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ABSTRACT

Mining the video content itself can bring to light important
information regarding the internal structure of large video
databases, compensating for a lasting absence of extensive
and reliable annotations. Many valuable links between video
segments can be identified by content-based copy detection
methods, where “copies” are transformed versions of origi-
nal video sequences. To make this approach viable for large
video databases, we put forward a new mining method rely-
ing on the definition of a compact keyframe-level descriptor
and of a specific index structure. The performance obtained
in detecting links between video segments is evaluated with
the help of a ground truth and several illustrations are given.
The scalability of the approach is then demonstrated for
databases of up to 10,000 hours of video.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing
methods; H.2.4 [Systems]: Multimedia databases; H.2.8
[Database applications]: Data mining

General Terms

Design, Performance

Keywords
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1. INTRODUCTION
Given the exponential growth of institutional and user-

generated multimedia archives, organizing these archives is
an important challenge for the next years. Making explicit
the internal structure of a large multimedia database sup-
ports content acquisition and management, content retrieval
using various criteria and content preservation. Tradition-
ally, the organization of multimedia content relies almost ex-
clusively on textual metadata (keywords, descriptive notes).
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The semantic level of such metadata is appropriate for an-
swering user queries and its low volume makes this approach
easily scalable to large databases.

But the use of textual metadata has significant limita-
tions. First, the direct provision of extensive and reliable
metadata can not parallel the growth in content volume.
National archives who collect, register the copyright, anno-
tate and preserve radio and television broadcasts (like the
Institut National de l’Audiovisuel, INA, in France) usually
record very large volumes of data every day (for INA, about
1,000 hours daily in 2008) and cannot perform massive pro-
fessional annotation tasks. User Generated Content (UGC)
websites attempt to obtain relevant metadata by letting the
large public collaboratively provide keywords or thematic
classifications for the content. But only the most popular
content gets annotated and the quality of these annotations
is typically low (noise, spelling errors, ambiguous terms,
etc.). Furthermore, the answers to a query are cluttered
with countless versions of roughly the same content. Then,
language and cultural barriers can significantly restrain the
interest of both user-generated and professional annotations
for content organization and retrieval.

A complementary approach consists in extracting infor-
mation from the multimedia content itself. Regarding video
content, which is our focus here, content-based mining meth-
ods can support many applications for institutional or user-
generated multimedia archives and there have been recently
many developments in this domain. Most of them address
the problem of tracking news subjects by looking for near-
exact copies [8], [15] or for less similar representations of the
same scene or event [9], [11], [16], [12], [14]. Others focus on
TV commercials [4] or on the elimination of near-duplicates
in web search [13]. Some of these proposals are further con-
sidered in Section 2, together with an extended range of
applications of content-based mining.

For the identification of content links between video se-
quences, supporting the range of applications described above,
Content-Based Copy Detection (CBCD) is a very relevant
tool. Actually, most of the recent video mining develop-
ments just mentioned are CBCD-related methods. By copies
we understand potentially transformed versions of original
video sequences. The transformations belong to a large fam-
ily and their amplitude varies significantly (e.g. Fig. 1). But
CBCD methods that are robust to a wide range of transfor-
mations are also computationally expensive, and the cost of
Video Mining by content-based Copy Detection (VMCD in
the following) is even higher. This explains why in most
cases the domain is narrow (e.g. news shows), the volume of



data is reduced and/or the amplitude of the transformations
taken into account is strongly limited (near-exact copies).

Figure 1: Copy (left) and original content (right)

We address here the scalability problem for VMCD, con-
sidering generic video content and a relatively large fam-
ily of transformations of higher amplitude, as in Fig. 1.
The goal is to find all the occurrences of short (a few sec-
onds) video excerpts from any video document of a large
database. The definition of a new keyframe descriptor and of
an adapted index structure allows us to mine a 10,000 hours
video database in less than 83 hours. The mining process
produces a graph having as nodes all the video sequences
that occur more than once (with various transformations)
in the database, while the edges are the links found between
such occurrences. By further processing this graph, differ-
ent types of structural components can be identified in the
video database, which supports several applications.

Section 2 considers possible applications of video mining
and selected relevant work; then, a new mining approach is
introduced and motivated. This new approach is presented
in Section 3. First, a new keyframe description scheme,
“Glocal”, is put forward; it embeds the set of local signa-
tures describing a keyframe in a fixed-size and compact bi-
nary vector. Then, a new solution is proposed for indexing
Glocal signatures to support mining operations. The entire
mining process producing the content links between video
sequences is described. This mining approach is assessed
in Section 4: the precision in detecting the content links is
measured on a ground truth, then the results obtained on
two specific databases are illustrated and the scalability is
evaluated on larger databases of up to 10,000 hours of video.

2. CONTENT-BASED VIDEO MINING
The early approaches to video mining in [8] and [15] fo-

cus on news shows and develop CBCD solutions. While
the studied databases are not very large and the descriptors
employed are rather compact (limiting the range of transfor-
mations that are compatible with the detection of copies),
they demonstrate the relevance of CBCD for video mining.
Subsequent proposals for mining databases of news shows
put forward methods that do not actually aim at the detec-
tion of transformed videos. In some cases the occurrences
of the same scenes (shot by different cameras, from possibly
very different viewpoints) are detected, either by using the
discontinuities in the trajectories of interest points [9] or by
employing flash patterns [11]. The video sequence descrip-
tors are very compact, so relatively large video databases
can be processed, but the application of these solutions is
limited to rather specific video content. Others focus on
tracking news subjects by using both video keyframe simi-
larity and automatic audio transcriptions [16], [12], [14]. The

keyframe descriptions employed allow to some extent to find
views of a same scene from different angles, but rather small
databases are processed.

For large archives like INA, the identification of content
links between video sequences would allow to segment the
content and to extend textual metadata from one video se-
quence to others (while avoiding to separately annotate sev-
eral versions of the same content). It further supports such
services as visual navigation in the database, broadcast pro-
gramming analysis or media impact evaluation that often
helps deciding which video should be annotated. For ex-
ample, very short sequences that are near-identical copies
usually correspond to broadcast design sequences; they al-
low to identify the channel, then to segment the broadcast
and identify individual shows, thus providing annotations
and supporting data management and retrieval. Longer and
frequent sequences that are also highly similar typically rep-
resent TV commercials or, with a different temporal pattern,
brief flashes from news agencies; they can provide informa-
tion for media impact evaluation. Longer, infrequent and
more strongly transformed sequences correspond to reused
excerpts from shows or movies; they provide information
about the type of program, help the transfer of annotations
from one program to another and also support broadcast
programming analysis.

UGC websites can also exploit content links between video
sequences for specific purposes. Since the uploaded con-
tent usually consists of copies of video broadcasts rather
than original, user-created content, there are many near-
duplicates in the stored content, at various levels of quality,
with different segmentations and quite different annotations.
The lower-quality near-duplicates of a same video sequence
can be removed and the links established between duplicate
segments in longer sequences can support advanced naviga-
tion. Also, the textual metadata associated to the remain-
ing sequence can be improved (richer annotations with less
noise) by exploiting the metadata of the near-duplicates. A
related application, proposed in [13], is the elimination of
video near-duplicates from the results returned by a Web
search engine. Inexpensive descriptors are used to separate
the least similar videos, then local descriptors allow to re-
fine duplicate detection. Even with this improvement, the
removal of duplicates remains computationally intensive.

The video mining stage in [10] allows in principle to iden-
tify content links at a sub-frame level, e.g. same or similar
objects in different scenes. However, the size and number
of descriptors per frame, the cost of matching and tracking,
together with the very large number of links this approach
can generate, significantly reinforce the scalability challenge.
For the case where it is applied to CBCD, the scalability of
this description scheme was studied in [3]. A solution in-
spired by association rule mining was proposed in [6] for
finding the frequent itemsets (sets of local descriptors with
additional information regarding their spatial configuration)
and the corresponding content links in a video.

The above-mentioned applications of VMCD have differ-
ent requirements in terms of length of the detected sequences,
of nature and amplitude of the transformations applied and
of the particular categories of video programs that should
be analyzed. Rather than developing entirely specific min-
ing frameworks for specific applications and/or type of con-
tent (which is not always easy to define), it can be useful
to have a single mining framework that is able to deal with



a very large volume of general video content and find links
between substantially transformed sequences. The result of
mining is a large graph having as nodes all the video se-
quences that occur more than once (with various transfor-
mations) in the database, while the edges are the links found
between such occurrences. False detections can significantly
overload the graph and connect many disconnected compo-
nents; good precision (low rate of false detections) is thus
even more important for mining than for CBCD. The in-
formation required by specific applications can be obtained
by processing the graph. Clearly, the scalability challenge
is stronger when considering a large volume of general (non
specific) video content and a wide range of transformations
(gamma and contrast changes, filtering, cropping, scaling,
insertion of logos or frames, addition of noise) with poten-
tially high amplitude (see Fig. 1). This is the challenge we
address in the following.

Approaches to VMCD. A natural solution would be
to consider a general and scalable method for content-based
copy detection and apply it to the mining problem. CBCD
methods usually have an off-line indexing component and an
online detection component. The indexing component com-
putes the signatures for all the keyframes in the database
of original video content, then stores these signatures in
a reference database and creates an index supporting fast
similarity-based retrieval from this reference database. The
detection component extracts keyframes from a video stream
and computes their signatures, retrieves similar signatures
from the reference database and decides whether the similar-
ity between sequences of keyframes is sufficient for the input
sequence to be considered a copy of an original sequence.

To directly apply a CBCD method to mining, the refer-
ence database and the corresponding index must be created
first, then the signatures of every keyframe are used to query
the database and potential copies are identified.

The CBCD method described in [5] can monitor in de-
ferred real time, with one PC, one TV channel (video stream)
against a database of 120,000 hours of video. It copes with
the set of transformations mentioned above (with ampli-
tudes found by studying real copies of videos stored at INA)
and detects about 85% of the transformed sequences of at
least 3 seconds with good precision. This is the fastest so-
lution we know about for such large databases. Recent im-
provements allowed to obtain the same performance in terms
of speed and recall with a larger database of 280,000 hours of
video (860×106 keyframes, 16.4×109 local signatures). But
the direct application of this method to mining would still
be unacceptably slow since it would take about 3.5 years to
mine the 280,000 hours database with 1 PC. This motivates
the new framework described in the next section.

To facilitate the comprehension of the new framework,
the proposal in [5] and its recent improvements must be
briefly described. Videos are represented in [5] as sequences
of keyframes, where each keyframe is described by a set of
local spatiotemporal signatures of relevant interest points.
To find out whether a keyframe in the monitored stream is
a copy (transformed version) of a keyframe in the database,
all the signatures describing the candidate keyframe are used
as queries and the returned signatures from the reference
database take part to a vote-based decision process. A
coarse Z-grid index with component-wise probabilistic re-
trieval is proposed in [5] in order to provide the answers to
these similarity queries at a low cost.

Figure 2: Proposed workflow for VMCD

3. VIDEO MINING FRAMEWORK
The problem we address can be described as a self-join op-

eration on a database of video sequences, returning all the
pairs of sequences that satisfy the selection criteria (“match-
ing” sequences). The primary criterion is similarity, but
other criteria can be added, depending on the data or ap-
plication (e.g. exclude multiple occurrences that are close
together in a short time interval, or only consider one type
of broadcasts). When the additional criteria are more selec-
tive than similarity, they should be employed first to simplify
the problem. To remain as general as possible, we only use
one such criterion (avoid temporal proximity in a stream,
see subsection 3.3) that it is not critical to the approach.

Rather than directly looking for similar sequences, the
mining process suggested here first retrieves the pairs of
similar keyframes and then employs them to find similar
sequences (see Fig. 2). This solution brings more flexibility
to the last stage of mining and can be readily used to mine
databases that contain both images and videos.

To meet the scalability requirements, we (1) define and
employ compact frame-level signatures instead of sets of in-
terest point signatures, and (2) build an index to support
mining. Compact frame-level signatures—“Glocal” in the
following—allow to directly compute similarity at the level
of frames and avoid the large volume of intermediate results
(between retrieval by similarity and the vote-based decision)
often associated to the direct use of interest point signatures.
They provide a better compromise between detection time
and quality, and make a redundant index affordable. The
frame-level signatures and the redundant index allow to keep
the similarity computations local in database, minimizing
exchanges between main memory and mass storage.

3.1 Glocal description scheme
Good robustness to the typical transformations between

original videos and copies is obtained in [5] by the use of lo-
cal descriptors. Each keyframe is described by the local spa-
tiotemporal signatures of at most 20 (and sometimes slightly
less) interest points found by the improved Harris detector.
The use of multiple local signatures for every keyframe and
of a specific matching provides robustness to cropping or in-
sertions. But this is also expensive in terms of time and stor-
age. It is important to find a frame-level description scheme
that keeps as much relevant information as possible and al-
lows to include part of the vote-based decision in a simple
computation of the similarity between two keyframes, while
significantly reducing computation and storage cost. In [5]
the spatiotemporal signature of an interest point in keyframe
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Figure 3: Construction of a Glocal signature in a
2-dimensional description space

t is composed of the normalized 5-dimensional vector of first
and second-order partial derivatives of the gray-level bright-
ness for this point and for 3 other neighboring points in the
frames t + δ, t − δ and t − 2δ. Such a signature belongs to
the 20-dimensional description space [0, 255]20. The distri-
bution of the signatures covers well this space, so indexing
is based on hierarchical partitioning of the description space
(not of the image plane) into hyper-rectangular cells. Ev-
ery local signature is defined by a precise position and falls
within one such cell. Only the coarse information given by
the numbers of the cells to which the local signatures belong
is employed for defining a frame-level signature.

The 20-dimensional description space is partitioned at a
limited depth h (at every level, a new interval is parti-
tioned in two), which produces 2h cells. To every cell a
position is assigned (following some numbering scheme) in
a binary vector of fixed dimension 2h. The Glocal signa-
ture of a keyframe is such a binary vector, where the i-th
bit is set to 1 if the local signature of at least one inter-
est point from that keyframe falls within the cell i, or else
left to 0. The Glocal signature is a fixed-size embedding
of a set of local signatures. A simplified example (with in-
terest point signatures in a 2-dimensional space) is given
in Fig. 3, for a keyframe containing 6 interest points. The
squares represent the partitioning of the description space
(not the image plane) at depth 4. The numbers of the cells
are shown in the corners. The local signatures are the +
marks within the squares. The resulting Glocal signature is
0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1.

The information provided by a Glocal signature consists
in the positions of the bits set to 1 and is a coarse approx-
imation of what a set of local signatures would bring. This
description scheme would be inadequate if the local signa-
tures of many interest points belonging to a same keyframe
would fall in a same 20-dimensional cell (on average). A
very significant amount of information would then be lost.
By studying how many bits are set to 1 in a Glocal signature,
we obtained an average of 17.4 for a partitioning depth of 8,
close to the average number of local signatures in a keyframe.
This shows that the distribution is convenient, so the loss
of information is limited, and that the partitioning of the
space at this depth is already appropriate. Partitioning at
a higher depth cannot diminish this average.

Glocal signatures are compact: considering a partitioning
depth of 8, every keyframe is described by 28 bits (or 32
bytes) with a Glocal signatures, while the description in [5]
requires 20 local signatures of 20 bytes each, for a total of
400 bytes. This gain allows the use of a redundant indexing
scheme (Section 3.2) that supports faster mining, without
increasing the total storage requirements.

Figure 4: Obtaining the Glocal signature database

Since the Glocal signatures are binary, a natural choice
for measuring their similarity is the Dice coefficient (SDice):

SDice(g1,g2) =
2 |G1 ∩ G2|

|G1| + |G2|
(1)

where Gi is the set of positions of the bits set to 1 in the
signature gi and | · | denotes set cardinality. SDice is directly
related to the Jaccard coefficient. When the number of bits
set to 1 is about the same for every signature, SDice is almost
identical to the overlap coefficient and can also be related to
the Hamming distance.

3.2 Indexing Glocal signatures
The first stage of the video mining process, that consists

in identifying the links between individual keyframes, is the
most expensive. If D is the database of Glocal signatures
and θ is the similarity threshold above which one keyframe
is considered a transformed version of the other, then the
following set should be found:

Kθ = {(gi,gj) |gi, gj ∈ D, SDice(gi,gj) > θ} (2)

This corresponds to a similarity join on the database of
Glocal keyframe signatures and its time complexity would
be O(N2) if the similarity was computed for every pair of
signatures (N is the size of the database).

The efficient computation of similarity joins was addressed
in the information retrieval and in the data management
literature, e.g. [7], [1], [2]. To find an appropriate solution
for speeding up the first stage of the mining process, our
prerequisites and the main characteristics of the data should
be made explicit. The main requirement concerns the level
of scalability: we intend to mine databases of more than 5000
hours of video (≥ 18 × 106 Glocal signatures) much faster
than by the direct application of existing CBCD methods.
To further reduce the time required for larger databases,
the method should fully support a parallel implementation
by requiring a limited volume of data exchanges.

As seen in subsection 3.1, the Glocal signatures are com-
pact (2h bits per frame for a partitioning depth of h) and
sparse, but not as sparse as the text descriptors typically
employed in information retrieval (e.g. [2]). Furthermore,
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Figure 7: Impact of h and l on speedup

about the same number of bits is set to 1 in every Glocal
signature, while for text descriptors the number of non-zero
components is usually highly variable. Also, the Glocal sig-
natures cover well the description space, even if the prob-
ability of being set is not the same for all the bits. These
characteristics of Glocal signatures and of their distribution,
together with the requirements mentioned above, do not al-
low a direct application of the proposals in [2] or [1].

Principle of the indexing scheme. We aim to accel-
erate the discovery of Kθ defined by (2) by avoiding to com-
pute the similarity for every pair of signatures, while keeping
storage requirements rather low. The indexing scheme put
forward here is inspired by both inverted lists and hashing.
It is based on dividing the database of Glocal signatures into
segments such that, in each segment, the similarity between
any two signatures is above a threshold, and then perform-
ing the similarity join independently for every segment. In
a large database the signatures are scattered rather than
grouped into compact and well separated clusters, so differ-
ent segments must overlap in order to guarantee that all the
links are found; redundancy can be a source of inefficiency
if the overlap is too high. An important requirement is that
every segment should hold into main memory in order to
avoid expensive intermediate disk accesses.

A segment is defined by a specific set of bits set to 1 (called
“sentence”below) in the representation of Glocal signatures.
The segment (“bucket” next) consists of all the Glocal sig-
natures in the database that contain this sentence; it can
be stored as an inverted list. To complete the description
of the indexing scheme we must specify (i) at what depth
should the description space be partitioned in order to de-
fine the Glocal signatures (subsection 3.1), (ii) how many
bits the sentences should have, (iii) how many different sen-
tences should be used for indexing a Glocal signature and
(iv) how should these sentences be selected.

Speedup estimation. Let N be the total number of
signatures in the database. If the similarity is evaluated
for every pair of signatures, the total number of similar-

ity computations is N(N−1)
2

≈ N2

2
. A comparison with the

index-based solution will show the impact of the partitioning
depth h and of the length l of the sentences. The number
of bits set to 1 is about the same for every Glocal signa-
ture, in our case ≥ 19 for h ≥ 8, and is upper bounded by
the maximum number of interest points per keyframe (20
here), so it does not increase with h for h ≥ 8; it will be
denoted by L. It follows that the length of every signature
is 2h, the total number of different buckets (possible sen-

tences) is
(

2h

l

)

and every signature is present in
(

L

l

)

buckets.

If all the bits are set to 1 with the same frequency for the
signatures in the database, then all the buckets have the

same size, equal to N
(

L

l

)(

2h

l

)
−1

. Consequently, the num-
ber of similarity computations performed with the index is

approximately
(

2h

l

)

N2

2

(

L

l

)2(2h

l

)
−2

= N2

2

(

L

l

)2(2h

l

)
−1

. The es-
timated speedup a obtained by using the index is then

a =

(

2h

l

)(

L

l

)

−2

(3)

The space required for storing a Glocal signature and the
time needed for computing the similarity between two sig-
natures can then be considered fixed and independent of h.
As shown in Fig. 7 for l ∈ {1, . . . , 6} and h ∈ {8, . . . , 20}
(with L = 20), the speedup increases with both l and h.
But the storage requirements are N

(

L

l

)

, so they augment
when l grows from 1 to 10 and then decrease. Taking for l a
value between 15 and 20 would make the similarity for two
signatures in a same bucket higher or equal to 2×15

20+20
= 0.75,

according to (1), which would severely restrict recall. More-
over, when h increases (the partitioning of the description
space is stronger) the similarity between a keyframe and a
transformed version of this keyframe will diminish. The sim-
ilarity threshold θ used in (2) for establishing a link between
two keyframes could be reduced accordingly, but this would
augment the overlap between true positives and true nega-
tives. For these reasons, in the system developed here both
the sentence length l and the partitioning depth h are close
to their lower bounds shown in Fig. 7.

To further save computation time and storage, it is possi-
ble to reduce both the number of buckets and their size by
assigning each signature to a relatively small share of the

(

L

l

)

buckets it can belong to. This can be performed by defining
rules for selecting sentences (sets of bits set to 1) in a sig-
nature; then, all the signatures containing a given sentence
are assigned to the corresponding bucket.

Bucket selection. The rules considered here for select-
ing sentences are: neighboring bits (not separated by any
other bit set to 1), 1-out-of-2 bits (separated by only one bit
set to 1), 1-out-of-3 bits and 1-out-of-4 bits. As an example,
for the Glocal signature 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1,
the positions of the bits set to 1 are 3, 8, 12, 13 and 16,
so the sentences of length 2 of neighboring bits are 3-8, 8-
12, 12-13 and 13-16, those of 1-out-of-2-bits are 3-12, 8-13
and 12-16, those of 1-out-of-3-bits are 3-13 and 8-16, while
the sentence of 1-out-of-4-bits is 3-16. The reduction of the
number of buckets to which a signature is assigned is signif-
icant: e.g. with L = 20 and l = 3 every signature is only
assigned to 48 of the

(

20
3

)

= 1140 buckets in which it would
otherwise be present. But if this reduction is too strong,
some pairs of signatures corresponding to a keyframe and to
its transformed version may no longer be placed together in
any remaining bucket, so only part of Kθ would be found.

To evaluate these rules and find appropriate values for h

and l, we explore their impact on an automatically gener-
ated set of transformed videos (“copies”). Since the avail-
able ground truths are small, they are only employed for
the final evaluation in Section 4. Instead of using a ground
truth, we automatically generate a large set of copies, com-
pute the Glocal signatures of the original keyframes and of
their transformed versions, then measure the impact of dif-
ferent parameters on the quality of copy detection. The
transformation parameters should exceed the ones already
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Figure 5: Estimated probability of collision between the Glocal signature of an original keyframe and that of
an automatically generated copy, obtained at depth 7 (left), 8 (middle) and 9 (right), respectively.
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Figure 6: Estimated probability of collision between the Glocal signatures of two random keyframes, obtained
at depth 7 (left), 8 (middle) and 9 (right), respectively.

observed but remain within reasonable bounds with regard
to visual perception. From a diverse video collection of
300 hours, 100 hours of copies are automatically generated,
using combined transformations including gamma and con-
trast changes, scaling and addition of Gaussian noise.

Collision analysis. Using this large dataset, we esti-
mate the probability for the Glocal signature of an original
keyframe to “collide” (i.e. be assigned to at least one bucket
together) with the signature of an automatically generated
copy; the results are shown in Fig. 5 for h ∈ {7, 8, 9}. Fig. 6
displays the results obtained when the estimation is per-
formed for randomly selected pairs of signatures (moreover,
two such keyframes are always taken from different broad-
casts). Each curve on the graphs corresponds to the addition
of one more selection rule: “0” stands for neighboring bits
only, “0 1” for neighboring bits and 1-out-of-2 bits, “0 1 2”
adds the selection of 1-out-of-3 bits and “0 1 2 3” adds the
selection of 1-out-of-4 bits. Each point on a curve corre-
sponds to a value for the length of the sentences: 2 for the
point at the top, 3 for the point below, and so on up to 8 for
the point at the bottom. The abscissa represents the total
number of different sentences obtained for a signature.

The similarity between two signatures is computed and
compared to the threshold θ only if the two signatures col-
lide. When keyframes are compared to their copies (Fig. 5),
the estimated probability of collision should be as high as
possible; a value of 1 would guarantee that all of Kθ is found.
When random keyframes are compared, the estimated prob-
ability of collision should be as close to 0 as possible in order
to save similarity computations; but a strictly positive value
doesn’t lower the precision, since the similarity between sig-

natures that collide is always compared to θ. Fig. 5 and
Fig. 6 suggest that a partitioning depth h = 8 or h = 9, the
set of rules “0 1 2” and a sentence length l = 3 can lead to a
good compromise: a relatively high recall (almost all of the
corresponding Kθ is found) and a very strong reduction in
the number of buckets.

3.3 Finding links between keyframes
The role of the buckets is to avoid comparing each signa-

ture to every other signature in the database; the full simi-
larity between two signatures is only computed if it is above
a threshold. With L = 20 and l = 3, the similarity between
two signatures in a same bucket is at least 2×3

20+20
= 0.15, as

given by (1); while the mining process is significantly accel-
erated, this value is too low to remove false detections. A
higher value could be obtained by increasing the length of
the sentences that define the buckets, but this has a negative
impact on recall, as seen in the previous subsection. Conse-
quently, within each bucket, the similarity is evaluated for
every pair of Glocal signatures and compared to a threshold
θ (defining Kθ) whose value is significantly higher than 0.15
(see Section 4). A link is established between two keyframes
if the similarity between their signatures is above θ.

A preliminary analysis has shown that a strong temporal
redundancy could be found in many broadcasts (such as talk
shows or weather forecasts). If mining was directly applied,
many of the links would be established between keyframes
that are close in time and belong to a same broadcast; these
uninteresting links would then overload the subsequent fil-
tering stages (such as the temporal consistency check). This
problem can be solved in many different ways, depending



Figure 8: Finding links between video sequences

on the representation of the data. The videos stored in the
archives we employed are already segmented into relatively
short broadcasts (between a few minutes and three hours),
each having its own ID. To every Glocal signature in the
database is associated the ID of the video broadcast and
the time code Tc of the keyframe it is issued from; time
codes are relative to the beginning of the broadcast. The
link between keyframe n from broadcast x and keyframe m
from broadcast y is specified by the corresponding pairs of
IDs (IDx; IDy) and time codes (Tcx,n; Tcy,m). To avoid the
generation of links between keyframes that belong to a same
broadcast, the signatures that are in a same bucket and have
the same ID are never compared to each other.

3.4 Finding links between video sequences
The connections identified between individual keyframes

are used to delimit and link together video sequences that
are transformed versions of a same content. Starting from
two connected keyframes, two joined sequences are built by
the stepwise addition of other connected keyframes (with
increasing time codes) that verify temporal consistency con-
ditions. These conditions make the detection more robust
to the absence of a few connected keyframes and to the pres-
ence of some false positive detections.

The first requirement is that the temporal gap between
the last keyframe in a sequence (with time code Tcx,l) and a
candidate keyframe to be added to the same sequence (with
time code Tcx,c) should be lower than a threshold τg:

Tcx,c − Tcx,l < τg (4)

Gaps are due to the absence of a few connected keyframes, as
a result of post-processing operations (addition or removal
of several frames), of instabilities of the keyframe detector
or of false negatives in the detection of connected keyframes.

The second requirement bounds the variation of tempo-
ral offset (jitter) between the connected keyframes of two
different sequences of IDx and IDy. Jitter is caused by post-
processing operations or by instabilities of the keyframe de-
tector. If Tcx,l is the time code of the last keyframe in IDx,

Tcy,l the time code of the last keyframe in IDy and Tcx,c,
Tcy,c are the time codes of the candidate keyframes, then
the condition for upper bounding the jitter by τj is:

|(Tcx,c − Tcx,l) − (Tcy,c − Tcy,l)| < τj (5)

The candidate keyframes are added at the end of the current
sequences only if both the gap and the jitter conditions are
satisfied. The third condition is that sequences should be
longer than a minimal value τl to be considered valid; this
removes very short detections, typically false positives.

From the indexed database of Glocal signatures repre-
senting the keyframes extracted from a collection of videos,
the mining process brings out pairs of matching sequences
(transformed versions of a same content). This is summa-
rized in Fig. 8. The results can be represented as a graph
where every node is a video sequence for which at least a
match was found and every edge is such a match.

4. EXPERIMENTAL EVALUATION
To assess the proposed mining approach, precision and

recall are measured on ground truth databases, then some
of the results obtained on two specific databases are pre-
sented, and eventually the scalability is evaluated on larger
databases of up to 10,000 hours of video. This mining method
can be easily parallelized; nevertheless, all the experiments
were performed with a sequential implementation, on a PC
having a 3 GHz CPU and 4 Gb of RAM.

Previous experience with CBCD suggested to select a jit-
ter threshold τj of 15 frames (0.6 seconds). A gap threshold
τg of 100 frames (about 4 seconds) allows to avoid an exces-
sive fragmentation of the resulting sequences. A basis value
of 4 keyframes (about 4 seconds) for the minimal length τl

removes short, usually irrelevant detections.

4.1 Evaluation on ground truth databases
The first ground truth database employed consists of 30

hours of original broadcasts issued from the INA archive, to-
gether with 20 minutes of copies (short excerpts) obtained
from a UGC website for tests. At least one sequence from
every broadcast is present, transformed, in the set of copies.
Since the amount of data is relatively limited, all the links
between original and transformed video sequences were man-
ually checked. The databases being small, Glocal signatures
were computed at a partitioning depth h = 8.

Several experiments were performed to find an appropri-
ate value for the similarity threshold θ used for establish-
ing links between individual keyframes. Previous experience
with the CBCD system in [5] has shown that a keyframe
could be safely considered a copy of another if it at least half
of the interest points detected did not change completely.
This suggested that a good initial guess could be θ = 0.5,
which resulted in 46 true positives, 30 false positives and 6
false negatives; recall is 0.88 and precision 0.6. The value
obtained for the precision is too low, so for a large video
database the volume of false alarms could be too high. With
θ = 0.55 there are 43 true positives, 2 false positives and 8
false negatives, which gives a recall of 0.84 and a precision
of 0.95. Recall is slightly lower than before but precision
significantly increases. The false negatives are either very
short, or very noisy, or strongly compressed sequences (with
salient MPEG block artifacts). The similarity threshold θ is
set to 0.55 for all the other experiments.



Figure 9: Pattern of broadcast design sequences

This value for the threshold had to be evaluated on an-
other, independent ground truth. We employed the public
video copy detection benchmark1 of CIVR 2007, that pro-
vides a database of 80 hours and two sets of queries: ST1
are copies of entire videos from the database, while ST2 con-
sists of copy excerpts inserted into longer videos external to
the database. ST1 and ST2 were added to the database and
the mining operations performed. We measured the preci-
sion and recall in finding the links between the queries in
ST1 and ST2 and the 80 hours database. With θ = 0.55,
recall is 0.8 for a precision of 0.96. The database of Glocal
signatures, the buckets, the links between keyframes and be-
tween sequences easily hold in main memory for such small
databases, so mining using the indexing scheme only takes
20 seconds. For comparison, if the indexing scheme is not
employed, recall and precision remain the same for θ = 0.55,
but mining now requires 23 minutes.

To measure the effectiveness of the Glocal descriptor in
detecting copies, Table 1 compares our results to those of
the CIVR 2007 CBCD competition1, using the same perfor-
mance measures. In this case, lowering the θ threshold to
0.45 increases recall without reducing precision, but we nev-
ertheless use θ = 0.55 for the following experiments since we
consider the first ground truth to be more representative.

Table 1: Comparison for CBCD

Method ST1 score ST2 segment score
Best CIVR 2007 0.86 0.86

Ours with θ = 0.55 0.73 0.71
Ours with θ = 0.45 0.93 0.86

4.2 Mining results on two databases
It can be revealing to visually explore the results obtained

on real-world databases in two application contexts.
The first database consists of 1,000 hours of video from

the INA archive, to which were added the two ground truth
databases. The largest share of the sequences occurring
more than once are broadcast design sequences and espe-
cially jingles, that are very brief and follow the pattern
shown in Fig. 9. To better focus on the other detections, the
jingles were set aside; the resulting graph had 6,794 nodes
and 12,142 edges. Then the sequences shorter than 7 sec-
onds (mostly opening or closing credits) were also removed,
to produce the graph shown in Fig. 10, with 2,757 nodes

1http://www-rocq.inria.fr/imedia/civr-bench/

and 3,057 edges. In this picture, if two sequences are issued
from a same broadcast (same ID) and have a non-zero over-
lap, then they are represented by a single node. So, if a node
X is linked to nodes Y and Z, and these two links correspond
to different duplicate sequences having a very small overlap
(< τl), then there is no direct link between Y and Z.

In Fig. 10 the nodes of some subgraphs are illustrated by
connected keyframes. Cliques are found when transformed
versions of a long enough sequence appear in several broad-
casts; they represent here opening or closing credits (> 7
seconds), advertisements or excerpts from news shows. Con-
nected subgraphs that are not cliques correspond to repur-
posed videos edited in various ways; they support broad-
cast programming analysis and the transfer of annotations.
Graph representations are an effective tool for navigating
large sets of results. The interface allows additional filtering
based on meta-data and on characteristics of the links.

The second database contains only videos obtained from a
UGC website, for tests. It consists in the top 925 videos (for
a total of 63 hours) returned by a search with the keyword
“Madonna”. Since the database is small, all the data holds in
main memory so mining required 42 seconds. No broadcast
design sequence (jingle, credits) was found.

The resulting graph, having 477 nodes and 1978 edges, is
shown in Fig. 11. Three subgraphs are illustrated by con-
nected keyframes. The clique in subgraph A corresponds
to transformed versions of a same video sequence; the “tail”
contains heavily edited versions of the same clip that in-
clude many new fragments. In the “double star” subgraph
B, the centers of the stars are two very different versions
of a video-clip (same piece of music) that group together
video sequences also found in the outer nodes. Even if some
outer nodes have links to both centers, no overlap is long
enough (τl = 4) to establish a link between the centers. The
largest connected subgraph C contains sequences from the
many different video-clips associated to the “4 minutes” sin-
gle. The same videos were cut into small segments (some of
which are shorter than τl = 4) that were then transformed
and assembled together. Few of these versions are official
releases, the others are probably created by enthusiasts.

The most frequent transformations in this specific database
are the reassembly of short sequences, the speedup or slow-
down (by as much as 20%), strong compression and scaling.
The amplitude of the transformations is higher than for the
INA archive. We found no wrong link in the results (preci-
sion is 1) but, given the size and the nature of the database,
recall could not be measured. Fig. 11 (bottom left) also
shows four examples of links that were successfully found
between keyframes despite strong transformations.

4.3 Scalability evaluation
To measure the time required for mining and evaluate the

scalability of the method, three larger databases of 2,000,
5,000 and 10,000 hours were created by taking miscelaneous
videos from the INA archive. The Glocal signatures were ob-
tained by partitioning the description space at depth h = 9.
Table 2 shows the time required by each stage of the mining
process. Database construction includes the computation of
the Glocal signatures and the creation of the buckets. The
largest share of the time required for mining corresponds to
the identification of links between individual keyframes.

For the construction of the database, most the time (95%
for h = 9) is taken by access to mass storage. The 10,000



Figure 10: Global view of the graph found on the 1,000 hours database (top left) after removal of most of
the components corresponding to broadcast design sequences, and illustrations for several subgraphs

Figure 11: Graph found (top left) on 925 videos obtained from a UGC website (for tests), illustrations for
subgraphs A and C, and 4 examples of links found between keyframes despite strong transformations



hours database requires twice the time needed for the con-
struction of the 5,000 hours database because all the work
can be done in main memory for the smaller database, while
for the 10,000 hours the two halves are processed in main
memory independently, one after the other (this also shows
how easy it is to parallelize the process).

Table 2: Time required for mining 3 databases

Database size 2,000 h 5,000 h 10,000 h

Nb. of keyframes 5.8 × 106 14.5 × 106 28.7 × 106

Base construction 2h35min 3h38min 7h00min
Linking keyframes 5h40min 14h59min 55h
Linking sequences 1h15min 7h15min 20h35min

For comparison, if the similarity was computed for every
pair of Glocal signatures, mining the 10,000 hours database
would require about one year. The CBCD solution in [5]
can also be applied by using every keyframe as a query; it
needs about 20 days to mine 10,000 hours.

5. CONCLUSION
Making explicit the internal structure of a large video

database can provide relevant information for content ac-
quisition, management, retrieval and preservation, in both
institutional and user-generated multimedia archives. The
content links between video sequences, identified by content-
based copy detection methods, are an important part of the
structure of the database and support a wide range of appli-
cations. We focused here on the difficult scalability problem
raised by the use of content-based copy detection for mining
large video databases. We considered generic video content
and a fairly large family of transformations of realistic am-
plitude between video sequences and their “copies”.

The direct application of a state of the art copy detec-
tion method to video mining results in an unacceptably long
processing time for large databases. This motivated the in-
troduction of a new approach, relying on the definition of
compact keyframe-level descriptors and of an adequate in-
dex structure supporting mining operations. This approach
was shown to provide reliable results on two ground truths
and its scalability was demonstrated for databases of up
to 10,000 hours of video. It makes video mining by copy
detection feasible in a reasonable time for relatively large
databases. An extensive study of the characteristics of the
extracted sub-graphs and the use of machine learning meth-
ods can lead to a reliable automatic classification of the iden-
tified links; this is a subject of current work.
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