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Abstract — To support computer assisted plant species identification in realistic, 
uncontrolled picture-taking condition, we put forward an approach relying on local image 
features. It combines query by example and relevance feedback to support both the 
localization of potentially interesting image regions and the classification of these regions as 
representing the target species or not. We show that this approach is successful and makes 
prior segmentation unnecessary. 
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1 INTRODUCTION 

iven the large volume and increasing accessibility of biodiversity 
data⎯e.g. Encyclopaedia of life [1], Atlas of living Australia [2], or 
ZipcodeZoo⎯gathered from all over the world, it is even more 

important to explore, master and capitalize this type of knowledge [3]. 
Joint efforts of biologists, information science and data-mining 
communities are required for solving significant common problems. As 
biological image databases are increasing rapidly [4], automated species 
identification based on digital data is of great interest for accelerating 
biodiversity assessment, researches and monitoring [5]. We put forward 
here an interactive identification approach in which a botanist having a 
partially annotated large image database is assisted by a Relevance 
Feedback search mechanism to identify a plant’s specie. The botanist can 
then easily select the relevant unlabeled images (without having to go 
through the entire database) and label them at once with the name of the 
specie. 
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2 CONTEXT AND RESULTING CHALLENGES 

2.1 Content-based image retrieval and interactive identification 
In a query by visual example (QBVE), an example image is first provided 
to the search engine as a visual query. The engine returns images that are 
visually similar to the query image, using a metric on the space of the low-
level features that represent the images. Motivated by the “semantic gap” 
issue, i.e. the fact that such features seldom reflect user’s intention, a 
Relevance Feedback (RF) [6] mechanism includes the user in the retrieval 
process. In an RF session the search result is iteratively refined. For a 
given query, the system first retrieves a set of images ranked according to 
the predefined similarity measure between the query vector and feature 
vectors of images in the database. Then, the user provides feedback 
regarding this result, by qualifying the returned images as either “relevant” 
or “irrelevant”. From this feedback, the engine iteratively learns the visual 
features of the images and returns improved results to the user. A good 
RF mechanism should find the user intention with minimal interaction [7]. 

This retrieval refinement technique was applied to botanical databases 
with pictures taken in controlled conditions [8], but it has important 
limitations resulting from the global image description. To remove such 
restrictions on picture-taking conditions, we extend here RF to the use of 
local features (LF). This is a more adequate representation of image 
regions and allows users to provide a precise feedback by freely selecting 
relevant and irrelevant regions of interest in images. 

2.2 Challenges 
We address here learning and recognition challenges that come from 
strong variations in viewpoint, picture-taking conditions, interactivity and 
generalization requirements. Recent work on plant species identification 
requires reliable prior segmentation of informative organs such as leaves 
[9], [10] (with controlled picture-taking conditions) or flowers [11] (less 
restrictive conditions). With such well-controlled pictures, the shape of a 
leaf, its margins, or several local and region-based features of flowers are 
employed for recognition. In general, due to variations in natural 
environment, plant accessibility, picture-taking system and intention, an 
object of interest (plant or plant’s part) may appear on different 
backgrounds and cover a potentially small part of the image (see first row 
in Fig. 1). This supports the use of LF to focus on the target object. Also, 
in a botanical identification context, some images illustrate global aspects 
of a plant or of an inflorescence, while others show details having different 
visual attributes. A same object of interest could thus be represented in 
various poses and at different scales (see second row in Fig. 1). 

Relevance feedback brings in two additional challenges. First, the 
search engine should respect the interactivity requirement, i.e. quickly 



 

 

respond during each round. Even if joint object segmentation and 
recognition (e.g. [12]) could improve identification, its additional cost 
makes it inappropriate for interactive retrieval. Second, at each RF round 
the user only labels a few images. For the retrieval session to be 
successful, the system should generalize well from these few examples. 
In the next section we propose an approach that addresses these 
problems using LF. 

   

   
Fig. 1. Background variations of an inflorescence of Habenaria species (1st row), scale and 

pose variation of an inflorescence of Cleisomeria lanatum (Lindl. ex G.Don, 2nd row). 

3 IDENTIFICATION APPROACH 
We propose to jointly use search by example with local queries and 
supervised classification (with Support Vector Machines, SVM). Every RF 
round thus consists of two stages: (1) QBVE using as query the LF that 
were previously found relevant; (2) result re-ranking by the SVM decision 
function, applied to the potentially relevant set of features in every 
returned image. This joint use of QBVE and SVM classification serves two 
purposes. First, it allows to locate, in the returned images, the potential 
regions of interest (see Fig. 2, green and red points) that have to be 
evaluated by the SVM. A region of interest is here the set of LF that were 
found to be individually similar to some LF in the query. An image can 
indeed contain objects from multiple classes; our approach will focus on 
the potentially relevant parts and ignore other, irrelevant parts (blue points 
in Fig. 2). In this context, the task of the SVM is to solve ambiguity and 
distinguish sets of LF that belong to the target specie (Fig. 2, middle) from 
sets composed of LF that are individually similar to relevant LF but, when 
considered together, do not correspond to the target specie (Fig. 2, right). 

Second, QBVE can be very fast with an appropriate index 
structure⎯we rely here on a posteriori multi-probe locality sensitive 
hashing [13]⎯and only images containing hit points (i.e. points that are 
individually similar to relevant LF) have to be evaluated by RF rather than 
all the images in the database, which significantly improves scalability. 



 

 

   
Fig. 2. Region of interest localization: user target (left) and two candidate images with LF 
belonging to the target (green, middle) or not (red, right). The other LF (blue) are ignored. 

 
We assume that the distribution of LF in the selected sets brings relevant 
discriminating information with respect to the joint presence of LF, so we 
employ the pyramidal matching kernel (PMK, [14]) or the kernel based on 
random histograms (RH, [15]). The SVM has thus to downgrade image 
regions (sets of LF) whose LF are individually similar to LF of the target 
specie, but whose distribution does not correspond to this target. 

4 EXPERIMENTAL EVALUATION 

We employed two different image databases for the evaluations. The first 
one was produced by AMAP Joint Unit on Laos orchid’s reproductive 
organs (mainly inflorescences and flowers). It contains 1913 images for 
181 orchid species. There are significant variations in scale, pose and 
lighting (see Fig 1, 2). Botanists manually labelled 2347 regions of 
interest. The second database is Oxford flowers 17 
(www.robots.ox.ac.uk/~vgg/data/flowers/17/), consisting of 17 flower 
categories with 80 images each. The database includes common UK 
flowers; there is a significant variation within a same class and close 
similarity between several classes. There is also a ground truth showing 
fine flower segmentation for a subset of the images [11]. 

We compare RF with global image description (GF_RF) to RF with local 
descriptions (LF_RF_QVE_Harris, LF_RF_QVE_SIFT). The global 
image description employed (named “joint description” below) 
concatenates a Laplacian weighted RGB histogram, a Fourier-based 
histogram and a Hough histogram [2]. Two types of LF were employed: 
(i) joint description (with coarser histograms) obtained in the 
neighbourhood of Harris colour points, and (ii) SIFT [16]. The experiments 
were performed by using the ground truth to emulate user feedback under 
realistic conditions. Each RF session consists of 8 iterations. At every 
iteration, the emulated user labels the first 3 relevant and the first 3 
irrelevant unlabelled regions. Fig. 3 shows the mean average precision 
(MAP) of system’s responses where recall equals precision (MAP at 
R=P), for the three RF mechanisms. Only the 10 orchid classes having 
enough image examples were used for generating RF sessions. Fig. 3 
(left) shows that, even with few iterations (1st to 4th, less than 50% of the 
available training data), RF with LF outperforms global RF. We also note 



 

 

that the results obtained with SIFT (features ignoring colour!) are better 
than those with Harris points whose description includes colour. This is 
due to the fact that scale and shape variations within a same class are 
more important than colour differences between classes in this dataset. 
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Fig. 3. MAP evolution over RF iterations. Left: on Orchids database. Right: on Oxford flowers 

17 database, with and without segmentation masks in prediction stage. 

Using LF_RF_QVE_Harris and the fine segmentation ground truth 
provided in Oxford flowers 17 database, we performed two experiments in 
which we use segmented objects as training examples and, for the 
prediction stage, we either (i) use only hit points (retrieved by QBVE) that 
fall in pre-segmented objects of interest in a candidate image 
(TP_GTMasks), or (ii) use all the hit points retrieved in a candidate image 
(T_GTMasks). As can be seen in Fig. 3 (right), the object localisation 
given by the QBVE stage allows to reach a performance that is close to 
the one obtained with fine prior segmentation. We also find that the 
inclusion of a small part of object’s neighborhood provides a relevant 
context that increases recognition accuracy. 

    
Fig. 4. Object localization examples on Oxford Flower 17 database, green points showing 

the object of interest. From left to right: Colt’s Foot, Daisy Flower, Buttercup, Tiger Lily. 

5 CONCLUSION 

Content-based image search can have a significant contribution to plant 
species identification. However, to make it successfully applicable to 
realistic contexts, we argue that it is necessary to let the user interact with 
the system on the basis of local image descriptions that allow to focus on 
the relevant part of an image. We proposed a relevance feedback method 



 

 

relying on local images features. It also makes use of an LF retrieval 
stage in order to locate potentially interesting image regions and improve 
scalability to larger image databases. We have shown that this approach 
can be successful and that it makes prior segmentation unnecessary. The 
results also show how important it is to devise local features that are 
robust to most of the variations that can be expected when pictures are 
taken in more general, uncontrolled conditions. 
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