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ABSTRACT

To detect and locate complex human actions in video, one trains a
detector for each target class and applies it to the video content. This
approach can scale to large video databases if the application of the
detector can be made sublinear in the size of the database. Sublin-
ear retrieval methods have been successfully explored for query-by-
example but few were devised for these more challenging queries by
detector. We put forward here a novel approximate search method
that relies on LSH to support query-by-detector. We evaluate our
method on a recent large action localization dataset and show it has
significantly better efficiency than linear search.

Index Terms— Action localization, query-by-detector, LSH,
hyperplane queries, kernel indexing

1. INTRODUCTION

Large video databases contain many action classes of potential inter-
est. For example, actions are very relevant content items in histori-
cal and cultural videos; a historian, a researcher or some other user
should be able to define action classes and search for occurrences of
such actions in a large cultural database. In a video-surveillance ap-
plication, an investigator may also have to define new specific action
classes and search for their occurrences in a potentially high volume
of video records. In such scenarios, it can be prohibitively time con-
suming or excessively expensive to perform a new exhaustive scan
of the entire database every time a new class detector is built. It is
then necessary to devise methods supporting the scalable application
of a detector to the data, i.e. methods that are sublinear in the size
of the database. Such methods should avoid an exhaustive scan and
only apply the detector to a (hopefully) small part of the data, where
the detector is relatively likely to provide a positive answer. While
the scalability of query-by-example was thoroughly considered in
the literature, there is comparatively little work on the scalability of
what we shall call query-by-detector. In this work we address this
problem by proposing a method that supports sublinear retrieval of
complex human actions.

Action detection and localization was addressed in the recent lit-
erature (see e.g. [1, 2, 3, 4]), but not on large scale datasets. Actions
are usually represented by the statistical distribution of local features
that describe shape and motion in video patches. In [1, 2], Bags of
Visual Words (BoVW) histograms are used to model the statistics
of features in video segments, while [3, 4] employ instead Fisher
Vectors. Both approaches involve high dimensional vector descrip-
tions. Support vector machine (SVM) classifiers are learned from
the annotated examples and detection is performed by applying the
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SVM to a window that slides over the entire video database. Thus,
all the windows in the database are evaluated by the detector and the
positive detections are eventually ranked to produce the result list.

There exist more efficient alternatives for applying a detector
to a database. A method for approximating a linear SVM decision
function using locality-sensitive hashing (LSH [5]) is introduced in
[6]. The normal vector to the SVM hyperplane is used as a query and
its hash is obtained. The approximation to the decision function em-
ploys the Hamming distance between the query hash and the hashes
of the non-empty buckets. The complexity is linear in the size of the
database but the approximation allows to significantly accelerate the
retrieval of the data points classified as positive by the detector.

To best deal with large databases, exhaustive detection (i.e. slid-
ing the detection window over the entire video database) should nev-
ertheless be avoided. Several proposals focus on sublinear methods
that aim to find the data points whose image in feature space is close
to the normal vector to the SVM hyperplane. Since for most kernels
employed K(x, x) = constant, these points maximize the SVM de-
cision function. The KDX index structure in [7] defines rings around
the normal vector and indexes them according to the angle to the cen-
tral vector. A second level of the index is used within each ring. A
sublinear exact search solution for such SVM-based queries was pro-
posed in [8] and claimed to improve over KDX. The data is clustered
in feature space and, for each cluster, rings are built with the kernel
space neighbors of the cluster prototypes, by order of their distance.
Querying this index structure with the normal vector requires testing
all prototypes and then the corresponding cluster rings close to the
query in order to accumulate the results. However, as we shall see
later, the relevant data to be retrieved is not necessarily close to the
normal vector in feature space. We can also mention here the method
in [9] for exact sublinear retrieval with hyperplane queries, shown to
be efficient but in rather low-dimensional spaces.

Alternatively, SVM-based active learning using an ambiguous-
ness criterion requires retrieval of unlabeled data that is close to
the decision boundary (which is a hyperplane in feature space). If
the amount of unlabeled data is large, sublinear retrieval methods
are needed. Several such solutions, based on LSH, are proposed in
[10, 11, 12]. They rely on the fact that data points that are close to
the decision hyperplane have a low inner product with the normal
vector to the hyperplane. Such approaches can be interesting if the
target class is defined online, e.g. with relevance feedback, but this
is not the scenario we consider here.

In Section 2 we first show how to adapt the approach in [6] to
create a linear time “exhaustive approximate” (EA) search method
for queries that are nonlinear SVM detectors. We then introduce a
novel approximate sublinear method for answering such queries. In
Section 3 we provide the experimental validation of our sublinear
method and compare it to both exhaustive approximate and exhaus-
tive exact (EE) search.



2. PROPOSED APPROACH

We start by briefly presenting the general action detection and lo-
calization method we employ, then we focus on the scalability issue
where our contributions are.

2.1. Action localization method

Video description. We employ the method in [13] to detect and
describe salient video patches. We quantize these descriptors into a
visual dictionary of d = 4000 words and compute an L1 normalized
BoVW histogram for each frame. The videos are over-segmented
into a series of time windows of L = 30 frames, shifted by 5 frames.
For each window, the frame histograms are averaged to produce its
final description.

Action detection in sliding windows. For detection, an SVM
classifier is trained for each action class on annotated examples. The
SVM decision function used to score results is

f(v) =

p∑
j=0

βjK(yj , v) + bq (1)

Since each window is described by a BoVW histogram, we use the
histogram intersection (HI) kernel:

K(x, y) =

d∑
i=1

min{xi, yi} (2)

Note that 〈Φ(x),Φ(x)〉 = K(x, x) = 1. All the windows in the
database are evaluated by f and the positive detections are retained
for further processing. We use this “exhaustive exact search” (EE
search) as a baseline. Its complexity is linear in the size of the
database.

Post-processing. Multiple overlapping windows can have pos-
itive detection scores. To obtain the final detection boundaries, all
positive windows whose overlap is above a threshold τmerge = 50%
are merged by using the union of their bounds. The resulting de-
tection window A is assigned the sum of scores of the composing
windows: S(A) =

∑
i f(vi).

2.2. Exhaustive approximate search

We first adapt the method in [6] to kernel space hashing using the
Random Maximum Margin hashing (RMMH) functions proposed in
[14]. With RMMH, LSH functions are hyperplanes in the feature
space. To construct each hyperplane, M data points are chosen at
random and randomly labeled as positive or negative examples. An
SVM is learned from these examples and its decision function is one
atomic hash function used to build the index:

h(v) = sgn

(
m∑
i=0

α∗
iK(x∗i , v) + b

)
(3)

where x∗i are the m support vectors of one hash SVM, α∗
i their La-

grangian multipliers and K(x, y) is the employed kernel. A hash
table is built from D such atomic functions obtained on indepen-
dent random samples of M points. To retrieve nearest neighbors,
the query q (in input space) is hashed and its hashH(q) is computed
as the concatenation of the atomic hash values: {h1(x), ..., hD(x)}.
The probability that the hash value of data v is equal to that of the

query q is proportional to the inner product between Φ(v) and Φ(q)
[15]:

Pr [h(q) = h(v)] = 1− 1

π
cos−1

(
Φ(q) · Φ(v)

||Φ(q)|| ||Φ(v)||

)
(4)

We build D RMMH functions with the HI-kernel and compute
the hash of each data vi, i ∈ {1..N}, obtaining binary vectors
H(vi). However, in our case the query corresponds to the SVM
detector in Eq. (1) and is represented by the normal vector q of the
learned hyperplane in feature space. This vector is a linear combi-
nation of the feature space images of the learning examples, q =∑p

j=1 βjΦ(yj), so its discrete hash value h(q) can be computed ac-
cording to:

g(q) =

m∑
i=0

α∗
i

〈
Φ(x∗i ),

p∑
j=1

βjΦ(yj)

〉
+ b

=

m∑
i=0

α∗
i

p∑
j=1

〈Φ(x∗i ), βjΦ(yj)〉+ b

=

m∑
i=0

α∗
i

p∑
j=1

βjK (x∗i , yj) + b

= ~α∗K~βT + b

h(q) = sgn (g(q)) = sgn
(
~α∗K~βT + b

)
(5)

where Kij = K (x∗i , yj), x∗i (i ∈ {1..m}) are the support vectors
of the RMMH function, yj (j ∈ {1..p}) are the support vectors of
the action detector, ~α∗ = (α∗

1, ..., α
∗
m) and ~β = (β1, ..., βp).

We take from [6] the approximate decision value of the detector,
f̂q(v), as a function of the Hamming distance between the hashes of
the query and of the data point, dH(H(q), H(v)):

f̂q(v) = cos

(
π
dH(H(q), H(v))

D

)
||q||+ bq (6)

We do not need to compute f̂q(v) for any v, we just sort the
buckets in ascending order of their Hamming distance to the query.
All data points in the top buckets are retrieved and evaluated by the
decision function in Eq. (1). As many buckets are returned as neces-
sary to reach the desired recall. Note that sgn(f̂q(v)) does not give
accurate positive detections, the estimator can have a large probabil-
ity of false positives.

2.3. Scalable retrieval

The method introduced in Section 2.2 can be efficient enough for
medium-size video databases but requires the evaluation of the Ham-
ming distance between the hash of the query and every bucket. For
very large databases, the number of buckets should increase linearly
with the size of the database. So the complexity of this method is
linear in the size of the database. To scale to very large databases it
is then necessary to devise sublinear methods.

If the feature-space images of the data points for which f (the
decision function of the SVM detector) takes positive values were in
the neighborhood of the normal vector to the SVM hyperplane, then
a potentially good solution would be to use a method like Multi-
probe LSH [16]. Multi-probe LSH proposes to search those buckets
whose spatial boundaries are close to g(q). Assuming the hash func-
tions are independent, each h(q) value can be flipped to produce
hashes that have lower probability than the query’s hash. In [16] a



0 5 10 15 20
0

500

1000

1500

2000

2500

Hamming distance

N
um

be
r 

of
 p

os
iti

ve
 it

em
s

Fig. 1. Positive results are far from query’s hash bucket

Fig. 2. Left: probing from the query requires traversing a large num-
ber of buckets to reach positive data points. Right: probing from
prototypes should bring us closer to the positives

probing algorithm that searches buckets in decreasing order of their
probability is given. Multi-probe LSH allows to reduce the number
of different hash tables required to reach a given level of recall.

We evaluated the distribution of Hamming distances between
the hashes of the data points for which f takes positive values and
the hash of the query. Figure 1 shows that the maximum of this
distribution is far from dH = 0. To arrive at a Hamming distance
s = dH(H(q), H(v)), for one hash table, Multi-probe LSH should
explore

∑s
n=1

(
D
n

)
hashes. The assumption made by Multi-probe

LSH that the probability of finding relevant results is an isotropic
normal distribution centered on the query is clearly wrong; see the
illustration on the left side of Figure 2.

Since the query itself is not a good starting point, we propose to
use instead the prototypes of the positive training examples as start-
ing points. We use kernel K-means clustering to obtain K clusters
on the positive training examples and for each cluster k we obtain
the most central element, the cluster prototype pk:

pk = argmaxj

nk∑
i=1

K(ykj , y
k
i ) (7)

Our assumption is that cluster prototypes are more representative
of the positive data points than the query (the normal vector to the
SVM hyperplane). So, by starting to sample from the buckets of the
prototypes should allow to reduce the total number of probes needed
to reach a required level of recall. Finally, we apply the multi-probe
algorithm of [16] for each of the prototypes.

The method we propose is illustrated in the right side of Fig-
ure 2. This picture shows the case of using two hash functions that
give a range of integer values. In our case we have D hash func-
tions that give only binary values, but the idea is the same. Note that
the advantage of using cluster prototypes over cluster centers is in

computation time. For a cluster center we would need to use Eq. (5)
while for the prototypes we can directly use Eq. (3).

Cost reduction with query expansion. To increase recall we
can increase the number of clusters and the probes around each clus-
ter prototype. However, further probing is computationally expen-
sive, while data points that are farther from the prototypes have lower
probability of being positive. A better informed way to direct the
search for candidates would be helpful. In the context of action lo-
calization we can use the fact that temporal neighbors of windows
(data points) detected as positive have a high probability of being
positive themselves. Also, since we have the H(v) values of the
temporal neighbors, we can apply a simple filter by using Eq. (6).
This filtering is fast and has a very low false negative rate, so it
eliminates only a negligible number of good candidates. The ap-
proximate test is only applied to the temporal neighbors of windows
already detected as positive.

For details, a listing of the algorithm of our sublinear method
can be found on our website1.

3. EXPERIMENTAL EVALUATION

Dataset. We evaluate the effectiveness and efficiency of our ac-
tion localization method on the Corrida dataset2 of 77 hours of
video. With the video representation described in Section 2.1, the
database contains 1.3M windows, each represented by a 4000-
dimensional BoVW histogram. The annotations for two actions
were employed: (1) BullChargeCape—in the context of a bull fight,
the bull charges the torero who dangles a cape to distract the animal,
and (2) HorseRiding—one or several persons riding horses. The
dataset is split into two parts. For training and parameter validation,
there are 2 hours of video containing 85 examples of BullCharge-
Cape and 50 of HorseRiding. For testing, there are 75 hours of video
in which we attempt to identify 570 instances of BullChargeCape
and 344 of HorseRiding.

Metrics. Following current practice, we evaluate action local-
ization like a retrieval problem: detection windows A having positive
scores S(A) are sorted by decreasing scores and a precision - recall
curve is obtained. Average Precision (AP) is then computed for each
class. A result window is positive if it overlaps the ground truth
annotations. We aim to localize actions only in time, so only tem-
poral overlap is measured. Ground truth annotations Bi are marked
as detected if they are at least 50% inside a detection window A,
|A∩Bi|/|Bi| > 0.5, and successive annotations cover at least 20%
of the time span of the detection window:

∑
i |A ∩Bi|/|A| > 0.2.

For the experiments we ran, the number of hash tables was L =
16 and the number of hash functions D = 24 and M = 32.

We first measure the recall while varying the number of proto-
typesK = {5, 15, 25} and the number of probesP = {5, 10, 20, 30}
(Figure 3). We compare the scalable retrieval (SR below) method in
Section 2.3, with or without query expansion (QE), to the exhaustive
approximate (EA below) search in Section 2.2 and take the exact
exhaustive (EE below) search as a reference. Thus, for a window
retrieved by SR or by EA search, we check its f(v) value to see if it
was truly a positive result. Recall is then measured as the number of
positive items retrieved divided by the total number of items marked
positive by EE Search.

For the BullChargeCape class, the results show that SR obtains
the recall of EA search by testing only a small additional number
of data points. Moreover, we see that by using QE and K = 5

1http://cedric.cnam.fr/∼stoiana/supp.pdf
2http://mexculture.cnam.fr/xwiki/bin/view/Main/Datasets
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Fig. 3. Recall comparison for BullChargeCape (top) and HorseRid-
ing (bottom). Lines correspond to variable numbers of probes at
fixed K

clusters we obtain better results than by using more clusters. For
HorseRiding, by using QE (label ‘K=5+QE’) we have higher recall
with fewer data points retrieved than by EA search. For these results
we did 2 query expansion iterations.

We now check the Average Precision for localization of SR
(Figure 4). For K = 5, P = 30 with QE (label ‘K=5+QE’) for
BullChargeCape SR achieves almost the same AP as the EE method
while examining 11% of the database. Note that the percentage
of data points considered positive according to EE is 4.3% of the
database. With K = 25, P = 30 we obtain the same AP as EE
search. SR examines 3% more data points than EA search to achieve
the same AP.

For HorseRiding, neither method reaches the AP of the EE
search but SR achieves 10% AP (average over 5 runs) by examining
11% of the database. For this class, the percentage of data points
considered positive according to EE is 3.3% of the database. Again,
SR examines 3% more data points than EA search to achieve the
same AP. The major difficulty for this class is the quality of the
detector (EE search): it only provides an AP of 18.3%. Even though
we obtain high recall with respect to the detector (75%) with both
SR and EA search (Figure 3), the post-processing window fusion
method appears to be too sensitive to the absence of the remaining
25% of the positive video sequences.

We give a theoretical analysis of the complexity of our method.
To run the SR method with query expansion we first need to hash
the query (SVM normal vector). This takes L × D × NSV kernel
computations. Next, to hash the prototypes of the clusters, we need
to run K × L × D ×M kernel computations. The complexity is
thus dependent on the number of training vectors of the query SVM.
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Fig. 4. Localization Average Precision: BullChargeCape (top) and
HorseRiding (bottom)

For EA search the complexity is linear in the size of the database,
even though only Hamming distances are to be computed. Thus, we
expect SR to scale better to very large databases.

4. CONCLUSION

We presented a method that allows to find in a potentially large
database most of the instances of a complex class without having
to check more than a fraction of the data. The class is defined here
by an SVM detector obtained on training examples. We showed
that this method can approach the effectiveness of exact exhaustive
search while being much more efficient since it only examines a frac-
tion of the data. The method is not dependent on kernel type and
parameters, nor on database size. For databases of medium size, we
have also shown that an approximate exhaustive search method can
be faster. To improve upon this work, we plan to explore better ways
to sample from the distribution of potentially relevant hash buckets.
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