
Mobility Patterns

Cédric du Mouza and Philippe Rigaux
CEDRIC lab., CNAM, 292 Rue St Martin, F-75141 Paris Cedex 03, France,
dumouza@cnam.fr
LAMSADE lab., Univ. Paris-Dauphine, Place du Maréchal de Lattre de
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Abstract. We present a data model for tracking mobile objects and reporting
the result of queries. The model relies on a discrete view of the spatio-temporal
space, where the 2D space and the time axis are respectively partitioned in a finite
set of user-defined areas and in constant-size intervals. We define a generic query
language to retrieve objects that match mobility patterns describing a sequence of
moves. We also identify a subset of restrictions to this language in order to express
only deterministic queries for which we discuss evaluation techniques to maintain
incrementally the result of queries. The model is conceptually simple, efficient, and
constitutes a practical and effective solution to the problem of continuously tracking
moving objects with sequence queries.

Keywords: Mobility patterns, online evaluation, spatio-temporal applications.

1. Introduction

In the database community, several data models have been proposed
to enable novel querying facilities over collections of moving objects.
A common feature of most of these models is the strong focus on the
geometric properties of trajectories. Indeed, in most cases, the data
representation and the query language are considered as extensions of
some existing data model previously designed for (and limited to) 2D
geometric data handling. As a result, spatio-temporal data models rely
usually on a set of data structures providing support for geometric
operations (e.g., geometric intersection).

An assumption commonly adopted is to consider a dense embedding
space and to model trajectories as continuous functions in this space.
While this property allows several suitable computations (for instance
the position of an object can be obtained at any instant), it is not
well adapted to some analysis and classification tasks. In the present
paper we investigate an alternative approach, namely the management
of queries as a process relying on events related to the moves of objects
over a discrete representation of the underlying space, called reference
space. Intuitive examples of events are, for instance, an object enters a
zone, an object stays in a zone, and an object leaves a zone. A query in
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such a setting is a sequence of primitive events which can be specified
either by explicitely referring to the zones of interest (“Give all the
objects currently in a which arrived 5 minutes ago, coming from b”),
or by more generic patterns of mobility such as, for instance, “Give the
objects that moved from a to another zone and came back to a”.

We introduce mobility patterns as expressions describing such se-
quences of events. In the present paper we examine specifically the
following aspects of this framework:

− comparison and aggregation of moving objects trajectories,

− on-line classification of trajectories continuously provided by GPS-
like devices.

We first consider historical data and the post-acquisition operators
that allow to analyse the spatio-temporal behavior of objects belonging
to a given population (e.g., taxis, planes, etc.) and to perform clus-
tering and similarity-based analysis and comparisons. Analysis tools
that allow to create spatio-temporal “profiles” of objects are certainly
of interest to many applications. In the domain of traffic analysis for
instance, this permits to better predict and understand the load of a
local road network during a typical day. Public services can also be
made more efficient when they can be proposed in accordance with the
availability of users. The same holds for commercial marketing analysis.

Next we consider the tracking of objects with continuous queries,
i.e., queries whose result must be maintained during a given (and
possibly unbounded) period of time. When asking, for instance, for
all the objects that belong to a given rectangle R during the next 3
days, the initial result is subject to vary by considering the objects
that leave of enter R. Managing incrementally the evolutions of the
result (i.e., without recomputing periodically the entire result) is a hard
task with a geometric-based query language because the dense-space
assumption of the data model often contradicts with the discrete nature
of the observation. A trajectory for instance is obtained through sample
points provided by the GPS system, and the continuous representation
has to be inferred by interpolation between two sample points, or by ex-
trapolation from the last known position (Sistla et al., 1997). Moreover,
depending on the geometric operations required by the query, one might
have to consult the past trajectory to check whether or not the object
belongs to the result. Actually the few works that propose a solution
to the problem deal with limited classes of queries (e.g., window and
k-NN queries in (Mokbel et al., 2004a; Iwerks et al., 2004)).

We propose in the current paper a data model for representing
trajectories as sequences of moves in a discrete spatio-temporal space,
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and study the languages to query such sequences of events. Essentially,
the languages that we consider rely on mobility patterns to express
search operations. We focus specifically on the family of patterns that
satisfy the following properties (i) we do not need the past moves of
an object o to determine whether o matches or not a given pattern
and (ii) the amount of memory required to maintain a query result is
small. These properties are essential in the context of continuous queries
since they guarantee that a large amount of queries can be evaluated
efficiently with limited resources by just considering the last event
associated to an object. We define a class of queries which provides
an appropriate balance between expressiveness and the fulfillment of
these requirements.

In the rest of this paper we first develop an informal presentation of
our work (Section 2) with examples of mobility patterns that illustrate
the intuition behind the model and its practical interest from the user’s
point of view. The data model is presented in Section 3. Section 4 sur-
veys related work. Finally Section 5 concludes the paper and discusses
future work.

2. Mobility patterns

In our model, the locations of objects are mapped to a set of zones which
partition the area of interest. Clearly the considered partition is closely
related to a specific thematic interpretation of space which resorts to
the user’s choice and constitutes a quite classical and common spatial
analysis mechanism (Laurini and Thompson, 1992; Rigaux et al., 2001).
Defining which partitions are relevant and which are not is beyond the
scope of the present paper. Each zone is uniquely identified by a label
from a set Σ, and we characterize the trajectory of an object o by the
labels of the successive zones crossed by o.

Figure 2 shows a map partitioned in several zones, each one labelled
with a symbol (a, b, c, ...). Over this map we describe the trajec-
tories of a set of mobile objects. We assume in the following that the
trajectory’s description has been obtained from a GPS system which
gives the sequence of locations, along with their timestamp.

Consider now an application that aims at classifying and analysing
the traffic by issuing the following queries:

1. Give all the objects that traveled from a to f, stayed more than 10
minutes in f and then traveled from f to c.

2. Give all the objects traveling from f to d or c through another,
third, zone of the map.
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Figure 1. Objects moving over a partitioned map

3. Give all the objects that left a given zone, went to c and came back
to the first zone.

The common feature of these examples is a specification of the suc-
cessive zones an object belongs to during its travel, along with temporal
constraints. We call mobility pattern this specification. The geometric-
based approach used in most of the spatio-temporal data models so far
is not really adapted for expressing queries based on mobility patterns,
because it would require a lot of joins with the reference space. Actually
we do no longer need an interpolation or extrapolation mechanism
to infer the position of an object at each instant since the discrete
succession of events provided by the GPS server is naturally suitable
to serve as a support for evaluating these patterns.

Each GPS event provides the position of an object, and this suf-
fices to compute the zone where the object resides when the event
is received. It is therefore quite easy to construct a discrete repre-
sentation of the trajectory of an object as a sequence of the form
l1{T1}.l2{T2}. · · · .ln{Tn} featuring the list l1, l2, . . . , ln of successive
zone labels as well as the time spent in each zone. For instance the
trajectory of o1 in Figure 2, assuming that o1 spent 2 minutes in f, 4
minutes in a, 3 minutes in d and 6 minutes in c, will be represented
in our model as a sequence [f{2}.a{4}.d{3}.c{6}]. Note that each
new event either increments the time component of the last label if
the object remains in the same zone, or appends a new label to the
trajectory’s representation.

2.1. Queries

Mobility patterns are used to query this database and retrieve the
objects that match a pattern. Basically, they consist of sequences of
expressions built from a small set of operators and featuring either
labels from Σ or variables from a set V. Variables can be instantiated
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to any of the labels of the map, and allow to denote complex classes
of trajectories within a compact and expressive language. The presen-
tation that follows is mostly based on examples, intended to illustrate
its main features.

As a first example, assume that we want to retrieve all the objects
that started from b, moved to e, crossing one of the cities c, d, or f

(see Figure 2), and finally went from e to a via the same city. This is
expressed as follows in our language:

start at b, follow @x, follow e repeat, follow @x.a

This mobility pattern is built with two operators: start at and
follow, the latter being optionally qualified with repeat. Two other
operators, now at and roam will be presented in further examples.

A zone is represented by its label (here a, b, e) or by a variable
(here @x) if it is left undetermined by the user. A variable is here
necessary to represent the city where an object moved after leaving
b, and expressing that the object must come back to a via the same
city. Labels or variables can be concatenated (for instance @x.a in our
example) to describe a path, and labels (but not variables) can be
grouped in sets (for instance {a, b}) to describe a union of zones.

Users can specify a start at operator to indicate where a trajectory
is supposed to begin. Another operator, now at, indicates where an
object is required to be at the present moment. Without such state-
ments, the mobility pattern is only required to match any subpart of
the trajectory.

A follow operator describes a move which can be repeated with the
repeat statement either for a fixed number of times, or many times but
at least one. In our example the follow e repeatmeans that an object
that matches the pattern moves to e and stays there for an unbounded
period of time before coming back to a.

Intuitively, an object o matches the pattern P above if the following
conditions hold:

1. there exists a valuation of the variables in P such that the valued
pattern is a substring of the object’s trajectory;

2. if the pattern begins with start at (resp. ends with now at), the
valued pattern is a prefix (resp. a suffix) of the trajectory;

3. the time spent in each zone complies with the temporal constraint
expressed in the pattern.

For instance an object whose trajectory is represented by the se-
quence of zone labels [b.d.e.d.a.c.f] (we omit the temporal informa-
tion for simplicity) matches the pattern above where the value of the
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variable @x is set to the label d. The string in boldface is a valuation
of P , prefix of the discrete trajectory representation.

More generally, mobility patterns denote classes of trajectories. An
object o matches a pattern P if a substring of its discrete trajectory
representation belongs to the class denoted by P . We shall provide
in the following precise definitions of the syntax and meaning of pat-
terns. Let us first give some other intuitive examples that will be used
throughout the rest of the paper to illustrate the model.

− Q1. Give all the objects travelling from a to f and then from f to
c in 10 minutes.

start_at a, follow f, roam 10, follow c

If the trajectory of an object o matches the pattern, then: start at

a means that o starts from a; follow f means that o leaves a for
f; roam 10 denotes that the object moves in any zones of the map
during 10 minutes. The roam operator is neutral and never restricts
in any way the trajectory of an object: leaving f, it is possible to
wander in different zones before reaching c, yet being qualified to
the result of the query.

− Q2. Give all the objects that stayed in a or b all the time except
for one minute when they were in another, third, zone.

start_at {a,b}, follow {a,b} repeat,

follow @x, follow {a,b} repeat;

@x != a, @x!= b

This example requires a variable @x which expresses a move from
a or b to any other zone of the map. It is possible to express
additional constraints on the possible instantiations of a variable,
using equalities or inequalities. The user requires in this example
the object to leave a or b for a third area.

− Q3. Give all the objects that went through f to another zone then
went to d or c, and came back to f using the same zone.

follow f.@x, follow {d,c}, follow @x.f;

@x != f

Recall that a variable sticks to its value once instantiated.
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This language brings new querying facilities which would be quite
difficult, if not impossible, to express or compute with a geometric
based spatio-temporal query language, because of the many spatial
joins necessary to determine the zone where an object resides at a
given instant, and more importantly because of the sequential aspect
of the queries. We provide now the grammar of the user language. First
we define the following types:

ZONE → x, with x ∈ Σ
ZONESET → {x1, . . . , xk} with, k ≥ 1, and ∀i, xi ∈ Σ
VAR → v, with v ∈ V
ZONESTRING → x1 . . . xk, with k ≥ 1, and ∀i, xi ∈ Σ
VARSTRING → x1 . . . xk, with k ≥ 1, and ∀i, xi ∈ Σ ∪ V

A mobility pattern is built with the following grammar, where INT

denotes a positive integer token.

START BLOC → start at ZONESET | start at VAR | ε

NOW BLOC → now at ZONESET | now at VAR | ε

BLOC → follow ZONESET REPEAT BLOC BLOC

| follow VARSTRING REPEAT BLOC BLOC

| roam INT | roam | ε

REPEAT BLOC → repeat INT | repeat | ε

QUERY → START BLOC BLOC NOW BLOC

2.2. Continuous queries

The query language defined above can be used to analyse and classify
objects trajectories stored in a database. It provides also a support
for continuous queries. However the peculiarity of such queries entails
some restrictions. Indeed, an object can be added or removed from the
result set during the query lifetime, depending on its most recent moves.
Under our modeling perspective, this means that the mobility patterns
relevant for a continuous evaluation are those that end with now at:
only those objects whose trajectory’s suffix, at the current instant,
match the pattern, are included in the result.

As a first example, assume that we want to retrieve all the objects
that went from a or b, moved to e, crossing one of the zones c, d, or
f (see Figure 2), and finally went back from e to a via the same zone
where it actually lies. This query is expressed with our language by:

follow {a,b}, follow @x repeat,

follow e repeat, follow @x repeat, now_at a;

@x != f
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The continuous evaluation aims at matching the pattern with a
suffix of the objects’ trajectory. The suffix represents here the most
recent part of the continuous stream of GPS events. Since the trajectory
representation evolves as new events are received, the matching must
be evaluated periodically – almost continuously. Our goal is to perform
this evaluation with minimal space and time consumption. We consider
two essential criteria for measuring the easiness and efficiency of this
evaluation:

1. Do we need to consider the past moves of an object to evaluate a
query?

2. What is the amount of memory required to maintain a query result?

Consider first the case of patterns without variables. Evaluating a
pattern P is then a standard operation which simply requires to build
the Finite State Automaton (FA) that recognizes the language Σ∗.LP

(Hopcroft and Ullman, 1979), where LP is the regular language denoted
by P and Σ is the set of labels of the map.

In the general case, the FA associated to a regular expression is non-
deterministic. Then an object o might be associated to several states
at a given time instant, and we must record the list of current states
for o. This list can be represented as a mask of bits, one bit for each
state of the FA. The value 1 (resp. 0) for a bit means that o is (resp. is
not) in the associated state. This gives a rather compact structure: for
a pattern with 8 symbols, a mask of 8 bits (one byte) must be recorded
for each object. One can track a database of one million objects with
only one megabyte in main memory.

The pseudo-code of the procedure HandleEvent(q, id, x, y) sum-
marizes how to update the result of a query q when a GPS event is
received, giving a new location (x, y) for the object o. The reference
map is a set of zones denoted by M .

HandleEvent (q, o, x, y)
begin

// Compute the current zone, z

z = PointInPolygon(M, x, y)
// Get the label of z

l = label(z)
// For each bit set to 1 in the status of o,
// compute the transition l

for each bit i with value 1 in statuso

Compute sj = δ(FAq, si, l)
Set the bit j to 1 and the bit i to 0 in statuso
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end for

end

The result set of q can then be updated according to the new status
of object o. Essentially, if at least one of the new states is an accepting
one, o will be in the result set, else it will be out of this result set. In
this simple case we obtain a direct answer to the two questions above:

1. It is not required to maintain historical information on a trajectory,
since, it suffices to know the current state(s) of the FA, reached by
taking account of the events received so far.

2. The space required to maintain a query result is, in the worst case,
the set of all states in the FA (which might be non-deterministic)
and is therefore proportional to the size of the query.

If we consider now patterns with variables, the language is much
more expressive, but some care is required for executing queries. Take
for instance the example Q3 above. Each time an object leaves the zone
f for another one, a new label is bound to the variable @x. One must
then store this value in order to check for the consistency of any further
occurrence of @x.

The next section is devoted to the data model, and focuses on
the evaluation of queries with variables. We show that we can still
avoid to rely on historical information on trajectories, and study more
specifically the memory requirements for several classes of queries.

3. The model

We consider an embedding space partitioned in a finite set of zones,
each zone being uniquely labeled with a symbol from a finite alphabet
Σ. The time axis is divided in constant size units. For concreteness we
still assume in the following that the time unit is 1 minute. We also
assume a set V of variables with Σ ∩ V = ∅ and denote as Γ the union
Σ ∪ V. In the following, letters a, b, c, . . . will denote symbols from Σ,
and @x, @y, @z, . . . variables. We assume the reader familiar with the
basic notions of regular expressions and regular languages, as found
in (Hopcroft and Ullman, 1979).

3.1. Data representation and query language

We adopt a standard extended relational framework for the database,
with O denoting the relation of moving objects, and o.traj the trajec-
tory of an object o. The representation of trajectories is then defined
as follows:
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DEFINITION 1 (Representation of trajectories). A trajectory is rep-
resented by an expression of the form

s1{T1}.s2{T2}. · · · .sn{Tn}

where si, i = 1, . . . , n are symbols from Σ and Ti represents the number
of time units spent in the zone si.

Hereafter, we shall use the term “trajectory” to mean its representa-
tion. For convenience, we shall often omit the temporal components and
use a simplified representation of a trajectory as a word [s1.s2. · · · .sn]
in Σ∗.

A natural choice is to build mobility patterns as regular expres-
sions on Γ = Σ ∪ V, and to search for the substring of trajecto-
ries that match the expression for some value of the variables. Con-
sider for example the regular expression E =a.@x+.b+.@x. The trajec-
tory t =f.d.a.c.b.c.b matches E because we can find a word w =
a.@x.b.@x in the language denoted by E (w is called a witness in the
following) and a valuation ν : {@x := c} such that ν(w) is a substring
of t. However this approach raises some ambiguities regarding the role
of variables. Consider the following examples:

1. Let E be the regular expression b.(a|@x)+.c. Then the trajectory
b.a.c has two witnesses in the regular language denoted by E:
b.@x.c and b.a.c. In the first case @x must be valued to a, but in
the second case any value of @x is acceptable.

2. Let E be the regular expression a.(@x|@y).b.(@x|@y). The vari-
ables @x and @y can be used interchangeably, which makes the role
of variables ambiguous.

As shown by the previous examples, if we build mobility patterns
with unrestricted regular expressions over Γ, the assignment of variables
is non deterministic, and sometimes meaningless. For safety reasons,
when reading a word w and checking whether w matches a mobility
pattern P , we require each variable in P to be explicitely bound to
one of the symbols in w. We thus adopt a more rigorous definition of
the language by considering only unambiguous regular expressions on
Γ such that each variable always plays a role in the evaluation of the
query. We need first to introduce marked regular expressions.

DEFINITION 2 (Marked expressions (Book et al., 1971)). Let E be a
regular expression over the alphabet Γ. We define the marking of E as
the regular expression E′ where each symbol of Γ is marked by a sub-
script over N, representing the position of the symbol in the expression.
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The marking of the regular expression a∗.@x.((b.a)|(c.b)).c.@x∗.a

is for instance the expression a∗1.x2.((b3.a4)|(c5.b6)).c7.@x8.a9.
We can now define mobility patterns as the class of regular expressions
that satisfy the following property:

DEFINITION 3 (Mobility patterns). A mobility pattern is a regular
expression P over Γ such that each variable of P ′ appears in each word
of the language L(P ′).

This property ensures that each variable in any pattern is always
assigned to a relevant label during query evaluation. The expression
P = (a|b)+.@x.(a|b)+ is for instance a mobility pattern because @x

appears in all the words of the language L(P ). Any successful matching
of P with a trajectory t results therefore in an assignment of @x to one
of the symbols of t. It can be tested whether a regular expression
matches the required condition, and thus can be used as a mobility
pattern.

PROPOSITION 1. There exists an algorithm to check whether a reg-
ular expression is a mobility pattern.

Proof (sketch): Let E be a regular expression. Then L(E) and L(E′) are
regular languages. We define the language Lm = {Γ∗.@x1.Γ

∗.@x2. · · · .@xk.Γ
∗},

where Γ stands for Σ ∪ V, and @x1,..,@xk are the variables of E′. Lm

is regular by construction, and so are Lm and L(E′) ∩ Lm. Therefore
the fact that L(E′)∩Lm is empty is decidable. And if L(E′)∩Lm = ∅,
then all the marked variables appear in all the words of L(E′). 2

EXAMPLE 1. The following regular expressions represent the mobility
patterns of the sample queries Q1, Q2 and Q3 given in Section 2.

1. P1 = a.f{2,}.c

2. P2 = (a|b)+.@x.(a|b)+

3. P3 = f.@x+.(c|d)+.@x+.f

The user query language proposed in section 2.1 allows to con-
struct expression that can be transformed in mobility patterns via the
following interpretation function [.] :

1. [x] = x, x ∈ Σ
[v] = v, v ∈ V
[x1 . . . xk] = x1 . . . xk, xi ∈ Σ ∪ V
[{x1, . . . , xk}] = (x1| . . . |xk)
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2. Interpretation of a query:
[START BLOCK BLOCK END BLOCK]=[START BLOCK].[BLOCK].[END BLOCK]

3. Interpretation of the START BLOCK:
[start at ZONESET]=[ZONESET]
[start at VAR]=[VAR]
[ε]=Σ∗

4. Interpretation of the NOW BLOCK:
[now at ZONESET]=[ZONESET]
[now at VAR]=[VAR]
[ε]=Σ∗

5. Interpretation of the BLOCK:
[follow ZONESET repeat INT BLOCK]=[ZONESET][INT ].[BLOCK]
[follow ZONESET repeat BLOCK]=[ZONESET]+.[BLOCK]
[follow VARSTRING repeat INT BLOCK]=[VARSTRING][INT ].[BLOCK]
[follow VARSTRING repeat BLOCK]=[VARSTRING]+.[BLOCK]
[follow ZONESET BLOCK]=[ZONESET].[BLOCK]
[follow VARSTRING BLOCK]=[VARSTRING].[BLOCK]
[roam INT]=Σ[INT ]

[roam]=Σ∗

The interpretation of a query is a mobility pattern. However the
user query language does not capture all the mobility patterns, as
illustrated by the following example. Let E =b.(a|c+).@x. E is a
mobility pattern since the variable @x appears in all the words of L(E).
However our language does not allow to use the + operator in a or
expression.

The pattern @x.a.b.c.@x denotes the family of regular languages
that consists of words in Σ∗ with exactly 5 letters, the first one be-
ing equal to the last one, separated by a.b.c. A mobility pattern
P denotes a regular language L(P ) ⊆ Γ∗. More generally a mobility
pattern P with k variables is equivalent to the union of |Σ|k regular
expressions enumerating the |Σ|k possible combinations of variables
values. Variables give an exponentially concise way of expressing such
languages.

In the following we shall denote as var(P ) the set of variables in a
pattern P . The query language and its semantics are now defined as
follows.

DEFINITION 4 (Syntax of queries). A query is a pair (P, C) where P
is a mobility pattern and C is a set of constraints of the form s1 6= s2,
with s1, s2 ∈ Σ ∪ var(P )
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Let q be a query of the form (P,LC) where LC is a list of constraints
{C1, . . . Cl}. The result of q, denoted q(O), is a subset of O defined as
follows:

DEFINITION 5 (Semantics of queries). An object o belongs to q(O) if
there exists a mapping ν : V → Σ, called a valuation, with the following
properties:

1. ν satisfies all the constraints C,∀C ∈ LC.

2. o.traj ∈ ν(L(P ))

The constraints in a query can be used to forbid explicitely a variable
to take a value (e.g., @x 6= a). The domain of a variable @x for a given
query q, denoted domq(@x), represents the set of possible values for @x
given the constraints of q.

EXAMPLE 2. The following queries correspond to the examples given
in Section 2.

1. q1 = ({a.f{2,}.c}, ∅)

2. q2 = ({(a|b)+.@x.(a|b)+}, {@x 6= a, @x 6= b })

3. q3 = ({f.@x+.(c|d)+.@x+.f}, {@x 6= f})

3.2. Query evaluation

We describe now an algorithm for evaluating a query q. First we show
how to obtain an automaton which, given a mobility pattern P , accepts
the trajectories that match P . This automaton also provides the valu-
ation of variables in P . In a second step we explain how the automaton
can be used at runtime, and discuss the size of the memory used to store
the relevant information. For simplicity, we consider the automata that
accept the language L(P ): their extension to automata that accept
Σ∗.L(P ) is trivial and can be found in any specialized textbook.

Since a mobility pattern P is a regular expression over the alphabet
Γ, we can build a non-deterministic finite state automaton (NFA) NΓ

that accepts the language of Γ∗ denoted by P . Starting from NΓ we
can build a new automaton, NΣ, which checks whether a trajectory t

of Σ∗ belongs to ν(L(P )), and delivers the valuation ν.
Essentially, NΣ is NΓ with a management of variable bindings based

on the following extensions: (i) a transition labeled with a variable @x

on a symbol α sets the value of @x to α if @x was not yet bound and
(ii) with each state one maintains the bindings of the variables met
so far. Transitions from si to sj, labeled with a variable @x, are then
interpreted as follows:
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1. If @x is bound to α in si, and the current symbol of the input word
is α, then sj can be reached and the binding of sj is identical to
the binding of si.

2. If @x is not bound in si, and the current symbol of the input word
is α, then sj can be reached and the binding of sj is the binding of
si augmented with @x← α.

The definition of NΣ is given below.

− The set of states of NΣ, states(NΣ), is states(NΓ)×Σ|var(P )|, i.e.,
all the possible associations of a state of NΓ with a valuation ν of
the variables in P . A state of NΣ is denoted < S, ν >.

− The set of accepting states of NΣ, accept(NΣ) is accept(NΓ) ×
Σ|var(P )|.

− The transition function of NΣ, δΣ, is drawn from the transition
function of NΓ, δΓ, as follows:

• if δΓ(Si, α) = Sj is a transition of NΓ with α ∈ Σ, then
δΣ(< Si, ν >, α) =< Sj, ν >. In other words the transition
has no effect on variable bindings.

• if δΓ(Si,@x) = Sj is a transition of NΣ , then δΣ(< Si, ν >

, α) =














< Sj, ν+@x:= α > if ν(@x) is undetermined and the binding
of @x with α is allowed by the constraints.

< Sj, ν > if ν(@x) = α.
is undefined otherwise.

Whenever an accepting state < S, ν > of NΣ is reached, the input
trajectory is accepted and the valuation ν defines the valuations of all
the variables (recall that, by definition, any word in a language defined
by a mobility pattern contains all the variables).

3.3. Evaluation of continuous queries

In order to check at run time whether an object o matches a mobility
pattern, we do not need to fully construct the automaton described
above. Instead, we start with a minimal representation, and build in a
progressive way, according to the symbols appended to the trajectory of
o, the valuation of the variables which potentially leads to an accepting
state. The initial representation of NΣ consists only of the set of states
of NΓ, each associated with the empty valuation. By keeping all the
current states of NΣ associated with o, the following operations can
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Mobility Patterns 15

be performed whenever a new move m is appended to o.traj to test
whether o enters, stays or quits the query result:

1. If the transitions labeled with m lead o to at least one accepting
state, then o becomes part of the result of the query.

2. If the transitions labeled with m are such that o is no longer in at
least one accepting state, then it must be removed from the result
of the query.

This yields a first, convenient, property for the evaluation of contin-
uous queries: the last move suffices to deliver the information needed
to maintain a query result. Here is an example that illustrates the
process (more details can be found in the long version).

EXAMPLE 3. Consider the mobility pattern P = (a|b)+.@x.(a|b)+.
Figure 3 shows an NFA automaton NΓ which recognizes the words of
L(P ), S0 being the initial state and S4, S5 the final states.

S

S

S

S

S

S0

1

2

3

4

5

a

b

@x

@x

a a

a

b b

b

a a

b b

Figure 2. An automaton for the mobility pattern (a|b)+.@x.(a|b)+

Assume that one receives successively the following events for an
object o: a, a, b, b, c and a. Each row in the table of the figure 3
shows the states of the NFA NΣ after reading a symbol, as well as the
possible valuations of variable @x. The accepting states are in bold font
and mean that the trajectory belongs to the query result set.

Example 3 shows that we might have to maintain, during the analy-
sis of an input trajectory, several valuations associated to a same state.
In the worst case one might have |states(NΓ)|×|Σk| simultaneous states
to maintain, representing all the possible valuations of variables that
lead to an accepting state. Consider the following pattern:
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16 Cédric du Mouza and Philippe Rigaux

Input Reached states in NΣ

a < S1,@x=⊥>

a[2] < S1,@x=⊥>, < S3,@x=a>

a[2].b < S2,@x=⊥>, < S3,@x=b>, < S5,@x=a>

a[2].b[2] < S2,@x=⊥>, < S3,@x=b>, < S5,@x=a>, < S5,@x=b>

a[2].b[2].c < S3,@x=c>

a[2].b[2].c.a < S4,@x=c>

Figure 3. Evaluation of a query

@x+.@y+.@z+

It is no difficult to find a word such that @x, @y and @z take all their
possible valuations.

Depending on the application, the size of the database and the
number of queries, maintaining a large amount of informations to con-
tinuously evaluate a query might become costly. In some cases we might
therefore want to restrict the expressive power of the language to obtain
low memory needs. Consider for instance a web server providing a sub-
scribe/publish mechanism over a (possibly large) set of moving objects.
In such a system, web users can register queries, waiting for notification
of the results. The performance of the system, and in particular its
ability to serve a lot of queries under an intensive incoming of events,
depends on the efficiency of the query result maintenance, and therefore
on the size of the data required to perform this maintenance. We define
below a fragment of the query language which meets the requirement
of this kind of application.

3.4. Deterministic queries

The class of deterministic queries is such that, at any instant, there is
only one possible valuation for each variable of the mobility patterns.
Deterministic queries are defined by the following property:

DEFINITION 6 (Deterministic queries). A query q(P, C) is determin-
istic iff ∀u, v ∈ (Σ ∪ V)∗,∀@x∈ V, u.@x.v ∈ L(P ) ⇒6 ∃α ∈ domq(@x), 6
∃w ∈ (Σ ∪ V)∗, u.α.w ∈ L(P ).

The intuition is that when it becomes possible to instantiate a vari-
able during the analysis of a trajectory, then this transition is the only
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Mobility Patterns 17

possible choice. This makes the binding of variables deterministic, and
ensures that, for a given word, there is only one (if any) possibility to
instantiate a variable.

EXAMPLE 4. The following examples illustrate deterministic queries.

− The query q(f.@x.(c|d).@x.f, ∅) is deterministic. Whenever a
f symbol has been read, the only possible choice is to bind @x to
the symbol that follows immediately f.

− The query q((a|b)+.@x.(a|b)+, ∅) is non-deterministic since
the words a.@x.a.b and a.b.@x.b both belong to L(P ). However
q′((a|b)+.@x.(a|b)+, {@x 6=a,@x 6=b}) is deterministic.

PROPOSITION 2. There exists an algorithm to check whether a query
is deterministic.

Proof (sketch): Let q be a query, P be a mobility pattern in q and
NΓ a deterministic automaton which recognizes L(P ). Since NΓ is
deterministic, for any input string we reach at most one state s of
NΓ. If one can find a state s with two transitions: δ(s,@x) = s′ and
δ(s, α) = s′′, with α ∈ domq(@x), then it suffices to check whether
there exists two words @x.u and α.v which both permit to reach a final
state from s. If this is the case, then q is not deterministic. 2

PROPOSITION 3. Let q(P, C) be a deterministic query. Then, for each
word w of Σ∗, there is at most one witness of w in L(P ).

Consider again the queries of Example 4. In the first example an
accepted word can only have one single witness, either f.@x.d.@x.f or
f.@x.c.@x.f. In the second example, with constraints {@x 6=a,@x 6=b},
any witness consists of two words of {a,b}+, separated by a symbol
distinct from a or b.

It follows that if q(P, C) is a deterministic query, the memory space
required to check whether a word matches q is |P | + |var(P )|, where
|P | represents the number of symbols in P . Essentially, we need one
FA for q, plus a storage for each variable, and we can build a FA with
a number of states equal to the number of symbols in the expression.

When evaluating a continuous query, we need to maintain for each
object o the set of its current states, as well as the binding of variables
and this suffices to determine, at each GPS event, whether o enters,
stays or quits the query result.

The proofs of the properties for mobility patterns rely on the Glushkov
automaton of regular expressions (Book et al., 1971; Bruggemann-Klein
and Wood, 1998). Given a regular expression E, we first introduce the
following definitions:
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18 Cédric du Mouza and Philippe Rigaux

− first(E) = {α | there is a word w such that α.w ∈ L(E)}

− last(E) = {α | there is a word w such that w.α ∈ L(E)}

− follow(E,ω) = {α | there are words v and w such that v.ω.α.w ∈
L(E) } for each symbol ω.

Basically, a Glushkov automaton possesses as many states as marked
symbols of the expression it stands for. Each incoming transition to a
state si is labelled by the unmarked symbol s. The definition presented
by Book et al., ((Book et al., 1971)) is the following:

DEFINITION 7. The Glushkov automaton of a regular expression E

is the automaton GE = (Q′,Σ, δ′, qI , F
′) with:

1. qI is the initial state

2. Q′ = sym(E′) ∪ {qI}

3. For α ∈ Γ, δ′(qI , α) = {x|x ∈ first(E′), x♮ = α}

4. For σi ∈ sym(E′) and α ∈ Γ, δ′(σi, α) = {x|x ∈ follow(E′, x) and
x♮ = α}

5. F ′ = last(E′)

The Glushkov automaton GE recognizes the langage denoted by
E (Book et al., 1971). The number of states in GE is equal to the
number of symbols in E.

EXAMPLE 5. Figure 5 shows the Glushkov automaton GE for the reg-
ular expression E = a((xa)|(bx))∗b, whose marking is a1((x2a3)|(b4x5))

∗b6.

q a

b

b

x

ax 3

4

2

5

6I
a

b

x

x

b

a

x

x

b

b

b

1

Figure 4. Glushkov automaton of a((xa)|(bx))∗b

The following can now be obtained from the definition of the Glushkov
automaton.
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Mobility Patterns 19

PROPOSITION 4. Let P be a mobility pattern. Then for any two
words w1,w2 of L(P ), the marked variables appear in the same order in
w1 and w2.

Proof (sketch): Assume there exists two accepted words w1 and w2 such
that w1=p1.@x1.q1.@x2.r1 and w2=p2.@x2.q2.@x1.r2 and @x1 and @x2

do not appear in p1 and p2. If @x1 does not appear in r1, since r1 is a
path from the state @x2 of the Glushkov automaton to a final state, then
p2.@x2.r1 is an accepted word. This raises a contradiction because this
word does not contain @x1. A similar reasonning shows that we obtain
the same contradition by assuming that @x1 appears in r1. 2

It follows that, if P is a mobility pattern in a deterministic query,
for any input string in Σ∗, there is only one possible valuation for
each variable of P . The memory space required to check whether a
word matches P is therefore |states(NΓ)| + |var(P )|, where NΓ is the
Glushkov automaton of P .

The NΓ automaton is non-deterministic, so in the worst case all
the states of the automaton can be reached simultaneously. In addi-
tion we need to store the instanciation of variables. Since variables
are instanciated in a known order, a list of |var(P )| memory units is
sufficient.

The following example illustrates this property. Indeed, it shows that
for a given input, only one state can be reached, and that we just have
to store the unique valuation of x.

EXAMPLE 6. Let us consider again the query q(P, C), with
P =(a|b)+.@x.(a|b)+ and C = {@x 6=a,@y 6=b}. The automaton re-
mains identical (see Figure 3) but the evaluation on input a.a.b.b.c.a
is now given in Table I.

The properties of deterministic queries ensure that the required
amount of memory is independent from the size of Σ, and thus of
the underlying partition of space used to describe the trajectories of
moving objects. This property might be quite convenient if the space
of interest is very large, or if the number of queries to maintain is such
that the memory usage becomes a problem.

Expressions of deterministic queries are simple and can therefore
easily be introduced in a SQL-based query language such as SQL, ex-
tended with a matches boolean operator, as illustrated by the following
examples.

− Q1. Give all the objects that traveled from a to f, stayed at least
2 minutes in f and then traveled from f to c.
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Table I. Evaluation of a deterministic query

Input Reached states in NΣ Transitions not allowed

a < S1,@x=⊥>

a[2] < S1,@x=⊥> < S3,@x=a> since a 6∈ dom(@x)

a[2].b < S2,@x=⊥> < S3,@x=b> since b 6∈ dom(@x)

a[2].b[2] < S2,@x=⊥> < S3,@x=b> since b 6∈ dom(@x)

a[2].b[2].c < S3,@x=c>

a[2].b[2].c.a < S4,@x=c>

SELECT *

FROM Mob

WHERE traj matches(a.f{2,}.c)

The matches function checks whether a suffix of the spatio-temporal
attribute traj matches the mobility pattern a.f.c. An additional
temporal constraint states that the object must spend at least 2
time units (e.g., 2 minutes) in f.

− Q2. Give all the objects that stay in a or b all the time except for
one minute when they were in another, third, zone.

SELECT *

FROM Mob

WHERE traj matches(’(a|b)+.@x.(a|b)+’)

AND @x != ’a’ AND @x != ’b’

This example requires a variable @x which expresses a move not
assigned to a specific label but instantiated to the choice of a
moving object when it leaves a or b. It is possible to express
additional constraints on the instantiations allowed for a variable,
using equalities or inequalities. The user requires in this example
the object to leave a or b for a third, distinct, area.

− Q3. Give all the objects that went through f to another zone then
went to d or c, and came back to f using the same zone.
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SELECT *

FROM Mob

WHERE traj matches(’f.@x+.(d|c)+.@x+.f’)

AND @x != ’f’

4. Related work

The modeling of moving objects has been strongly influenced by the
existing spatial models. Representative examples are (Sistla et al., 1997;
Güting et al., 2000; Forlizzi et al., 2000; Grumbach et al., 2000; Su
et al., 2001; Vazirgiannis and Wolfson, 2001; Güting et al., 2003; Gupta
et al., 2004; Ding and Güting, 2004; Sun et al., 2004). The fundamental
work of (Forlizzi et al., 2000) and (Güting et al., 2000) is based on
spatiotemporal abstract types and extends SQL to query spatiotempo-
ral data at an abstract level. The model is powerful to represent and
query the past and present position of an object. The MOST model
((Sistla et al., 1997), (Wolfson et al., 1999)) supplies a query language
named FTL that enables the specification of queries that refer to future
states of the database. Other works ((Chomicki and Revesz, 1997),
(Grumbach et al., 2000)) use the constraint databases framework and
are convenient for representing and manipulating trajectories as infinite
sets of positions. Some relevant models ((Gupta et al., 2004; Ding and
Güting, 2004)) have also been proposed to manage the peculiar problem
of moving objects on a constraint network. For instance (Gupta et al.,
2004) describes an evaluation technique based on hypercube graphs
to compute the shortest paths. (Sun et al., 2004) presents approxi-
mation techniques for query processing to interrogate the past, the
present and the future of objects trajectories. The authors propose
a multi-dimensional histogram incrementally updated for queries at
present time, histories for queries concerning the past, and a predictive
technique for queries pertaining to future positions.

Expressing sequences of moves as proposed in the present paper
is close in spirit to the area of sequence databases (Seshadri et al.,
1995; Mecca and Bonner, 1995; Sadri et al., 2001a; Sistla et al., 2002).
The SQL-TS language of (Sadri et al., 2001a) and (Sadri et al., 2001b)
allows to express sequences of conditions. The paper describes an effi-
cient algorithm for query evaluation. The idea of representing temporal
sequences as strings, relying on pattern-matching algorithms for query
evaluation, is also present in (Dumas et al., 1998) and (Djafri et al.,
2002). The system explores the consecutive snapshots contained in the
spatio-historical database, creates an evolution string and looks for a
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matching of this string with the histories of the objects. In (Ramakr-
ishnan et al., 1998) sequences are considered as sorted relations, and
each tuple gets a number that represents its position in the sequence. A
shift operator using this number is defined in order to join tuples of the
same sequence. Aggregation operators on sequences for a given range
of sequencing numbers is also presented. Some other works (Kim et al.,
2002; Goldin and Kanellakis, 1995; Guralnik and Srivastava, 1999; Chen
and Ng, 2004; Law et al., 2004) present algorithms for querying and
mining similar subsequences, as well as event detection from time series
data (i.e., sequences of real numbers). (Law et al., 2004) for instance
describes the necessary restrictions of the SQL language when dealing
with streams, focusing on the problem of the aggregation. After defining
the “nonblocking” queries, the paper defines aggregates (UDA) that
can be applied on stream data. Nonetheless all these approaches are
significantly different from ours. In particular there is nothing similar
to the concept of mobility pattern, featuring variables, proposed in our
data model.

The notion of continuous queries, described as queries that are issued
once and run continuously, is first proposed in (Terry et al., 1992). The
approach considers append-only databases and relies on an incremental
evaluation on delta relations. Availability of massive amounts of data
on the Internet has considerably increased the interest in systems pro-
viding event notification across the network. Some representative works
are the Active Views system (Abiteboul et al., 1999), the NiagaraCQ
system (Chen et al., 2000), and the prototypes described in (Liu et al.,
1999; Fabret et al., 2001). In the area of spatio-temporal databases,
the problem is explicitely addressed in several works (Brinkhoff and
Weitkämper, 2001; Kalashnikov et al., 2002; Tao et al., 2002; Mokbel
et al., 2004b; Mokbel et al., 2004a; Xiong et al., 2004; Iwerks et al.,
2004; Jensen et al., 2004). (Brinkhoff and Weitkämper, 2001) for in-
stance describes a web-based architecture for reducing the volume and
frequency of data transmissions between the client and the server.
(Kalashnikov et al., 2002) presents a system that indexes queries in
order to recompute periodically the whole result of each query. This is
in contrast with the incremental computation advocated in the current
paper. (Iwerks et al., 2004) describes an evaluation method to maintain
the result of a kNN-query by retrieving all the objects within a given
range that may affect in a close future the result of the query. (Mokbel
et al., 2004b; Mokbel et al., 2004a; Xiong et al., 2004) discuss algorithms
to incrementally evaluate a set of continuous queries that consist of
three steps: (i) join with the cache for new incoming tuples (positive
updates), (ii) invalidate some results (negative updates) after a timeout,
(iii) join with the stored data (positive and negative updates). (Jensen
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et al., 2004) presents an index based on the B+-tree, called the Bx-
tree, that allows an efficient evaluation of continuous, range and k-NN
queries. They reconsider the concept of conservative approximation by
taking account of the enlargement of the queries’ regions.

5. Conclusion and further work

We described in this paper a new approach for querying and tracking a
moving object database by means of mobility patterns. Our proposal is
based on a data model which allows to retrieve objects whose trajectory
matches a parameterized sequence of moves expressed with respect to
a set of labeled zones. We investigated the applicability of the model
to continuous query evaluation, showed how to maintain incrementally
the result of a query, and identify a fragment of the query language
such that the amount of space required to maintain this result is very
low.

A simplified version of the language can easily be introduced as
complement of a geometric-based extension of SQL, as shown by the
query samples proposed in Section 3. The properties of the language
make it a convenient candidate for mobile object tracking based on
sequences patterns, and its simplicity leads to an easy implementation.

A prototype is being developed in order to assess the relevancy of
this approach in a web-based context where a lot of clients can register
queries, receive an initial result set, and wait for notification of updates
to this result set. In particular we are currently working on optimization
techniques for patterns expressed as words in Γ∗. We believe that stan-
dard pattern matching techniques (Knuth et al., 1977; Crochemore and
Rytter, 1994) can be extended to such parameterized strings, thereby
allowing an evaluation by a simple scan of the input trajectory, without
additional memory requirements.

This framework raises several interesting research issues that we
plan to investigate in a near future: approximate similarities between
trajectories represented as strings, extension of the query language to
express temporal and topological constraints on the zones of a pattern,
and finally multi-resolution sequences. Indeed, introducing multi-scale
patterns is likely to raise the power of the classification and analysis
aspects of our model.

Acknowledgments: we are very grateful to D. Vodislav and D. Gross-
Amblard for early discussions on this model.
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