set of 5 ×
9 = 45 cells, labelled from 1 to 45 following a column-first order.
Three window queries are shown : query Q1 is associated to labels
{7, 8, 12, 13, 17, 18}, query Q2 with labels {23, 24, 25, 28, 29, 30}

and query Q3 with labels {27, 28, 32, 33, 37, 38, 42, 43}. All the
pairs (Q, l) can be inserted in a list and indexed on the id of queries.

The right part of the figure shows the moving objects in the re-
gion containing queries Q3 and – partially – Q2. Three objects, o1,
o2 and o3 are currently in cells 33, 38 and 37. Given their current
direction and speed, they are expected to leave the cell at a location
represented by a black dot, and at a time instant which can be easily
computed.

Whenever an event is received from a GPS server, it suffices to
search the grid to get the cell where the object is currently located,
and consequently the queries whose result is affected. The event is
recorded in the relation associated to the cell by updating the local
trajectory of the object, and is then ready to be fetched by a pull()
operation issued by any of these queries.

Unifying events
We must now handle the fact that an object quits or enters a cell of
the grid. Indeed, consider object o1 in Fig. 4. It will soon quit the
cell 33 and enter the cell 28. Then the object will become part of
the result of query Q2.

This should be recorded in the structure. To this end we can use
a list E storing tuples < tquit, o, lin, lnext >. Each tuple states
that object o is currently in cell lin that it will leave at time tquit to
enter cell lnext. For instance, the list associated with the instance of
Fig. 4 is < [t1, o1, 33, 28], [t2, o2, 38, 37], [t3, o3, 37, 32] >, with
t1 < t2 < t3.

The list E must support functions insert(t, o, lin, lnext) and
remove(t, o), given a time instant value and an object o, and func-
tion next() to retrieve the tuple with minimal time value.

A dedicated module of the server is responsible for retrieving
periodically the next object that quits its current cell. This module
issues then a call to the nextEvent() function of the MOS in order
to inform the server. In other words the server considers uniformly
as events the updates coming from GPS servers and the elements
returned by next(). The module can thus be seen as a “pseudo”
GPS server which detects when an object quits its current cells,
and generates an appropriate event.

Operations
Here is a short description of all the operations supported by the
above structures:

• AddQuery (q(rect, I)).
This a standard operation of adding a rectangle in a fixed
grid. The rectangle rect is decomposed in all the cells c1, . . . cn

that it covers, and the pairs (q, c1.l), . . . (q, cn.l) are inserted
into Q.

• AddEvent(evt).
Whenever an event < id, t, loc, speed, direction > is re-
ceived, we find the (unique) cell c such that the rectangle
c.rect contains loc. Let o be the object identified by evt.id

and told the instant when o was expected to quit the cell. We
compute (1) the time instant tquit when the object o identi-
fied by evt.id will leave the rectangle c.rect given its new
location, direction and speed, and (2) the next cell lquit en-
countered by o. Then we call remove(told, o) and
insert(tquit, o, c.l, lquit) to replace in E the values associ-
ated with o.

If o already belongs to c.O, the new segment is appended to
its trajectory, else o is simply inserted in c.O.

• pull(q).
Finally the implementation of pull(q) is trivial: search in Q

thread

client

display

SVG

applet

thread

servlet
GPS

simulator
events

web server

updates

PostgreSQL

Figure 5: Architecture of the prototype

all the labels l
q
1
, l

q
2
, . . . lqn associated with the query identified

by id, access each of the cells labelled by a l
q
i , and get the

events.

All these structures and operations can be implemented either
with standard data structures in main memory (e.g., balanced search
trees), or, for very large datasets, using a database with B-tree in-
dexing.

4. THE PROTOTYPE
We implemented a first version of our architecture with two ob-

jectives in mind: first to test the effective applicability of the frame-
work, and second to experiment visualization and animation tech-
niques coupled with the server. In the current state of implemen-
tation, clients can only visualize the whole map and the objects
moving on this network. In other words one cannot express win-
dow queries to focus on a part of the map. Thus the main aim of the
prototype is to check that the architecture design can effectively be
implemented with current, state-of-the-art technology. The main
features of the prototype are summarized below:

• GPS servers are represented by a simulator which generates
incrementally the trajectories of a set of moving objects on a
constrained network.

• The server is a java Servlet which gets the events from the
simulator, and handles the association between queries and
events according to the simple framework presented above.
The server is also responsible for transmitting data to the
client.

• Clients are web browsers equipped with the SVG browser
from Adobe. When a query is registered, each client receives
a small applet which connects to the server and sends pull()
requests.

• The server sends initially to the client an SVG document (see
below) representing the geographic data (map and network)
as well as animated objects. This document is represented at
the client’s side as a DOM tree which is updated by the applet
whenever an update is received. The SVG browser modifies
automatically the display presented to the user.

Fig. 5 sums up the whole architecture of our prototype. In the fol-
lowing we first introduce SVG, and then propose a brief overview
of these components. Because of space limitations, we refer the
interested reader to the full version of paper, available at
http://cedric.cnam.fr for a detailed description.

4.1 The SVG language
XML is a meta-language that allows the definition of specialized

languages for a wide range of applications. One of these special-
ized language is SVG (Scalable Vector Graphics) which permits to
describe graphic objects with colors, textures and animation [21].
SVG can represent and display the main primitives used in carto-
graphic representation, in a vector format suitable for various scale
display. In addition, SVG provides animation, and is therefore a
seductive language for spatio-temporal objects visualization.

The following sample shows the SVG description of a path with
five points. The d attribute gives the geometry and the style
attribute gather the specification of the graphic representation.
<path d="M0,0 L 100,0 100,100 100,200 150,250"

style="fill:none;stroke:#00FF00; stroke-width:5" />

Most of the information associated to an element is represented
by attributes. By adding a nested animate element, we can de-
scribe a continuous variation of the value of these attributes. The
variation consists of the time instant when the animation begins,
the duration of the animation, and the interpolation function (linear
by default) used to switch from the initial value to the final one.
The fragment below creates a red circle moving on a path during
30 s, with constant speed (the “L” in the path attribute stands for
“linear”).
<circle x="0" y="0" r="20" style="fill:red;">

<animateMotion dur="30s" repeatCount="indefinite"

path="M0,0 L 100,0 100,100 100,200 150,250" />
</circle>

4.2 The simulator
The simulator provides an on-line generation of trajectories for

a set of objects on a constrained network. On-line here means that
a trajectory is built step by step, rather than fully dertermined in
advance. At a given time instant, the simulator knows that an object
o moves on a path of the network, in a given direction and at a given
speed. Eventually o will reach the next node of the network: the
simulator computes then the new path assigned to o, together with
a new speed. The choice is driven by a set of properties associated
to the network and describing the distribution of the traffic. More
specifically, we take into account the following information:

• A weight is assigned to each node. It represents the relative
“importance” of this node as a starting point for vehicles. In
the context of car simulation for instance, a node located in a
residential area gets a a weight of 4 or 5, and a crossroad in
a desert zone a weight of 0.

• In addition to the weight of a node, an absorption rate prop-
erty defines the attractive power of a node for vehicles. In-
tuitively, whenever a vehicle reaches a node with a strong
absorption rate, it is likely to stop and stay there. A work-
ing area presents a high absorption rate, and a crossoad a low
one.

• Finally, given a node n, we give to each edge starting from
n the probability to be chosen as a path by an object arriving
at n. For instance, a highway is more likely chosen that a
secondary road.

These parameters, plus some others that, for simplicity, we omit
here, are simple, the goal being limited to simulate information
provided by a GPS with a reasonable amount of realism. Based on
the above parameters, a simulation can be run using a few set of
methods.

4.3 The server
The server plays the central role in the architecture (Fig. 5).

It is implemented as a java Servlet connected to a PostgreSQL
database [15]. The database stores the network, and we also record
in PostgreSQL the trajectories of objects built from the events pro-
vided by the simulator. We plan to implement in the future a spatio-
temporal query language to query this database.

When a client (web browser) connects to the server, a SVG rep-
resentation of the network is first sent, along with a background
map. In a second step, a java thread dedicated to the client is cre-
ated on the server’s side, and a small applet is sent to the browser.
As soon as the applet is installed in the browser, it connects to the
thread and begins to send pull() requests in order to get new events.

When the server receives an event from the simulator, it registers
this event in a priority queue, and waits for clients requests. Each
time a pull() is received by a thread, it retrieves the events from the
queue and send them to the client.

An important role of the server is to produce the SVG displayed
by the client. Currently we directly create the SVG document that
includes the map of the simulation from data stored in the Post-
greSQL database. In a more sophisticated implementation where
the server must be able to communicate not only with web client,
but also with PDA, mobiles phones, or is integrated in a peer-
to-peer architecture, a more neutral XML representation (such as
GML, the Geographic Markup Language) could be produced and
processed by the transformation language XSLT in order to pro-
duce the specific format required by the client.

4.4 The client
The client is a web browser providing a visual interface which

can be basically divided in three main parts: the HTML page (in-
cluding some Javascript code), the SVG document, and the applet.
We should notice that a plug-in is compulsory for displaying SVG
in a HTML document (we use the SVG Viewer from Adobe [2]).
When the client loads the HTML page initially sent by the server,
it also loads and displays the SVG document. The next task is to
update this document (and the graphic representation) when events
are retrieved from the server.

A SVG document, like any XML-based document, corresponds
to a DOM tree (Document Object Model) where each node is an
element [8]. The DOM specification describes an object-oriented
interface to represent and manipulate the tree. Thanks to this in-
terface, we can insert, delete, access and modify a particular node.
For example the function GetNodeById(myID) is used to get the
element whose identifier is myID. We use a Javascript implemen-
tation of the DOM interface to modify the SVG document on the
client’s side. When the document is modified, the SVG browser
immediatly transmits the modification to the graphical display.

In summary the update cycle of the client is as follows: (1) the
applet sends periodically pull() queries to the server (2) the server
sends back events (if any) to proceed and (3) the applet and the
javascript apply these updates by modifying the DOM tree of the
SVG document.

5. RELATED WORK
The notion of continuous queries, described as queries that are

issued once and run continuously, is first proposed in [19]. The ap-
proach considers append-only databases and relies on an incremen-
tal evaluation on delta relations. Availability of massive amounts of
data on the Internet has considerably increased the interest in sys-
tems providing event notification across the network. Some rep-
resentative works are the Active Views system [1], the NiagaraCQ

system [6], and the prototypes described in [14, 9]. The fact that no-
tification systems receive a large amount of queries has suggested
that queries should be indexed rather than data: for instance [13]
applies the idea to XML documents servers.

In the area of moving objects, the only paper closely related to
our topic is [5] which proposes a web-based architecture for rep-
resenting and querying moving objects. It consists of a client, an
Internet server, a map server and a spatiotemporal database system.
XML languages (in particular GML and SVG) are used to send
data from the server to the client. Finally it is worth mentioning
that several simulators are proposed in the recent literature ([20,
17, 4]), the closest of ours being [4] which explicitely addresses
simulation on constraint networks.

Although more elaborated with respect to the specification of
the simulation, a difference with our generator is that it provides
all the scenario (i.e., trajectories) in one pass, whereas we need to
simulate real-time moving objects whose future is uncertain. We
could probably adapt the design of [4] to our need.

6. CONCLUSION
In this paper we proposed an architecture for a Moving Object

Server acting as a mediator between queries submitted by web user
and events received by the server. Assuming that such a server
must be able to support a large amount of queries, we discussed the
necessity of designing appropriate data structures to map queries
with events. We describe a simple solution relying on an index
built on queries, thus avoiding the difficulty of indexing moving
objects(see for instance [16]). Finally, our protoype shows that our
aproach can be implemented with little effort and standard, though
advanced, languages and products.

In the future we plan to implement our simple structure to match
queries with events, and test the impact of some important param-
eters such as the size of the cells with respect to density of queries,
the average speed of objects, etc. We shall also consider some op-
timizations. For instance, with the current design, the search space
is uniformly decomposed, sometimes without necessity, in small
areas. This is probably harmless in a situation where the query
windows cover the major part of the search space, but can become
a problem if query windows are sparse: then a lot of manipulation
are required as objects move from a cell to another quite often. We
plan to investigate cell clustering strategies to improve this situa-
tion.

Acknowledgements
We are very grateful to Michel Scholl and David Gross for useful
comments on early drafts of this paper.

7. REFERENCES
[1] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and

T. Milo. Active Views for Electronic Commerce. In Proc.
Intl. Conf. on Very Large Data Bases (VLDB), 1999.

[2] Adobe. The SVG Viewer, 2001. URL:
http://www.adobe.com/svg.

[3] J. L. Bentley and J. H. Friedman. Data Structures for Range
Searching. ACM Computing Surveys, 11(4), 1979.

[4] Thomas Brinkhoff. Generating network-based moving
objects. In Proc. Intl. Conf. on Scientific and Statistical
Databases (SSDBM), pages 253–255. ACM, 2000.

[5] Thomas Brinkhoff and Jürgen Weitkämper. Continuous
Queries within an Architecture for Querying
XML-Represented Moving Objects. Lecture Notes in
Computer Science, 2121, 2001.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
In Proc. ACM SIGMOD Symp. on the Management of Data,
2000.

[7] Open GIS Consortium. Url: http://www.opengis.net, 2001.
[8] WWW Consortium. The Document Object Model, 2000.

URL:http://www.w3.org/DOM.
[9] F. Fabret, H. Jacobsen, F. Llirba, K. Ross, and D. Shasha.

Filtering Algorithms and Implementations for Very Fast
Publish/Subscrib Systems. In Proc. ACM SIGMOD Symp. on
the Management of Data, 2001.

[10] L. Forlizzi, R.H. Güting, E. Nardelli, and M. Schneider. A
Data Model and Data Structures for Moving Objects
Databases. In Proc. ACM SIGMOD Symp. on the
Management of Data, 2000.

[11] S. Grumbach, P. Rigaux, and L. Segoufin. Manipulating
Interpolated Data is Easier than you Thought. In Proc. Intl.
Conf. on Very Large Data Bases (VLDB), 2000.

[12] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and Michalis Vazirgiannis. A
Foundation for Representing and Quering Moving Objects.
ACM Trans. on Database Systems, 25(1):1–42, 2000.

[13] L.V.S. Lakshmanan and P. Sailaja. On Efficient Matching of
Streaming XML Documents and Queries. In Proc. Intl. Conf.
on Extending Data Base Technology, 2002.

[14] L. Liu, C. Pu, and W. Tang. Continual Queries for Internet
Scale Event-Driven Information Delivery. IEEE
Transactions on Knowledge and Data Engineering,
11(4):610–628, 1999.

[15] Bruce Momjian. PostgreSQL, Introduction and Concepts.
Addison Wesley, 2000. To appear. See
http://postgresql.org.

[16] D. Pfoser, Y. Theodoridis, and C. S. Jensen. Indexing
Trajectories of Moving Point Objects. Technical report,
Chorochronos Network, 1999.

[17] Jean-Marc Saglio and Jose Moreira. Oporto: A realistic
scenario generator for moving objects. GeoInformatica,
5(1):71–93, 2001.

[18] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling
and Querying Moving Objects. In Proc. IEEE Intl. Conf. on
Data Engineering (ICDE), pages 422–433, 1997.

[19] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous
Queries over Append-Only Databases. In Proc. ACM
SIGMOD Symp. on the Management of Data, 1992.

[20] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the
Generation of Spatiotemporal Datasets. In Intl. Conf. on
Large Spatial Databases (SSD’99), 1999.

[21] A.H. Watt. Designing SVG web graphics. New Riders, 2002.

