Y et Another Neural Network Simulator

R. Boné, M. Crucianu, J.P. Asslin de Beauville

Equipe Recnraissance des Formes et Analyse d’Images
Laboratoire d’ Informatique
Ecole d'Ingénieurs en Informatique pou ' Industrie, Université de Tours
64, avenue Jean Portalis, 3720Q Tours, FRANCE
{bore, crucianu, as=lin} @univ-tours.fr

Abstract: YANNS (Yet Another Neural Network Simulator) is a new objed-oriented neural network
simulator for feedforward networks as well as general reaurrent networks. The goa of this projed is to
develop and implement a simulation tod that satisfies the following constraints: flexibility, ease of use,
portability and efficiency. The result is a simulator with the kernel implemented as a wlledion of C++
classes, and with two interfaces: a high-level network spedfication language and a Web-based graphicd user
interface These interfaces provide the means for a painlesspresentation d the feaures of neural networks to
students or engineas. The objed oriented design provides a valuable software ewironment for the
reseachers who wish to develop and study new architedures and algorithms.

1. Introduction

Why build another general purpose
simulation tool for neural networks? The last few
yeas have witnessed the development and
distribution of a large number of neural network
simulators. We could mention Aspirin/MIGRAINE
[1], GENESIS [2], PlaNet [3], RCS [4], SNNS [5],
Xerion [6], etc. To this non-exhaustive list of
freeware toodls, one must add severa commercial
padkages. It is not our purpose here to provide a
complete review of the existing reural networks
simulation tods, but we can highlight some common
charaderistics for most of these systems: they are
written in the C language for only a few platforms
(Unix or Windows) and provide asystem-dependent
interface Because of the very spedfic data structures
employed, very few of them can ded with general
reaurrent neural network models.

For the purpose of this introduction, we can
only mention that no currently available ssimulation
tod (to the best of our knowledge) is flexible and
general enough to provide suppart for complex and
detailed models of neura networks, in a full-blown
objed-oriented and multi -platforms approach.

The goal of this projed was to creae an
efficient and flexible objed-oriented neural network
simulation environment for teading, reseach and
applicaion development in the field of neura
networks. As a onsequence, we foll owed four major
guidelines in the design of YANNS: flexibility, ease
of use, portability, and efficiency.

2. Flexibility

The YANNS smulator consists of 3 main
components: a simulator kernel, a description
language axd a graphicd user interface With
flexibility in mind, we dedded to develop the neural
network simulation kernel in C++. This alowed us
to oltain a high level of encgpsulation and
modularity. Since there is such a large overlap
between the different posdble neura network
architedures, as well as between the various
elementary components of ead of these
architedures, we beli eve we were not too ambiti ous
when trying to describe most of the neurons and
architedures we know about. The task was made
eaier by the very nature of neural networks: neurons
and their interconnedion are cwmmon fedures to
amost all of the neural networks, and multil ayer
networks are only a particular case of genera
reaurent neural networks. A large part of the
inheritance graph was very natural to conceve.
Routines for building the neurons and the networks,
for performing leaning or test and for interading
with the simulator during the various steps of
network development should be common, whatever
the achitedure or the training algorithm.

The resulting kernel software consists of
approximately 10,000 lines of C++ code in which
various C++ clases (Fig. 1) mirror the structure and
function of neurons and networks.

The first top-level objeds are the Networks.
Networks are described by the neurons they contain,
the lists of input and output neurons and possbly a
spedfic structure & for the layered networks. All the

leaning agorithms are methods of these network
classs.

A neuron is an objed that has a net input,
an external input, an output and a transfer function
for mapping the net input to the output. Neurons are
conneded to one awother by connedions. Eacd
neuron contains the lists of its predecesors and
successors. Each connedion may be weighted for a
simple neuron or have alist of weights for FIR or
IR neurons ([7, 8]). The FIR and IIR neurons
contain connedions with delays (Fig. 2 and Fig. 3).
To be general enough, we dlow for non-conseautive

delays (A).

'
'
'
'

* | Weights|nit. * Tranferten

Law
Uniform Gaussian Linea Sigmoid
Law Law Furction Function

—> inheritance e S T~ <)

Fig. 1. Graph d the main classes.

Fig. 2. FIR neuron

Fig. 3. IR neuron

3. Easeof use

The building of a neural network is
typicdly a very difficult phase of the simulation,
espedally for beginners. To make the simulator
accessble to people with limited experience in
programming or in the field of neural networks, we
defined a spedfication language which is as smple
and intuitive & possble.

In addition, the simulator uses a \Web-based
interface An HTML interface with a few Java
applets (e.g. for error display) is adrealy in use. See
Fig. 5 for an experiment definition form. We adually
develop afully graphicd interfacein Java, including
graphicd network spedficaion tods and kernel
control during the simulation run. We focus here on
the high level network spedfication language.

This languege provides all the network
spedficaion and control functions required. It
alows one to spedfy the details of the achitedure
of the neural network, as well as the different
algorithms and the parameters to employ. Various
consistency controls are being performed by the
parser and explicit error messages are available.
Complex networks can be aeaed quickly and easily,
in a way well suited for inexperienced users who
want to learn about neural network models with the
help of the smulator.

In the next example, we describe arecurrent
network with delays employing the Badk-
Propagation Through Time dgorithm [9] for
leaning. The network is represented in Fig. 4.

The description languege is powerful
enough to allow us to spedfy a complex simulation
inonly afew lines of text.

A YANNS description file (see below)
consists of a set of blocks, with one or more blocks
for the definition of the neurons, followed by the
blocks dedicated to the cnnedions. A particular
block describes the mnnedions with the bias neuron,
if it exists. The script block describes the cmmon
data set for the different leaning algorithms. A
subset from ead data set can be seleded.

NoNeur ons=5;

Neurons [1..5] {
Tr ansf ert FN=Li near;

}

I nput =[1] ;
Qut put =[5] ;

Bi as {
target=[2, 3, 4];

Connections {
source=[1];
target=[2..4];
t ype=Si npl e;

Connecti ons {
source=[2..4];
target=[2..4];
t ype=Si npl e;

Connecti ons {
source=[2..4];
target=[5];
type=FI R(0 2);

Script {
Pat h="./";
Lear ni ng="cor pus. set"
St op="stop. set";

}

Learni ng {
Al gorit hn=BPTT(0.01);
NoMax St ep=50000;
M nSt opEr ror =0. 001

}

Fig. 4. A simplereaurrent neural network described by the
language.

Some tests performed with the help of a panel of
students show that this language dlows one to
reduce significantly the devel oping time as compared
to some others smulation tools. With his high level
network spedfication language or the soon avail able
graphicd user interfface YANNS provides a
complete set of leaning algorithms and ways to
initi ali ze the network and control the learning:
* Badk-Propagation for layered networks
composed of simple, FIR and II R neurons
» Badk-Propagation Through Time for simple axd
FIR neurons

e RTRL and oggimized RTRL

* Momentum term

¢ Weight decy

* Stochastic components

¢ Update mode: off-line or on-line

e Error function: quadratic or crossentropy

e Stopping criterion: maximum number of
iterations, minimum error on the stop set or on
the leaning set

e Transfer functions: linear, sigmoid, tanh, ...

¢ The user can spedfy the values for some of the
weights and initi ali ze the others randomly, from a
uniform or Gausdan distribution

« Default values are available for all the parameters

4. Portability and efficiency

Several of the simulators mentioned ealier
are limited to a single machine type becaise of the
reliance on proprietary graphicd systems. An easy
way to develop a program for Unix, Windows and
Mac platforms is to use the Java programming
language. Unfortunately, this language is currently
too dow, due to its nature and its youth.

We dedded to use the best of Java, its
ability to develop universal graphicd interfaces, to
add an interfacewhich operates on any platform with
a Java-compliant Web hbrowser. But the kernel of
YANNS, implementing al the leaning algorithms,
was developed in C++.

The Web-based interface #so alows us to
have cntrol the simulator from distant machines. In
the arrent version, the Web-based interfaceincludes
some Java applets in HTML files but most of the
control is performed with the help of forms.
Nevertheless this interface dows us to use dl the
feaures of the kernel. Data files, network and
experiment description files, or resulting files can be
automaticdly transferred (an f t p accessis required).
We ae now developing a pure Java interface with
increased flexibility.

Even without a Web browser, the user can
use the text interfaceto work with YANNS diredly
or to set up batch learning sessons.

The kernel of YANNS was written in a
normalized version of C++. We compiled the kernel
and the interpreter of the description language with
numerous compilers and operating systems, with no
trouble.

Taking into acount the onstraints of
modularity and ease of use, it is necessary to keep
the wmde & efficient as possble. This can be
acomplished by using efficient data structures and
numericd methods. These objedives are often
inconsistent with modularity. However, our
comparisons dow that the leaning times obtained
with YANNS compare favorably to those of several

other freeware simulators (when the network
architedure ad the leaning agorithm are
implemented by both).

5. Conclusion

Y ANNS encompasses a very large range of
cgpabiliti es, allowing one to consistently describe
fead-forward or reaurrent neural network topdogies.
It aready makes available numerous leaning
algorithms and offers a simple yet powerful
description language. The kernel is written in C++.
A Web-based interfaceis available and a full-blown
graphicd interface based on the Java languege is
now under development. We cntinue to follow our
gods, that is developing a simulation tod available
to the largest number of users, due to its ease of use
and its portability, and giving them accessto several
recett developments in the domain of network
architedures or learning algorithms.

37 YANNS - Netscape

File Edit “iew Go Communicator Help

'éaéf\a’&@?éaﬁi%%

Back Forward Reload ﬁume Seach Guide Piint Secuity Siop
2w Bookmaks i Location [fle:///ClfiavaiPAPIERS Apanns Him =l
v ﬁlnstanlMessage Internet D" Lookup D" MNewdCool

YANNS

Tet Another Meural Metworles Simulator

This form permits to define a neural network architecture, the data sets and the
le orithms

Network Architecture

Tweo different architectures are available: layered network and fully recurrent
networlc

@ Layered Network

MNumber of layers: !
Mumber of neurons by layer: i
Fully recurrent layer(s) i

Bias nevwron connected to: I

¢ Fully recmrent network

Mumber of neurens:
Input nevron(s)
Cutput neurons(s)

Bias nevwron connected to:

Transfer function of neurons/layers
Asymmetric Sigmoid is the default.

Identity

List of neuronsilayers

TUse set

- Marme:
- Vectors:

Learning algorithm

Backpropagation -
Algorithm Mame: EFTT
RTRL hd|

- Parameter 1

- Parameter 2 l—
- Parameter 3 l—
- Momentum: l—

Weight update: & On-line ¢ Off-line
Weight mit law: ® Uniform © Gaussian

- Parameter 1
- Parameter 2

Stopping criterion
[Max step number, l—
[T Min error on learning set l—
T Min error on stop set (or increase): l—

Resulting files will be in the directory fusrflocalMetscape/cgi-binfyanns

Submit | Reset | Cancel

il |Document: Dane

Fig. 5. The experiment definition form

6. Références

1. Leighton, R. and MITRE Corporation,

Aspirin/MIGRAINE, pt.cs.cmu.edu.

2. Caltech, GENES S, genesis.cns.cdted.edu.

3. University of Colorado, PlaNet,
boulder.colorado.edu.

4. University of Rochester, RCS
ftp.cs.rochester.edu.

5. University of Stuttgart, SNNS ftp.informatik.uni-
stuttgart.de.

6. University of Toronto., Xerion, ,

ftp.cs.toronto.edu.

7. Bak, A.D. and A.C. Tsoi, FIR and IIR

Synapses, a New Neural Network Architecture
for Time Series Modeling. Neural Computation,
1991 3(3): p. 375385

8. Bak, A., e al. A Unifying View of some

Training Algorithms for Multilayer Perceptrons
with FIR Filter Synapses. in Neural Networks for
Sgnal Processing 1V: 4th Workshop. 1994
Ermioni, Greece

9. Rumélhart, D.E., G.E. Hinton, and R.J. Willi ams,

Learning Internal Representations by Error
Propagation, Parallel Distributed Processing,
Explorations in the Microstructure of Cognition,
ed. D.E. Rumelhart and J. McClelland. Vol. 1.
1986 Cambridge, MA: MIT Press 318362

