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ABSTRACT

Content-based video copy detection is relevant for structur-
ing large video databases. The use of local features leads to
good robustness to most types of photometric or geometric
transformations. However, to achieve both good precision
and good recall when the transformations are strong, feature
configurations should be taken into account. This usually
leads to complex matching operations that are incompatible
with scalable copy detection. We suggest a computation-
ally inexpensive solution for including a minimal amount
of configuration information that significantly improves the
balance between overall detection quality and scalability.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.2.4 [Systems]: Multimedia databases

General Terms

Scalability, Mining, Design, Performance

Keywords

Content-based copy detection, video mining, scalability, lo-
cal features

1. INTRODUCTION
Many new video programs are produced by recycling ex-

isting content, showing how widespread the use of copies is,
both among professionals and amateurs. The term “copy”
is employed here for any video that is directly or indirectly
derived from original content. While initially motivated by
copyright enforcement, the detection of these copies in video
streams or databases can have many other applications of
significant interest for content owners, providers and con-
sumers. The identification, in a large video database, of
all the video sequences that occur more than once (with
various modifications) can make explicit an important part
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of the internal structure of the database, thus supporting
content management, retrieval and preservation for both in-
stitutional archives and video sharing Web sites. Among
these applications one could mention content segmentation,
the extension of textual annotations from one video to an-
other, the removal of lower-quality copies or advanced visual
navigation in the results to a textual query or in the entire
database. This shows how relevant content-based video copy
detection (CBVCD) can be for structuring a video database.

Among all the copies found in TV broadcasts or on Web2.0
sites, full copies or exact copies are quite infrequent. A full
copy is a reproduction of the entire original program, with
possible changes of the visual aspect. An exact copy may
exploit only an excerpt of the original program, but that ex-
cerpt is left unmodified. Most of the time, the visual aspect
or the time line of the original content are subject to sig-
nificant modifications in the copy-creation process (see e.g.
Fig. 1). The representation of the videos and the decision
procedure should be as robust as possible to the changes re-
sulting from a copy-creation process in order to have a good
detection rate. At the same time, they should remain very
sensitive to all the other differences between videos in order
to have as few false alarms as possible.

Experience with reused video content shows that the
most frequent transformations concern gamma and contrast
changes, scaling, cropping, blurring, compression artifacts
and video inlays (logos, frames, text). The amplitude of
gamma or contrast changes and of scaling is relatively low,
in order to preserve the perceived quality. Cropping gener-
ally remains limited but video inlays can be quite complex
and have a higher impact on the video frames. Another type
of transformation, currently very popular both for TV shows
and Web2.0 sites, is the editing of the time line. It is impor-
tant to note that, with the advent of high definition (HD)
video content, the nature and amplitude of some transfor-
mations can be expected to evolve. For example, with HD
content, perceived quality can remain acceptable even with
strong cropping or scaling.

Content-based video copy detection was already employed
for structuring video databases. The method put forward in
[18] focused on the elimination of video duplicates in Web
search; global descriptors helped separating the least sim-
ilar videos, then local descriptors allowed to refine dupli-
cate detection. The proposal in [14] of compact embeddings
and fast similarity self-joins mainly addressed the scalabil-
ity issue in mining by CBVCD large video databases. The
method was shown to be efficient and effective on a CBVCD
benchmark and on Web2.0 content, but has to evolve in or-



Figure 1: Original content (right) and associated
copies (left) obtained by scaling with addition of a
frame, logo and text (top) or by strong degradation
of image quality (bottom).

der to address new challenges regarding both video trans-
formations and scalability. Our goal here is to significantly
improve the robustness of the method in [14] while main-
taining or enhancing its scalability.

Most recent CBVCD methods rely on matching frames
extracted from the videos and employ local features for de-
scribing these frames. To match two sets of local features
(issued from two video frames), some proposals do not em-
ploy any information regarding the spatial configuration of
the features but only count the number of similar features
between the two sets. While very robust to geometric trans-
formations, such methods may have difficulties in achieving
both good recall and good precision for strong cropping or
inlays that affect a large part of a frame. Other propos-
als rely on more complex matching operations that exploit
the spatial configuration of the local features. These meth-
ods can more reliably find matches between small parts of
frames (being thus more robust to strong cropping or inlays)
but may be more sensitive to geometric transformations and
have a significant additional cost.

We aim to find computationally inexpensive ways for tak-
ing into account the minimal amount of configuration infor-
mation that allows to obtain both good recall and precision
even for strong transformations. We consider that simple
configuration information should best be employed during
the off-line indexing stage, minimizing a posteriori filtering
operations. For CBVCD, transformations like strong crop-
ping and video inlays alter the longer-range structure of the
frame but maintain part of the short-range structure. We
shall then only consider local configurations because they
are more likely to provide reliable information for matching.

The next section reviews part of the existing work on
matching with local features and further discusses the role
of configuration information in matching for copy detec-
tion. Our computationally inexpensive solution for improv-
ing matching with local configuration information is put for-
ward in Section 3. An experimental evaluation of both the
detection quality and the scalability of our proposal, with
two different types of local features, is presented in Section 4.

2. LOCAL FEATURE CONFIGURATIONS
The most frequent transformations found in video copies

concern gamma and contrast changes, scaling, cropping, blur-
ring, compression artifacts and various types of video inlays
(logos, frames, text). Frame matching using local features
was found to be more robust than the comparison of global
frame features in dealing with these transformations (see e.g.
[7, 8]). Part of this increased robustness is due to specific
invariance properties of local feature detectors and feature
descriptions (e.g. gamma and contrast changes, scaling).
Also, a significant contribution comes from the matching of
local features, which provides robustness to the disappear-
ance of some local features resulting from e.g. cropping and
video inlays or from failures of the feature detector.

Simple solutions for computing a matching score between
two frames (or images) only count the number of local fea-
tures that are sufficiently similar in the two frames. If many
frames in the database contain similar features but are not
versions of a same original content (copies), good precision
can only be obtained if the decision threshold (the minimal
number of similar features) is relatively high. Note that
precision is very important when CBVCD is employed in
structuring a video database, since the presence of many
false alarms can completely clutter the valuable information
in the results. Strong cropping or video inlays are expected
to be less infrequent for high definition than for normal def-
inition videos. But with such transformations, only a rela-
tively small share of the local features in the original frame
are preserved in the copy. To achieve good recall in such
cases, the decision threshold should be low, which in turn
produces many false alarms that degrade precision.

To solve this critical problem, additional discriminant in-
formation (beyond the local descriptions of the individual
local features) is needed. The main source of such informa-
tion is the configuration of local features, that could allow to
filter out sets of features having very different geometric or-
ganization. This would lead to a significant gain in discrim-
ination power, allowing to diminish the decision threshold
and thus to increase recall. Feature configuration informa-
tion can also improve recall by directly contributing to the
matching score of small sets of local features that have very
similar configurations.

The typical approach for taking feature configuration in-
formation into account comprises two stages. First, the
frames in the database that contain similar features to those
in the query frame are retrieved. Then, the geometrical con-
sistency with the query is verified for the resulting frames
and those who do not reach a high enough score are dis-
carded. A well-known solution for measuring geometrical
consistency consists in estimating the parameters of a gen-
eral affine transformation between the sets of local features
using a random sample consensus (RANSAC [3]) algorithm,
see e.g. [10, 7, 12, 6, 13]. While reliable, this solution is
computationally very expensive, especially when the num-
ber of local features in each frame is high and the class of
acceptable affine transformations is very general. Despite
the use of restricted transformations (selected according to
the application domain), of simplified approximate estima-
tion algorithms [10, 13] and of a limited number of local
features, the computation cost of this solution can hardly
be considered compatible with scalable mining.

Rather than attempting to match sets of features corre-
sponding to entire images, several methods focus on more



local geometric constraints. One method in [16] (see also
[17]) requires, for two local features to match, that 50%
of their p nearest neighbors be similar and that angles de-
fined by the relative positions of corresponding neighbors
match. For local features whose descriptions include orien-
tation information, it is suggested in [4], for computational
complexity reasons, to employ instead the angles between
the orientations of neighboring features.

A few recent proposals do not follow the two stage ap-
proach consisting of retrieval by similarity followed by filter-
ing based on geometrical consistency, but employ instead a
more integrated approach. In [9] a hierarchical decomposi-
tion of the image plane is employed, adding spatial informa-
tion to the bags of features. The method in [5] focuses on
weak geometrical consistency between the sets of features
representing two images, by considering the orientation and
scale information available in specific types of local feature
descriptions. In [19] visual words are grouped together into
“visual phrases” based on the detection of consistent config-
urations of local features.

It is also interesting to see what configuration informa-
tion is employed by kernels that were recently developed for
matching and also follow an integrated approach. The ker-
nel in [15] augments the local description of each feature
with a local context including data regarding the presence
of other features in its neighborhood, in intervals defined
in polar coordinates. In [1] a graph matching kernel is de-
fined and applied to small graphs connecting a point to its
nearest neighbors. The configuration information for a set
of points is represented by the matrix of values of a local
kernel between the positions of individual points in the set.

For exploiting feature configurations in the context of video
mining by CBVCD, we consider important to follow an inte-
grated approach and to employ local geometric information.
An integrated approach is expected to improve the selectiv-
ity of the similarity self-join operations involved, thus in-
creasing the efficiency of mining. Furthermore, this reduces
memory requirements by avoiding the accumulation of po-
tentially large amounts of intermediate data (corresponding
to frames having similar sets of points in inappropriate con-
figurations), inherent to the two stage approach.

Since strong transformations that remove or introduce
many local features (like strong cropping or video inlays)
alter the longer-range structure of the frame but maintain
part of the short-range structure, we prefer to employ only
local configuration information because it has more chances
to provide reliable information for matching. The use of lo-
cal information also contributes to keeping the complexity
low, making the integrated approach affordable. Such lo-
cal configuration information is particularly easy to include
into the method put forward in [14] and should not signif-
icantly increase its space requirements, since that method
was already exploiting n-tuples (triplets actually) of local
features for indexing. The next section provides a detailed
description of the new scheme.

3. PROPOSED INDEXING SOLUTION
We start by briefly presenting the description and index-

ing method put forward in [14], that serves as basis for our
proposal. The detection of the video sequences that oc-
cur more than once (with various modifications) in a video
database begins with the extraction of keyframes from all the
videos, using an algorithm finding the maxima of the global

Figure 2: Glocal signatures for a set of 6 local fea-
tures with 3 different quantizations (at a depth of 2,
3 and 4) of a 2D description space.

intensity of motion (leading, on average, to 1 keyframe /
second). Then, a similarity self-join operation is performed
on the set of keyframe descriptions, based on a specific in-
dexing method. Eventually, these links between individual
keyframes allow to find the matching video sequences.

Instead of directly using the set of signatures (descrip-
tions) of the local features extracted from a frame, in [14]
this set is first embedded into a fixed-length binary vector.
The embedding procedure is: (i) given the local features of a
set of frames, the description space (not the image plane) is
adaptively partitioned at a limited depth h, which produces
2h cells that are numbered according to some consistent rule
(see Fig. 2); (ii) for each frame, its Glocal signature is the
binary vector where the bit i is set to 1 only if the descrip-
tion (signature) of at least one local feature of the frame
falls within cell i. With the local features employed in [14]
(from [6]), the distribution of the features in the description
space is rather uniform, so this type of quantization is ade-
quate. Furthermore, as shown in [14], the local features of
each frame typically belong to different cells, so the loss of
information in a Glocal signature is rather limited.

The Dice coefficient was employed to measure similarity

between Glocal signatures, SDice(g1,g2) = 2 |G1∩G2|
|G1|+|G2|

, where

Gi is the set of bits set to 1 in the signature gi and |·| denotes
set cardinality.

For the similarity self-join operation, the database of Glo-
cal signatures is divided into overlapping buckets (stored as
inverted lists) such that, in each bucket, any two signatures
are sufficiently similar. A self-join is then independently
performed within each bucket. Following [14], a bucket is
defined by a specific set of 3 bits that are set to 1 in at least
one Glocal signature in the database. Every signature has
several bits set to 1 (about 20 in [14]). Each signature can
be stored in all the buckets that are defined by all the com-
binations of 3 bits set to 1 in the signature. This produces a
redundant index. However, the number of buckets actually
employed is much lower: the buckets into which a Glocal
signature is stored are further selected by specific rules that
only consider neighboring bits set to 1 (not separated by any
other bit set to 1), 1-out-of-2 bits set to 1 (separated by 1 bit
set to 1) and 1-out-of-3 bits set to 1 (separated by 2 bits set
to 1). This allows to significantly reduce the redundancy of
the index. Time and storage complexity depend on the total
number of buckets and on the balance between the lengths
of the different buckets.

To find the pairs of similar keyframes, the similarities
(Dice coefficients) between Glocal signatures are computed
within each bucket; if the similarity is above a decision
threshold θ, the identifiers of both keyframes are stored as



Figure 3: Feature triplets selected in the original
frame (top line) and in the copy (bottom line), with
the previous rules (left) or with the new locality
constraint (right).

a link. At the end of this self-join operation, all the re-
sulting pairs of connected keyframes are eventually used for
recovering the matching video sequences.

3.1 Locality-based bucket definition
The rules employed in [14] for selecting the sets of bits set

to 1 that define the buckets only depend on the represen-
tation of the Glocal signatures (the numbering of the cells
in the partitioned description space). Some of the triplets
selected by these rules are represented by triangles on the
left side of Fig. 3, for an original keyframe (top) and for a
copy (bottom) where the video inlay replaced a large part of
the frame. It can be seen that the triplets link local features
that are quite distant in the image plane and are unlikely to
be preserved by strong cropping or video inlays. Since such
transformations alter the longer-range structure of the frame
but maintain part of the short-range structure, we suggest
to take into account locality in the image plane when se-
lecting the triplets that define the buckets where the Glocal
signature of the frame is indexed.

The new selection and indexing procedure is: for each lo-
cal feature fi in the frame, (i) find its 6 nearest neighbors
(6NN) in the image plane; (ii) the first triplet consists of fi

together with its 2NN and the corresponding bucket is iden-
tified by the numbers of the cells in description space where
fi and its 2NN are found; (iii) the second triplet consists
of fi together with its 3rd and 4th nearest neighbors, while
the third triplet consists of fi together with its 5th and 6th
nearest neighbors; (iv) store (or index) the Glocal signature
of the frame into these three buckets. This selection rule
thus exploits both the positions of the features in descrip-
tion space and their neighborhood in the image plane.

Some of the triplets selected by the new rule are repre-
sented by triangles on the right side of Fig. 3, for an original
keyframe (top) and for a copy (bottom). The impact of
the locality constraint is obvious when comparing with the
left side of the same figure. In the example presented in
Fig. 3, the previous rules did not allow to find any common

triplet between the original and the copy, so their signatures
were not indexed in any common bucket and thus the copy
remained undetected. The new rule does provide such com-
mon triplets (one of which is represented in the figure) and
allows to detect the copy.

For the locality constraint to be meaningful and in order
to cover well all the small salient areas of a frame, the num-
ber of local features considered in the frame should be high
enough. A number bounded by 20, as in [14], appears insuf-
ficient, especially with HD video content. But an increase
in the number of local features considered has an impact on
the time and space complexity of the CBVCD-based min-
ing operations. Indeed, the number of buckets necessarily
increases with the number of local features per frame. Also,
having more features per frame may require a finer parti-
tioning of the description space, which implies longer Glocal
signatures that take more space and require more time for
computing Dice coefficients. At the same time, the length
of the individual buckets is likely to diminish.

To quantify the possible evolution of time and space com-
plexity, the impact of the different variables should be an-
alyzed. Denote by N the total number of signatures in the
database, by h the partitioning depth, by L the maximum
number of local features per frame and by l the number
of bits that define a bucket (l was set to 3 in the above-
mentioned rules). The number of bits set to 1 in a Glocal
signature is upper bounded by L. The length of every sig-
nature is then 2h, the total number of possible buckets is
(

2
h

l

)

and, if no selection rule is employed, every signature

is present in
(

L

l

)

buckets. If all the bits are set to 1 with
equal frequency for the signatures in the database, then all

the buckets have the same size, equal to N
(

L

l

)(

2
h

l

)
−1

. The
number of similarity computations performed with the index
is then approximately

n =
N2

2

(

L

l

)2(

2h

l

)−1

(1)

The storage requirements are N
(

L

l

)

and maximal when l =
L

2
. Taking for l a value significantly higher than L

2
would

make the similarity for two signatures in a same bucket too
high (close to 1), which would severely restrict recall. The
cost of finding the nearest neighbors of a local feature in the
image plane also increases with l. For all these reasons, the
value considered here is l = 3.

If the length of the Glocal signatures is much higher that
the maximal number of local features per frame, 2h ≫ L,
then the signatures are sparse. It follows that the number of
bits set to 1 in a Glocal signature can be considered indepen-
dent of the size of the signatures 2h and only dependent of
L, so the space required for storing a signature and the time
needed for computing the similarity between two signatures
can then be considered fixed for a given L.

To maintain sparsity, h should be augmented when L sig-
nificantly increases. For higher values of h (more cells are
considered in the description space) the expected similar-
ity between a keyframe and a transformed version of this
keyframe will diminish since the transformations are more
likely to move feature descriptions across borders between
cells. So h should be kept under control. But the relevance
and reliability of detection of the local features also dimin-
ishes when too many such features are employed for repre-



senting one frame, so the value of L should not increase too
much either.

Table 1: Ratio between computation cost with dif-
ferent values for L, h and cost with L = 20, h = 8, for
fixed l = 3

h

8 9 10 11

L

20 1 1

4

1

16

1

64

50 6.25 6.25

4

6.25

16

6.25

64

100 25 25

4

25

16

25

64

200 100 100

4

100

16

100

64

Table 1 shows the evolution of the computation cost with
the values of L and h, the reference (used in [14]) being for
L = 20, h = 8. It can be seen that, for comparable sparsity,
the variation in computation cost is limited. For example,
to keep sparsity close to 10%, when L increases from 20 to
100, h should increase from 8 to 10 and the corresponding
increase in cost is 25

16
. Note that this comparison assumes

that all the possible buckets are employed and does not con-
sider the impact of the bucket selection rules. But the new
locality-based rule was designed to provide a similar selec-
tion rate as the rules in [14].

3.2 Use of simple configuration information
Locality constraints reinforce robustness of the indexing

scheme to transformations that alter the longer-range struc-
ture of the frame while keeping part of the short-range struc-
ture. Additional local geometric information should improve
discrimination power and thus allow to reach both better de-
tection precision and better recall.

A bucket is identified by using two neighbors (among the
6NN) of a local feature fi in the frame. It is then natural to
associate in that bucket, to the Glocal signature of the frame,
data describing the relations between the feature fi and the
two neighbors. The data we add is the ratio between the
shortest side and the longest side of the triangle formed in
the image plane by the feature fi and the two neighbors con-
sidered. This simple information is robust to translation, ro-
tation and (isotropic) scaling, but not to more general affine
transforms like scaling with very different ratios in two dif-
ferent directions (anisotropic scaling). An equivalent choice

would have been the angle ̂neighbor1 fi neighbor2, but the
computation of the length ratio is less expensive. Since this
information only considers the positions of the local features
in the image plane and not their individual descriptions, it
can be employed even with local descriptions that do not
include any orientation information. Also, it is only depen-
dent on the robustness of the local feature detector and not
on the robustness of the feature description.

According to our indexing scheme, the Glocal signature
of a frame is stored in every bucket selected by the locality-
based rule, together with the ratio between the shortest side
and the longest side of the triangle between the local features
identifying that bucket. This is shown in Fig. 4. A similarity
self-join is then performed in each bucket independently of
the other buckets. This operation now involves a joint con-
dition, including both the similarity between the Glocal sig-
natures and the similarity between their corresponding ratio
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Figure 4: Bucket selection for a frame signature,
using both feature location in description space and
locality constraints in image plane.

data. The threshold θr on the difference between ratios is
given by the expected error of the local feature detector and
by the required robustness to anisotropic scaling. This ratio
information can be stored in low precision.

The threshold θs on the Dice coefficient above which two
Glocal signatures are considered to match is the decision
threshold and has a key role in defining the balance be-
tween precision and recall. Two keyframes are considered
to be in “copy” relation if their Glocal signatures collide in
at least one bucket, their Dice coefficient is above θs and
the difference between ratios in that bucket is lower than θr.
Actually, the ratios are compared first and then, if their dif-
ference is < θr, the Dice coefficient between the two Glocal
signatures is computed. Since the comparison of two small
precision numbers is much less expensive than the computa-
tion of the Dice coefficient between the two Glocal signatures
(especially for long signatures), this pre-filtering using sim-
ple local configuration information actually saves significant
computation time, at the expense of little additional space.

4. EXPERIMENTAL EVALUATION

4.1 Databases and experimental setup
Since a very large ground truth video database was not

available, separate experiments were performed for measur-
ing detection quality (precision and recall) and for assessing
the scalability of the method. Quality was evaluated on the
Trecvid 2008 CBCD benchmark1. This benchmark is com-
posed of a 207 hours video reference database and 2010 arti-
ficially generated query video segments (or 43 hours), 1340 of
which contain copies. One query can only correspond to one
segment of one video from the reference database. A query
can contain a copied part of a reference video but also video
segments that are not related to the reference database. The
queries are divided into 10 groups of 134 queries each, each
group corresponding to one type of transformation (“at-
tack”): camcording (group 1), picture in picture type 1
(group 2), insertion of pattern (group 3), strong re-encoding

1http://www-nlpir.nist.gov/projects/tv2008/



(group 4), change of gamma (group 5), 3 combined basic
transformations (group 6), 5 combined basic transforma-
tions (group 7), 3 combined post-production transforma-
tions (group 8), 5 combined post-production transforma-
tions (group 9), combination of all transformations (group
10). The “basic” transformations are: blur, gamma, frame
dropping, contrast, compression, scaling and noise. The
post-production transformations are: crop, shift, contrast,
caption, flip, insertion of pattern and picture in picture type
2. Since many queries include a left-right flip to which the
local features employed here are not robust, the features
were detected and described on both the initial queries and
a flipped version of the queries (so there are 4020 queries
and a total of 293 hours of video).

To evaluate the scalability of the method, a much larger
video database of 3,000 hours was employed, obtained by
continuously recording five different Japanese TV channels
during several days. In this database there is significant
redundancy (jingles, advertisements, credits, weather fore-
casts, news reports, etc.) but most transformations are not
so strong and mainly consist of the insertion of logos or text
and time line editing.

Two types of local features were employed in the exper-
iments presented below. The first, introduced in [6] and
also used in [14] will be called “Harris features” in the fol-
lowing. They rely on the improved Harris detector and on
a 20-dimensional spatio-temporal local differential descrip-
tion. Since the Trecvid 2008 CBVCD benchmark includes
strong changes in scale, for which these features are not ad-
equate, SIFT [11] features were also employed. The distri-
bution of the SIFT features in the description space being
very unbalanced, the random projection method in [2] was
employed in order to improve this distribution, resulting in
32-dimensional descriptions.

Three methods were compared: the reference method in
[14], our method using locality in image plane for the defini-
tion of buckets (subsection 3.1, denoted by L) and the com-
plete method also exploiting simple configuration informa-
tion (subsection 3.2, denoted by LF). The reference method
was only employed with Harris features, while the other two
methods (L, SL) were evaluated with both Harris features
and SIFT features. For all the methods, triplets were em-
ployed for defining the buckets, so l = 3. In all cases, the
threshold on the difference between ratios is θr = 0.1.

Most tests were performed on a laptop PC, having a
Q8600 dual core CPU at 2.6 Ghz with 4 Gb of RAM. Even
though the method can be efficiently parallelized, the re-
sults reported below only used one core. For the 3,000 hours
database, a computer having an X7460 single core CPU at
2.66 GHz with 8 Gb of RAM was employed (column marked
by * in Table 3 below).

4.2 Detection quality
The reference method denoted by 20 Harris 0.4 was em-

ployed with L = 20 and θs = 0.4, as in [14]. For our new
methods (exploiting locality, denoted by L Harris θs L, and
further using distance ratios, denoted by L Harris θs LS),
the upper bound on the number of local features per frame
was L ∈ [20, 200], the partitioning depth h ∈ {8, 9, 10} and
the decision threshold θs ∈ [0.2, 0.5]. Fig. 5 shows a compar-
ison between 20 Harris 0.4, 150 Harris 0.3 L and 150 Har-
ris 0.3 LF regarding the recall (top) and the number of false
positive detections (bottom).

Figure 5: The recall (top) and number of false pos-
itive (bottom) detected with 3 methods: 20 Har-
ris 0.4, 150 Harris 0.3 L and 150 Harris 0.3 LF.

It can be seen that recall is improved by using more local
features and locality-based bucket selection (L); the addition
of local geometric information (distance ratios in LS) does
not have a further impact on recall. The most important
contribution of the geometric information is the significant
reduction of the number of false positives, despite a lower
decision threshold θs. Fig. 6 illustrates some of the addi-
tional detections, showing that copies can be found in spite
of the very strong transformations.

A comparison between the two types of features is shown
in Fig. 7, for the method using both locality and distance
ratios (LS). We set L = 150 and, since precision was high,
the decision threshold was reduced to θs = 0.2. With these
parameter values, SIFT features provide on average slightly
lower overall recall and equivalent precision.

Consider now the types of transformations. Group 2 ap-
pears to the most difficult and only 150 SIFT 0.2 LF pro-
vides some good detections. For this transformation (picture
in picture type 1), the query contains a reference video scaled
by a factor in [0.3, 0.5] and displayed in front of a corner or of
the center of another, unreferenced video. This is challeng-
ing because keyframe detection is driven by the unreferenced
video, taking at least 75% of the frame, and also because the
improved Harris detector lacks robustness to such changes
in scale. Also, group 10 randomly combines all the other
transformations, so some queries are also based on group 2.



Figure 6: Three detections found with 150 Har-
ris 0.3 LF but not with the reference method
(20 Harris 0.4).

Recall is also low for group 4, corresponding to strong re-
encoding (lower resolution and bitrate), and groups 6 and
7 that combine several quality degradation transformations.
On the other hand, the results are good for camcording (with
Harris features), insertion of patterns, change of gamma and
combined post-production transformations, even when their
amplitude is high (see e.g. Fig. 6).

While the Trevicd 2008 CBVCD dataset is too small for
scalability evaluations, the time required for mining it is nev-
ertheless a good indication of how efficient the methods are.
Table 2 shows the time needed by 20 Harris 0.4, 150 Har-
ris 0.3 L and respectively 150 Harris 0.3 LF for building the
indexed database and then for the self-join operation.

Database construction includes the computation of Glocal
signatures and of the buckets, but neither keyframe detec-
tion nor local feature extraction. The self-join operation
consists in exploiting the buckets for performing the self-
join over individual keyframes and then using the results for
identifying matching video sequences. Note that the new
methods employ here 7.5 more local features than the ref-
erence method (20 Harris 0.4). The use of pre-filtering by
distance ratios in 150 Harris 0.3 LF make the self-join op-
eration much faster.

4.3 Scalability
The same parameter values were employed for the refer-

ence method 20 Harris 0.4. The new methods were tested
with both L = 100 and L = 150. The results of the evalu-
ation performed with Harris features are shown in Table 3.
The time needed for building the indexed database increases

Figure 7: Comparison between 150 Harris 0.2 LF
and 150 SIFT 0.2 LF regarding recall (top) and
number of false positive detections.

approximately linearly with L. The significant impact of the
pre-filtering by distance ratios appears clearly. For the 3,000
hours database, the total time required (database construc-
tion and mining) is almost two times smaller for 150 Har-
ris 0.3 LF than for 20 Harris 0.4, despite the fact that 7.5
more local features are employed by the first. The results
obtained with SIFT are very similar.

5. CONCLUSION
Content-based video copy detection can provide useful in-

formation for structuring video databases, for large institu-
tional archives as well as for video sharing Web sites. The
challenge is to be both fast and reliable even when the trans-
formations between original videos and copies are strong.
We consider that a better compromise between reliability
and scalability requires inexpensive ways of taking into ac-
count, in addition to the description of individual local fea-
tures, information regarding the geometric configuration of
these features in the image plane.

Since transformations like strong cropping and video in-
lays alter the longer-range structure of the frame but main-
tain part of the short-range structure, we suggest to take
into account locality in the image plane when indexing the
video (key)frames. We further include in the indexing and



Table 2: Time required for building and mining the
Trecvid 2008 CBVCD database.

operation
method build self-join

20 Harris 0.4 4 min 44 s 8 min 02 s
150 Harris 0.3 L 40 min 45 s 13 min 23 s
150 Harris 0.3 LF 40 min 45 s 3 min 04 s

Table 3: Time required for building and mining the
larger databases.

database size
method operation 1000 hours 3000 hours*

20 Harris 0.4 build 15 min 21 min
self-join 2 h 01 min 12 h 00 min

100 Harris 0.3 L build 1 h 57 min 3 h 04 min
self-join 7 h 30 min 40 h 00 min

100 Harris 0.3 LF build 1 h 57 min 3 h 04 min
self-join 1 h 17 min 0 h 54 min

150 Harris 0.3 L build 3 h 11 min 5 h 01 min
self-join 8 h 48 min 41 h 10 min

150 Harris 0.3 LF build 3 h 11 min 5 h 01 min
self-join 2 h 21 min 1 h 34 min

matching processes simple local geometric data, involving
the nearest neighbors of a feature in the image plane. This
data is selected to be as robust as possible to the most com-
mon types of image transformations.

An experimental evaluation of the detection quality of our
proposal is conducted on the Trecvid 2008 copy-detection
benchmark, with two different types of features, and shows a
significant improvement over a previous method. The scal-
ability is then assessed on larger databases of up to 3,000
hours of video and highlights the fact that computation time
is much reduced by the pre-filtering operation exploiting the
local geometric information.
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