
POEM: an Ontology Manager based on

Existence Constraints⋆

Nadira Lammari1, Cédric du Mouza1 and Elisabeth Métais1

1 Lab. Cedric, CNAM
Paris, France

{lammari, dumouza, metais}@cnam.fr

Abstract. Whereas building and enriching ontologies are complex and
tedious tasks, only few tools propose a complete solution to assist users.
This paper presents POEM (Platform for Ontology crEation and Man-
agement) which provides a complete environment for ontology building,
merge and evolution. POEM’s algorithms are based on existence con-
straints and Boolean equations that allow to capture the semantic of
concepts. POEM also integrates a semantic fusion that relies on Word-
Net and supports different storage formats. The different functionalities
are implemented as a set of web services.

1 Introduction

Sharing data from multiple heterogeneous sources has been for several years
a challenging issue in the area of Information Systems. From federated multi-
sources Data Bases to the Semantic Web challenge, modern applications need to
intensively exchange information. There is now evidence that ontologies are the
best solution for dealing with semantically heterogeneous data. By adding sense
to data sources, ontologies allow to “understand” their contents - and then to
provide pertinent information to the users.

Nowadays, all experts recognize ontology’s building and management as one
of the most critical problem in their large scale utilization. Many tools have been
proposed but they mainly lack in automatically taking into account the semantic
aspects in building, merging and validating ontologies. Usually the semantic part
of the work is done manually without guideline. Nowadays, many -small or large-
ontologies have been developed around the world; building a new one has to take
into account these legacy systems.

The POEM tool provides a complete environment for ontology building,
merging, evolution, edition, transformation and storage. Due to space limita-
tion, only two aspects will be particularly developed in this paper: the concepts
of existence constraints and Boolean equations that help to capture the semantic
of concepts, and the construction and reuse (i.e., merging) algorithms.

⋆ Work partially funded by Semweb project,http://bat710.univ-lyon1.fr/∼semweb/



Related work

Many research work had been dedicated for building and maintaining ontolo-
gies: (a) ontology learning methodologies from dictionary, from text, from XML
documents, or from knowledge base [6, 10, 17], (b) ontology merging methods of
existing ontologies [14, 13], (c) ontology re-engineering methods [8], and finally
(d) ontology construction from scratch [7, 6, 9].

Moreover, several approaches were recently proposed to perform the merging.
For instance [11] presents a merging based on WordNet and the Jaccard measure.
However this technique does not take into account the attributes of the different
concepts leading to the merging of non-similar concepts or redundancy in the
final ontology. [16] introduces another approach called FCA-Merge that uses
natural language techniques and formal concept analysis techniques. In [15] the
authors propose an automatic merging algorithm named OM algorithm, based on
the confusion theory for detecting concept matching. This algorithm is however
syntactic and does not merge concepts that are semantically equivalent.

Besides methodologies for building ontologies many tools are now available
like Protégé [4], Corporum [2], Text-To-Onto [5], Chimaera [1], On-

toLingua [3], etc. All these tools have an editing functionality. Some of them
also present merge and/or validation and/or reasoning functionalities. They how-
ever lack mechanisms and policies implementing methods rules and guidelines.

The rest of the paper is structured as follows: Section 2 introduces the existence
constraints and associated algorithms, Section 3 details the ontology merging
technique, Section 4 emphases implementation and Section 5 concludes.

2 Existence constraints and associated techniques

This section presents the concept of existence constraints and two of the basic
algorithms (for normalization and extraction) that will be compound to build
high level functionalities. These algorithms are detailed in [12].

2.1 Definitions of existence constraints

We distinguish three kinds of existence constraints: mutual, exclusive and condi-
tioned existence constraints. A mutual existence constraint defined between two
properties x and y of a concept c, denoted x ↔ y, describes the fact that any
instance associated to c has simultaneously the properties x and y. An exclusive
existence constraint defined between two properties x and y of a concept c, de-
noted x 6↔ y, means that any instance associated to c that has a property x can
not have y as another property and conversely. Finally, a conditioned existence
constraint defined between two properties x and y of a concept c, denoted x 7→ y,
captures the fact that any instance of c described by the property x must also
be described by the property y. The inverse in not always true. For example,
let vehicle be a concept representing vehicles such as planes and boats, and



described by a set of properties: move, transport, fly and float. The fact that
any vehicle moves and transports is translated by transport↔moves. Also, ev-
ery vehicle that moves doesn’t systematically fly. However, every vehicle that
flies must move. These two assertions can be formalized using the conditioned
existence constraint: fly 7→move. We suppose in our example that only planes fly
and there is no plane that floats. This hypothesis is translated into the exclusive
existence constraint: float 6↔fly.

2.2 Normalization technique

The normalization technique enables to build ontologies from a set of properties
and a set of existence constraints. It consists in automatically deducing valid
property subsets that are compatible with the existence constraints. Let S be a
subset of the property set of a given ontology O. S is said to be a valid subset
of properties of O if and only if S satisfies the following three rules:

– Homogeneity rule: Any property of O linked to a property of S by a
mutual existence constraint is in S.

– Non-partition rule: There is no exclusive existence constraint between
properties of S.

– Convexity rule: Any property of O required by a group of properties of S

is in S (taking into account the conditioned existence constraints).

Intuitively, the sets of coexisting properties are first deduced, by taking into
account the mutual existence constraints. Then, by means of exclusive existence
constraints, the sets of properties that may coexist are derived. Finally, sets that
are compatible with the conditioned existence constraints are selected among the
sets of properties that may coexist. These sets describe concepts represented by
the ontology. These concepts are then organized into an Is A inheritance graph.

2.3 Translation techniques

We present here two translation techniques described in [12] for the building
of ontologies from scratch and that we implanted in POEM. The first one
called O TO BF, transforms an ontology into a Boolean function while the second
called BF TO O is the reverse operation. O TO BF consists in building a disjunctive
Boolean function φ(x1, . . . , xn) where each xi corresponds to a property of the
ontology and each maxterm T represents a type of instance represented by each
concept C of the ontology. This maxterm is a conjunction of x′

i variables where
each x′

i is either equal to xi if the property associated to xi describes T or equal
to xi otherwise.

BF TO O derives from a Boolean function the set of existence constraints and
then using the normalization technique deduces the ontology. For the generation
of the existence constraints from a Boolean function φ(x1, . . . , xn) where each
xi corresponds to a property ai, the technique transforms φ from a disjunctive
form to a conjunctive one and then, by analyzing the different minterms of
the transformed expression, it derives the existence constraints by applying the
following rules to the conjunctive function:



– Rule 1: A minterm of φ of type xi is translated into the non-null constraint
– Rule 2: A minterm of type (xi + . . . + xj + xk) describes a conditioned

existence constraint “ai, . . . , aj 7→ ak”.
– Rule 3: A minterm of type (xi+xj) is translated into the exclusive existence

constraint “ai 6↔ aj”.
– Rule 4: Two attributes ai and aj coexist in R (ai ↔ aj) iff the two condi-

tioned existence constraints ai 7→ aj and aj 7→ ai are derived from φ.

3 Ontology merging

POEM allows to build an ontology either from scratch or by reuse. For lack of
space, we will focus on our building mechanism based on merging. The different
ontology construction processes from scratch may be found in [12]. The merging
process can basically be decomposed into two steps: the matching step and the
integration step.

3.1 The matching step

The matching technique in POEM is realized for two normalized ontologies. It
encompasses two phases, property merging and concept merging. Let O1 and O2

be these two ontologies. To achieve the matching between them, we first retrieve,
for each property p from O1 and O2, its synset Sp from the general ontology
WordNet and then we compute for any couple of properties (pi, pj), such that
pi ∈ O1 and pj ∈ O2, the similarity degree (denoted SimDegree(pi, pj)) between
them according to the following formula:

SimDegree(pi, pj) =
|Spi

∩ Spj
|

|Spi
∪ Spj

|

According to this formula, the more numerous the synonyms of the two prop-
erties are, the higher the similarity degree is. Once the similarity degrees between
properties measured, we perform the property matching. In POEM, we merge
pi and pj iff they share at least one synonym, and there is no property in O1

(resp. O2) semantically closer to pj (resp. pi). More formally two properties pi

and pj are matched if and only if the three following conditions are satisfied:

(i) SimDegree(pi, pj) > 0,
(ii) 6 ∃pk ∈ P2, SimDegree(pi, pk) > SimDegree(pi, pj) ,

(iii) 6 ∃pk ∈ P1, SimDegree(pk, pj) > SimDegree(pi, pj).

where P1 (resp. P2) denotes the set of properties from O1 (resp. O2).
When merging two properties, we choose as common name for them the most

specific synonym synij they shared, i.e. the first one that occurs in (Spi
∩ Spj

).
Once a property merging is performed, we replace pi and pj by synij in their
respective ontology.

For the merging of concepts, our approach distinguishes itself from other
existing techniques because it considers all the following cases for the similarity
between concepts:



– case 1: a similarity both between concept names and between names of their
respective properties,

– case 2: a similarity only between concept names,
– case 3: a similarity only between property names of the concepts.

More precisely, let ci and cj be two concepts from an ontology O and πci
(resp.

πcj
) be the property set of ci (resp. cj). To estimate the similarity between ci

and cj , we refer to Jaccard measure defined by the ratio between the number of
shared properties of these two concepts and the union of their properties, i.e.:

jaccard(ci, cj) =
|πci

∩ πcj
|

|πci
∪ πcj

|

We assume the existence of a threshold value τ for the Jaccard measure to
assert the similarity or not between two concepts. We also define a decreasing
factor γ to attribute a lower similarity value when both concept names and
property names are not similar (what is considered as the highest similarity).
Our algorithm for estimating the similarity between two concepts ci and cj is:

if ci and cj share at least one synonym (their synsets are not disjoint) then
if jaccard(ci, cj) ≥ τ then

ci and cj are similar with a similarity degree equal to jaccard(ci, cj) (case 1)
else

if ci and cj have at least one parent Parent(ci) and Parent(cj) such that these
two parents share at least one synonym (their synsets are not disjoint) and
(jaccard(Parent(ci), Parent(cj)) ≥ τ ) then

they are similar with a (lower) similarity degree equal to γ × jaccard(ci, cj) (case 2)
else unable to evaluate the similarity; return the concepts to the ontology engineer
endif

endif
else

if jaccard(ci, cj) ≥ τ then
they are similar with a (lower) similarity degree equal to γ × jaccard(ci, cj) (case 3)

else the two concepts are not similar
endif

end

After estimating all the similarity degrees between concepts, we merge two
concepts ci and cj if they have a positive similarity degree, and if a higher value
can not be found by replacing one of the two concepts by another one from the
same ontology. The property set of the resulting concept cres is the union of ci

and cj property sets. To chose a name for cres, we adopt the following strategy:

– in case 1, we choose for cres the name of the concept that participates more
in its building, that is to say the concept which has more properties in cres,

– in case 2, we choose the most specific name, i.e. the name that appears first
in the common synset of the two concepts,



– in case 3: we compute the confusion value (see [15] for definition) between
concept names according to their respective position in WordNet and we
choose the name of the concept with the lowest value.

Finally, the matching technique allows us to give the same names to sim-
ilar concepts and properties. The two ontologies O1 and O2 are transformed
according to the result of the matching into respectively O′

1
and O′

2
.

3.2 The integration step

The final step of our process consists in building by a merge the ontology O3

from the two ontologies O′

1
and O′

2
obtained after matching. For that purpose, we

first translate the two ontologies into two Boolean functions φ1 and φ2 using the
O TO BF mapping technique for both ontologies, then we gather the two resulting
Boolean functions into one Boolean function φ3 and finally, by applying the
BF TO O mapping technique, we deduce the resulting ontology.

To gather the Boolean functions φ1 and φ2 into a Boolean function φ3 we
proceed to the following step-by-step algorithm:

let B the set of variables of φ1 and φ2

for each minterm T of φ1 and φ2 do
for each variable x in B do

if neither x nor x appears in T then T = T.x endif
endfor

endfor
if T does not appear in φ3 then φ3 = φ3 + T endif

4 Implementation

We design POEM in accordance with four principles: (i) modularity (POEM is
built as a set of seven modules, one for each basic functionality), (ii) reusability
(a web service architecture), (iii) extensibility and (iv) guidance (three levels of
guidance are proposed to give a cognitive support to human, expert or not).

The global architecture is basically a three-tier architecture with POEM, the
Sesame system and a database. The services in POEM are implemented in Java
JDK1.5 using MyEclipse 5.0 and the web service library XFire. Sesame acts as
a middleware for gathering and storing ontologies and metadata. It is deployed
with the Tomcat web server.

Figure 1 shows the interface of the POEM tool when merging two ontolo-
gies. The upper part of the interface is dedicated to the selection of ontologies
and export parameters. You can for instance with this interface select a ntriples
ontology and export it in RDF. You can also load it and proceed to concept
extraction that are displayed in the window below. For instance here we have for
the first ontology classes Airplane, Boat and Vehicle along with their proper-
ties. Finally POEM displays the ontologies loaded at bottom of the window. In



Fig. 1. Merging two ontologies with POEM

Figure 2(a) we see the result got by proceeding to the fusion with POEM. We
notice that POEM, based on semantical similarity of the concept names and of
their properties, decided to merge the concepts Airplane and Plane and the
resulting concept Airplane beholds the union of the properties that are seman-
tically different. The concept Vehicle has only two properties, since the former
conveyance and transport properties were identified as similar. Figure 2(b)
represents the merge with Protégé 3.3.1 (one of the most frequently used on-
tology manager tool). If the concepts were, in this case, merge correctly, we see
that the merge did not apply to properties. Similarly, our experiments show that
concepts whose names are not synonyms in WordNet but have numerous similar
properties are also not merge in Protégé.

5 Conclusion

In this paper we present the POEM existence constraints based platform to
assist ontology creation and maintenance with a guidance module. POEM takes
into account the semantic, via semantic constraints for the building tool and via
WordNet access for ontology merging. In this paper we focused on the building
and the merging algorithms, although other algorithms presented in [12] are also
implemented. For the next step we plan to integrate the detection of similarities
between properties in the ontology construction processes. Another perspective
is to extract properties and constraints from textual sources.



(a) with POEM (b) with Protégé+Prompt

Fig. 2. Result of the merging

References

1. Chimaera. http://www ksl.stanford.edu/software/chimaera/.
2. Corporum-OntoExtract. http://www.Ontoknowledge.org.
3. OntoLingua. http://ontolingua.stanford.edu/.
4. Protege. http://protege.stanford.edu/.
5. Text-To-Onto. http://webster.cs.uga.edu/ mulye/SemEnt/.
6. E. Agirre, O. Ansa, E. H. Hovy, and D. Mart́ınez. Enriching Very Large Ontologies

Using the WWW. In Proc. Intl. ECAI Workshop on Ontology Learning (OL), 2000.
7. J. Davies, D. Fensel, and F. van Harmelen. Towards the Semantic Web: Ontology-

driven Knowledge Management. Wiley, January 2003.
8. A. Gómez-Pérez and D. Rojas-Amaya. Ontological Reengineering for Reuse. In

Eur. Workshop on Knowledge Acquisition, Modeling and Management (EKAW),
pages 139–156, 1999.

9. M. Grüninger and M. S. Fox. Methodology for the Design and Evaluation of On-
tologies. In Proc. Intl. IJCAI Workshop on Basic Ontological Issues in Knowledge
Sharing, pages 1–10, 1995.

10. L. Khan and F. Luo. Ontology Construction for Information Selection. In Proc.
Intl. Conf. on Tools with Artificial Intelligence (ICTAI), pages 122–127, 2002.

11. H. Kong, M. Hwang, and P. Kim. Efficient Merging for Heterogeneous Domain
Ontologies Based on WordNet. Jour. of Advanced Computational Intelligence and
Intelligent Informatics (JACIII), 10(5):733–737, 2006.

12. N. Lammari and E. Métais. Building and Maintaining Ontologies: a Set of Algo-
rithms. Data Knowl. Eng. (DKE), 48(2):155–176, 2004.

13. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging
and Testing Large Ontologies. In Proc. Intl. Conf. on Principles of Knowledge
Representation and Reasoning (KR), pages 483–493, 2000.

14. N. Noy and M. Musen. Prompt: Algorithm and tool for automated ontology merg-
ing and alignment. In Proc. Nat. Conf. on Artificial Intelligence and on Innovative
Applications of Artificial Intelligence, pages 450–455, 2000.

15. A. Rasgado and A. Guzman. A Language and Algorithm for Automatic Merging
of Ontologies. In Proc. Intl. Conf. on Computing (CIC), pages 180–185, 2006.

16. G. Stumme and A. Maedche. FCA-MERGE: Bottom-Up Merging of Ontologies.
In Proc. Intl. Joint Conf. on Artificial Intelligence (IJCAI), pages 225–234, 2001.

17. H. Suryanto and P. Compton. Discovery of Ontologies from Knowledge Bases. In
Proc. Intl. Conf. on Knowledge Capture (K-CAP), pages 171–178, 2001.


