
A WEB ORIENTED RECURRENT NEURAL NETWORK
SIMULATOR

Romuald Boné, Michel Crucianu, Jean-Pierre Asselin de Beauvill e
Email :{bone, crucianu, asselin}@univ-tours.fr

Equipe Reconnaissance des Formes et Analyse d´Images
Laboratoire d’ Informatique

Ecole d´Ingénieurs en Informatique pour l´Industrie, Université de Tours
64, avenue Jean Portalis, 37200, Tours, FRANCE

ABSTRACT
YANNS (Yet Another Neural Network Simulator) is a
new object-oriented neural network simulator for
feedforward networks as well as general recurrent
networks. The goal of this project is to develop and
implement a simulation tool that satisfies the following
constraints: flexibilit y, ease of use, portabilit y and
eff iciency. The result is a simulator with the kernel
implemented as a collection of C++ classes, and with two
interfaces: a high-level network specification language
and a Web-based graphical user interface. These
interfaces provide the means for a painless presentation of
the features of neural networks to students or engineers.
The object oriented design provides a valuable software
environment for the researchers who wish to develop and
study new architectures and algorithms.
KEYWORDS: Neural Network Simulator, Recurrent
Neural Networks, Delayed Connections

1. INTRODUCTION

Why build another general purpose simulation tool for
neural networks? The last few years have witnessed the
development and distribution of a large number of neural
network simulators. We could mention
Aspirin/MIGRAINE [1], GENESIS [2], PlaNet [3], RCS
[4], SNNS [5], Xerion [6], etc. To this non-exhaustive list
of freeware tools, one must add several commercial
packages. It is not our purpose here to provide a complete
review of the existing neural networks simulation tools,
but we can highlight some common characteristics for
most of these systems: they are written in the C language
for only a few platforms (Unix or Windows) and provide a
system-dependent interface. Because of the very specific
data structures employed, very few of them can deal with
general recurrent neural network models.
For the purpose of this introduction, we can only mention
that no currently available simulation tool (to the best of
our knowledge) is flexible and general enough to provide
support for complex and detailed models of neural
networks, in a full -blown object-oriented and multi -
platforms approach.

The goal of this project was to create an eff icient and
flexible object-oriented neural network simulation
environment for teaching, research and application
development in the field of neural networks. All
architectures should be available, including recurrent
neural networks or networks with time delayed connections
(for example for time series forecasting).
As a consequence, we followed four major guidelines in
the design of YANNS: flexibilit y, ease of use, portabilit y,
and eff iciency.

2. FLEXIBILITY

The YANNS simulator consists of 3 main components: a
simulator kernel, a description language and a graphical
user interface. With flexibilit y in mind, we decided to
develop the neural network simulation kernel in C++. This
allowed us to obtain a high level of encapsulation and
modularity. Since there is such a large overlap between the
different possible neural network architectures, as well as
between the various elementary components of each of
these architectures, we believe we were not too ambitious
when trying to describe most of the neurons and
architectures we know about. The task was made easier by
the very nature of neural networks: neurons and their
interconnection are common features to almost all of the
neural networks, and multil ayer networks are only a
particular case of general recurrent neural networks. A
large part of the inheritance graph was very natural to
conceive. Routines for building the neurons and the
networks, for performing learning or test and for
interacting with the simulator during the various steps of
network development should be common, whatever the
architecture or the training algorithm.

The resulting kernel software consists of approximately
10,000 lines of C++ code in which various C++ classes
(Figure 1) mirror the structure and function of neurons and
networks.
The first top-level objects are the Networks. Networks are
described by the neurons they contain, the lists of input and
output neurons and possibly a specific structure as for the
layered networks. All the learning algorithms are methods
of these network classes.

A neuron is an object that has a net input, an external
input, an output and a transfer function for mapping the
net input to the output. Neurons are connected to one
another by connections. Each neuron contains the lists of
its predecessors and successors. Each connection may be
weighted for a simple neuron or have a list of weights for
FIR or IIR neurons ([7, 8]). The FIR and IIR neurons
contain connections with delays (Figure 2 and Figure 3).
To be general enough, we allow for non-consecutive
delays (∆).

General
Network

Layered
Network

Neuron

Bias
Neuron

Simple
Neuron

FIR
Neuron

IIR
Neuron

Weights Init.
Law

Uniform
Law

Gaussian
Law

TranfertFn

Linear
Function

Sigmoid
Function

...

useinheritance

Figure 1: Graph of the main classes.

Σ

∆∆ ∆ ∆

()
bij

0

()
bij

1

()
bij

2

()
bij

3

()bi j
psjneuron

j

neuron

i

Figure 2: FIR neuron

Σ

∆∆ ∆ ∆

∆ ∆ ∆ ∆

()
bij

0

()
bij

1

()
bij

2

()
bij

3

()bi j
p

()
aij

1

()
aij

2

()
aij

3

()aij
q

sjneuron

j

neuron

i

Figure 3: IIR neuron

3. EASE OF USE

The building of a neural network is typically a very
diff icult phase of the simulation, especially for beginners.
To make the simulator accessible to people with limited
experience in programming or in the field of neural
networks, we defined a specification language which is as
simple and intuitive as possible.
In addition, the simulator uses a fully graphical interface
developed in Java, including graphical network
specification tools and kernel control during the simulation
run.

Figure 4: The neural networks editor of the graphical interface

We focus here on the high level network specification
language. This language provides all the network
specification and control functions required. It allows one
to specify the details of the architecture of the neural
network, as well as the different algorithms and the
parameters to employ. Various consistency controls are
being performed by the parser and explicit error messages
are available. Complex networks can be created quickly
and easily, in a way well suited for inexperienced users
who want to learn about neural network models with the
help of the simulator.

In the next example, we describe a recurrent network with
delays employing the Back-Propagation Through Time
algorithm [9] for learning. The network is represented in
Figure 5.

The description language is powerful enough to allow us to
specify a complex simulation in only a few lines of text.
A YANNS description file (see next page) consists of a set
of blocks, with one or more blocks for the definition of the
neurons, followed by the blocks dedicated to the
connections. A particular block describes the connections
with the bias neuron, if it exists. The script block describes

the common data set for the different learning algorithms.
A subset from each data set can be selected.

NoNeurons=5;

Neurons [1..5] {
 TransfertFN=Linear;
}

Input=[1];
Output=[5];

Bias {
 target=[2, 3, 4];
}

Connections {
 source=[1];
 target=[2..4];
 type=FIR(0 2);
}

Connections {
 source=[2..4];
 target=[2..4];
 type=Simple;
}

Connections {
 source=[2..4];
 target=[5];
 type=Simple;
}

Script {
 Path="./";
 Learning="corpus.set";
 Stop="stop.set";
}

Learning {
 Algorithm=BPTT(0.01);
 NoMaxStep=50000;
 MinStopError=0.001
}

32

1

4

5

Figure 5: A simple recurrent neural network described by the
language.

Some tests performed with the help of a panel of students
show that this language allows one to reduce significantly

the developing time as compared to some others simulation
tools. With his high level network specification language
or the soon available graphical user interface, YANNS
provides a complete set of learning algorithms and ways to
initialize the network and control the learning:

• Back-Propagation for layered networks composed of
simple, FIR and IIR neurons

• Back-Propagation Through Time for simple and FIR
neurons

• RTRL
• Momentum term
• Weight decay
• Stochastic components [9][10]
• Update mode: off- line or on-line
• Error function: quadratic or cross-entropy
• Stopping criterion: maximum number of iterations,

minimum error on the stop set or on the learning set
• Transfer functions: linear, sigmoid, tanh, ...
• The user can specify the values for some of the weights

and initialize the others randomly, from a uniform or
Gaussian distribution

• Default values are available for all the parameters

4. PORTABILITY AND EFFICIENCY

Several of the simulators mentioned earlier are limited to a
single machine type because of the reliance on proprietary
graphical systems. An easy way to develop a program for
Unix, Windows and Mac platforms is to use the Java
programming language. Unfortunately, this language is
currently too slow, due to its nature and its youth.
We decided to use the best of Java, its abilit y to develop
universal graphical interfaces, to add an interface which
operates on any platform with a Java-compliant Web
browser. But the kernel of YANNS, implementing all the
learning algorithms, was developed in C++.

The Web-based interface also allows us to have control the
simulator from distant machines and to use all the features
of the kernel. Data files, network and experiment
description files, or resulting files can be automatically
transferred (an ftp access is required).
Even without a Web browser, the user can use the text
interface to work with YANNS directly or to set up batch
learning sessions.
The kernel of YANNS was written in a normalized version
of C++. We compiled the kernel and the interpreter of the
description language with numerous compilers and
operating systems, with no trouble.
Taking into account the constraints of modularity and ease
of use, it is necessary to keep the code as eff icient as
possible. This can be accomplished by using eff icient data
structures and numerical methods. These objectives are
often inconsistent with modularity. However, our
comparisons show that the learning times obtained with
YANNS compare favorably to those of several other
freeware simulators (when the network architecture and the
learning algorithm are implemented by both).

5. CONCLUSION

YANNS encompasses a very large range of capabiliti es,
allowing one to consistently describe various feed-forward
or recurrent neural network topologies. It already makes
available numerous learning algorithms and offers a
simple yet powerful description language. The kernel is
written in C++. A full -blown graphical interface based on
the Java language is available. We continue to follow our
goals, that is developing a simulation tool available to the
largest number of users, due to its ease of use and its
portabilit y, and giving them access to several recent
developments in the domain of network architectures or
learning algorithms.

6. ACKNOWLEDGMENTS

The authors thank the student of the ingeeniring
school « Ecole d’ Ingénieurs en Informatique pour
l’ Industrie » who took part in this project during their
training period.

7. REFERENCES

1. Leighton, R. and MITRE Corporation,
Aspirin/MIGRAINE, pt.cs.cmu.edu.

2. Caltech, Cali fornia Institute of Technology,
Genesis,
http://www.bbb.caltech.edu:80/GENESIS/

3. Colorado, U.o., Planet, , boulder.colorado.edu.
4. Rochester, U.o., RCS, , ftp.cs.rochester.edu.
5. Stuttgart, U.o., SNNS (Stuttgart Neural Network

Simulator), ftp.informatik.uni-
stuttgart.de/pub/SNNS.

6. Toronto, U.o., Xerion, , ftp.cs.toronto.edu.
7. Back, A.D. and A.C. Tsoi, FIR and IIR

Synapses, a New Neural Network Architecture
for Time Series Modeling. Neural Computation,
3(3). p. 375-385 (1991).

8. Back, A., et al. A Unifying View of some
Training Algorithms for Multil ayer Perceptrons
with FIR Filter Synapses. in Neural Networks for
Signal Processing IV: 4th Workshop. Ermioni,
Greece (1994)

9. Rumelhart, D.E., G.E. Hinton, and R.J. Willi ams,
Learning Internal Representations by Error
Propagation, Parallel Distributed Processing,
Explorations in the Microstructure of Cognition,
ed. D.E. Rumelhart and J. McClelland. Vol. 1,
Cambridge, MA: MIT Press. 318-362 (1986).

10. Corona, A., et al., Minimizing Multimodal
Functions of Continuous Variables with the
"Simulated Annealing" Algorithm. ACM
Transactions on Mathematical Software, 13(3),
p. 262-280. (1987)

11. Unnikrishnan, K.P. and K.P. Venugopal.
Learning in Connectionist Networks Using the
Alopex Algorithm. in International Joint
Conference on Neural Networks. Baltimore,
USA, IEEE. (1992)

