A WEB ORIENTED RECURRENT NEURAL NETWORK
SIMULATOR

Romuald Boné, Michel Crucianu,Jean-Pierre Asslin de Beawvill
Email :{bone, crucianu,asslin}@uriv-tours.fr

Equipe Remnnaissance des Formes et Analyse d Images
Laboratoire d Informatique
Ecole d'Ingénieurs en Informatique pour ' Industrie, Université de Tours
64, avenue Jean Portalis, 37200,Tours, FRANCE

ABSTRACT

YANNS (Yet Another Neural Network Simulator) is a
new objed-oriented neural network simulator for
feedforward networks as well as general recaurrent
networks. The goa of this projed is to develop and
implement a smulation tod that satisfies the following
congtraints: flexibility, esse of use, portability and
efficiency. The result is a simulator with the kernel
implemented as a @lledion of C++ classes, and with two
interfaces: a high-level network spedficaion language
and a Web-based graphicd user interface These
interfaces provide the means for a painlesspresentation of
the feaures of neural networks to students or enginees.
The objed oriented design provides a valuable software
environment for the reseachers who wish to develop and
study new architedures and algorithms.

KEYWORDS: Neural Network Simulator, Recurrent
Neural Networks, Delayed Connections

1. INTRODUCTION

Why build another general purpose simulation tod for
neural networks? The last few yeas have witnessed the
development and dstribution of a large number of neural
network simulators. We could mention
Aspiri/MIGRAINE [1], GENESIS [2], PlaNet [3], RCS
[4], SNNS[5], Xerion [6], etc. To this non-exhaustive list
of freeware tools, one must add several commercial
padkages. It is not our purpose here to provide a @mplete
review of the existing reural networks smulation toals,
but we can highlight some cmmon charaderistics for
most of these systems: they are written in the C language
for only afew platforms (Unix or Windows) and provide a
system-dependent interface Because of the very spedfic
data structures employed, very few of them can ded with
general reaurrent neural network models.

For the purpaose of this introduction, we can only mention
that no currently available simulation tod (to the best of
our knowledge) is flexible and general enoughto provide
suppat for complex and detaled models of neural
networks, in a full-blown objed-oriented and muilti-
platforms approach.

The goa of this projed was to crede an efficient and
flexible objed-oriented neural network simulation
environment for teading, reseach and applicaion
development in the field of neural networks. All
architedures sould be available, including reaurrent
neural networks or networks with time delayed connedions
(for example for time series forecasting).

As a monsequence, we followed four major guidelines in
the design of YANNS: flexibility, ease of use, portability,
and efficiency.

2. FLEXIBILITY

The YANNS simulator consists of 3 main components. a
simulator kernel, a description languege and a graphicd
user interface With flexibility in mind, we dedded to
develop the neural network simulation kernel in C++. This
alowed us to oltain a high level of encapsulation and
modularity. Sincethere is such alarge overlap between the
different possble neural network architedures, as well as
between the various elementary components of ead of
these achitedures, we believe we were not too ambiti ous
when trying to describe most of the neurons and
architedures we know about. The task was made eaier by
the very nature of neural networks. neurons and their
interconnedion are cmmon fedures to almost all of the
neural networks, and multilayer networks are only a
particular case of general reaurrent neural networks. A
large part of the inheritance graph was very natura to
conceive. Routines for building the neurons and the
networks, for performing leaning or test and for
interading with the simulator during the various steps of
network development should be cmmon, whatever the
architedure or the training algorithm.

The resulting kernel software consists of approximately
10,000 lines of C++ code in which various C++ classes
(Figure 1) mirror the structure and function of neurons and
networks.

The first top-level objeds are the Networks. Networks are
described by the neurons they contain, the lists of input and
output neurons and passhly a spedfic structure & for the
layered networks. All the leaning algorithms are methods
of these network classes.

A neuron is an objed that has a net input, an external
input, an output and a transfer function for mapping the
net input to the output. Neurons are @nneded to one
another by connedions. Each neuron contains the lists of
its predecessors and succesors. Each connedion may be
weighted for a smple neuron or have alist of weights for
FIR or IR neurons ([7, 8]). The FIR and IIR neurons
contain connedions with delays (Figure 2 and Figure 3).
To be genera enough, we dlow for non-conseaiutive

delays (A).

General
P4 Network
b

Layered
Network

IR
Neuron

.
.
R

Uniform Gaus’an Linea Sigmoid
Law Law Furction Furction
— inheritance e GV -}

Figure 1: Graph d the main classes.

Figure 2: FIR neuron

Figure 3: IIR neuron

3. EASE OF USE

The building of a neural network is typicdly a very
difficult phase of the simulation, espedally for beginners.
To make the simulator accesshle to people with limited
experience in programming or in the field of neura
networks, we defined a spedficaion language which is as
simple and intuitive & posshle.

In addition, the simulator uses a fully graphicd interface
developed in Java, including gaphicd network
spedficaion tools and kernel control during the simulation
run.

Egi Interface =]

File View MNetwork Leaming Execution 7

‘ COMMECTIOMNS: TypeConnection: Slmple = ‘wieightyalue: |2

%\ |

SPL 15 n

e
\V

|132,1|]H i Create Mewron € Create Connection € Edition Deletel Aligml

Hl o SPL

-
) ,

Figure 4: The neural networks editor of the graphicd interface

We focus here on the high level network spedficaion
language. This language provides all the network
spedficaion and control functions required. It allows one
to spedfy the details of the achitedure of the neural
network, as well as the different algorithms and the
parameters to employ. Various consistency controls are
being performed by the parser and explicit error messages
are available. Complex networks can be aeaed quickly
and eaily, in a way well suited for inexperienced users
who want to lean about neural network models with the
help of the smulator.

In the next example, we describe areaurrent network with
delays employing the Badk-Propagation Through Time
algorithm [9] for leaning. The network is represented in
Figure 5.

The description languege is powerful enoughto allow usto
spedfy a complex simulation in only afew lines of text.

A YANNS description file (seenext page) consists of a set
of blocks, with one or more blocks for the definiti on of the
neurons, followed by the blocks dedicaed to the
connedions. A particular block describes the mnnedions
with the bias neuron, if it exists. The script block describes

the ommon data set for the different leaning algorithms.
A subset from eadt data set can be seleded.

NoNeur ons=5;

Neurons [1..5] {
Tr ansf er t FN=Li near;

}

| nput =[1] ;
Qut put =[5] ;

Bi as {
target=[2, 3, 4];

Connecti ons {
source=[1];
target=[2..4];
type=FI R(0 2);

Connecti ons {
source=[2..4];
target=[2..4];
t ype=Si npl e;

Connecti ons {
source=[2..4];
target=[5];

t ype=Si npl e;

Script {
Pat h="./";
Lear ni ng="cor pus. set";
St op="stop. set";

}

Learni ng {
Al gorit hm=BPTT(O0. 01);
NoMax St ep=50000;
M nSt opEr r or =0. 001

}

Figure 5: A simple reaurrent neural network described by the
language.

Some tests performed with the help of a panel of students
show that this language dl ows one to reduce significantly

the developing time as compared to some others smulation
tods. With his high level network spedficaion language
or the soon available graphicd user interface YANNS
provides a mmplete set of leaning algorithms and ways to
initi ali ze the network and control the leaning;

« Badk-Propagation for layered networks composed of
simple, FIR and 11 R neurons

e Badk-Propagation Through Time for smple and FIR
neurons

« RTRL
¢ Momentum term
¢ Weight decay

e Stochastic components [9][10]

¢ Update mode: off-line or on-line

< Error function: quadratic or crossentropy

e Stopping criterion: maximum number of iterations,
minimum error on the stop set or on the learning set

e Transfer functions: linea, sigmoid, tanh, ...

* The user can spedfy the values for some of the weights
and initialize the others randomly, from a uniform or
Gausdan distribution

e Default values are available for all the parameters

4. PORTABILITY AND EFFICIENCY

Several of the simulators mentioned ealier are limited to a
single machine type because of the reliance on proprietary
graphicd systems. An easy way to develop a program for
Unix, Windows and Mac platforms is to use the Java
programming language. Unfortunately, this language is
currently too slow, due to its nature and its youth.

We dedded to use the best of Java, its ability to develop
universal graphicd interfaces, to add an interface which
operates on any platform with a Java-compliant Web
browser. But the kernel of YANNS, implementing all the
leaning algorithms, was developed in C++.

The Web-based interface #so all ows us to have wntrol the
simulator from distant machines and to use dl the fedures
of the kernel. Data files, network and experiment
description files, or resulting files can be aitomaticdly
transferred (an f t p accessisrequired).

Even without a Web browser, the user can use the text
interfaceto work with YANNS diredly or to set up batch
leaning sessons.

The kernel of YANNS was written in a normalized version
of C++. We compiled the kernel and the interpreter of the
description language with numerous compilers and
operating systems, with no trouble.

Taking into acount the mnstraints of modularity and ease
of use, it is necessry to keg the mde & efficient as
posdble. This can be acomplished by using efficient data
structures and numericd methods. These objedives are
often inconsistent with modularity. However, our
comparisons dow that the leaning times obtained with
YANNS compare favorably to those of several other
freavare simulators (when the network architedure and the
leaning algorithm are implemented by both).

5. CONCLUSION

YANNS encompasses a very large range of cgoabiliti es,
allowing one to consistently describe various feed-forward
or reaurrent neural network topdogies. It already makes
available numerous leaning agorithms and offers a
simple yet powerful description language. The kernel is
written in C++. A full-blown graphicd interfacebased on
the Java languege is avail able. We continue to follow our
godls, that is developing a simulation tool available to the
largest number of users, due to its ease of use and its
portability, and giving them access to several recet
developments in the domain of network architedures or
leaning algorithms.

6. ACKNOWLEDGMENTS

The authors thank the student of the ingeeniring
schod «Ecole d'Ingénieurs en Informatique pour
I"Industrie » who took part in this projea during their
training period.

7. REFERENCES

1 Leighton, R. and MITRE Corporation,
Aspirin/MIGRAINE, pt.cs.cmu.edu.

2. Caltech, Cadlifornia Institute of Technology,
Genesis,
http://www.bbh.cdtech.edu:80/GENESI S/

3. Colorado, U.o., Planet, , boulder.colorado.edu.

4, Rochester, U.o., RCS, , ftp.cs.rochester.edu.

5. Stuttgart, U.o., SNNS (Stuttgart Neural Network
Smulator), ftp.informatik.uni-
stuttgart.de/pub/SNNS.

6. Toronto, U.o., Xerion, , ftp.cs.toronto.edu.

7. Bak, A.D. and A.C. Tsoi, FIR and IIR

Synapses, a New Neural Network Architecure
for Time Series Modeling. Neural Computation,
3(3). p. 375-385(1991).

8. Badk, A., et al. A Unifying View of some
Training Algorithms for Multil ayer Perceptrons
with FIR Filter Synapses. in Neural Networks for
Sgnd Processng 1V: 4th Workshop. Ermioni,
Greece(1999

9. Rumelhart, D.E., G.E. Hinton, and R.J. Willi ams,
Learning Internal Representations by Error
Propagdion, Parallel Distributed Processng,
Explorations in the Microstructure of Cognition,
ed. D.E. Rumelhart and J. McClelland. Vol. 1,
Cambridge, MA: MIT Press 318-362(1986.

10. Corona, A., et al., Minimizing Multimodal
Functions of Continuous Variables with the
"Simulated Anneding' Algorithm. ACM
Transactions on Mathematical Sdtware, 13(3),
p. 262-280. (1987

11 Unnikrishnan, K.P. and K.P. Venugopal.
Leaning in Connedionist Networks Using the
Alopex Algorithm. in Internationd Joint
Conference on Neural Networks. Baltimore,
USA, IEEE (1992

