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ABSTRACT

In the context of computer-assisted plant identification we
are facing challenging information retrieval problems be-
cause of the very high within-class variability and of the
limited number of training examples. To address these prob-
lems, we suggest a new interactive learning approach that
combines similarity-based retrieval and re-ranking by SVM
using local feature distributions. This approach leads to im-
proved sample selection, allowing to obtain better results.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems]: Multimedia Information Search and Retrieval;
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing methods.

General Terms: Algorithms.

Keywords: Relevance feedback, interactive retrieval, ob-
ject localization.

1. INTRODUCTION
The interactive construction of a concept class of images,

based on visual criteria, can be very useful in several ap-
plications such as identification and recognition or mass an-
notation in various domains including botany, medicine and
earth observation. For example, to identify the plant shown
in a picture, a user can perform a query by visual similarity
and then refine the query through several relevance feedback
interactions to find the most similar images; if the images
were labeled with the appropriate names of the species they
represent, the user has a good set of candidate species for
the unknown plant. Besides, a botanist having a partially
annotated large image database can interactively retrieve,
through the relevance feedback mechanism, a set of images
containing plants sharing an attribute that could help la-
beling the species, the plant’s organ, etc.; the botanist can
then easily select the most relevant images returned (with-
out having to go through the entire large database) and label
them at once with the name of the species.

There are commonalities between these different applica-
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tion domains. First, usually only a part of an image is rel-
evant for the target class of an interactive retrieval session;
the rest of the image represents noisy background or items
belonging to other classes. We introduce a new interactive
retrieval method dedicated to image descriptions with local
features (LF), where for each round of relevance feedback
(RF) we proceed in two stages. During the first stage, an
adequate index allows to quickly retrieve images contain-
ing LF that are similar to the features found relevant in the
previous round. In the second stage, the potentially relevant
sets of features are evaluated by an SVM (with cost-effective
kernels for sets of features) and the images are re-ranked ac-
cording to this result. Then, the user provides feedback
by selecting regions (sets of LF) as positive or negative ex-
amples. Since only the images returned by the first stage
are evaluated by the SVM, the response time is compatible
with the time constraints of interactive retrieval. Another
important characteristic is that the relevance information
obtained from the user during a retrieval session is limited
and can be very noisy. The two-stage interactive retrieval
mechanism also addresses this problem.

The next section further describes the difficulties we are
facing in the context of plant image databases and briefly
analyzes the capabilities of state of the art methods in this
context. Our approach, sketched above, is presented in de-
tail in section 3. Section 4 shows a comparison between
this approach and some alternative proposals on an existing
ground truth database.

2. CHALLENGES AND RELATED WORK
In the Fig. 1, we are showing two typical examples repre-

senting relevant visual characteristics for assisted plant iden-
tification or mass annotation in botany. An object of interest
only covers a (potentially small) part of an image and several
different objects from various classes can be simultaneously
present. Recent work on plant identification requires reli-
able prior segmentation of a leaf [19, 2] (with pictures taken
in controlled conditions) or of a flower [14] (less restrictive
picture taking conditions). In such controlled image capture
conditions, the shape of the leaf contour or several local and
region-based features of the flower are then employed for
recognition. The problems we are addressing in this study
come from the uncontrolled viewpoint and picture-taking
conditions that make the solution harder to find. In this re-
gard, the object is often a sparse inflorescence and can even
be some other organ having a characteristic visual attribute,
on a potentially complex background, so prior segmentation
cannot reliably delimit the region of interest. Joint object

995



Figure 1: Concept heterogeneity due to viewpoint
variations and to diverse natural environment.

segmentation and recognition (e.g. [16]) could result in bet-
ter segmentation, but is not appropriate for interactive re-
trieval because it requires a large training set and is too time
consuming. It is nevertheless important to locate potential
regions of interest in order to apply the class recognition
tool to those regions. The typical solution is to use win-
dows moving over the entire image. Such a method can also
provide good results with LF (see e.g. [13]) but, in spite of
improvements that accelerate the identification of the best
matching window, remains too slow for interactive retrieval
from a large set of images. When LF are employed, another
approach is possible: perform a similarity-based retrieval us-
ing as query a set of relevant features and take into account,
in the returned images, only the regions where the similar
LF are found. This type of retrieval can be very fast if an
adequate index structure is employed (e.g. [9]).

For general object class recognition, discriminant LF (see
[17, 3]) can be selected and provide good results (e.g. [15]).
When different classes share many LF, the distribution of
the features in these classes can be more discriminant, and
results can be improved with SVMs and kernels for sets of
features like the Pyramid Matching Kernel (PMK) [7] or
Random Histograms (RH) [5]. When dealing with rather
rigid objects and not too large viewpoint variations, the (lo-
cal) geometric configuration of the features can provide very
relevant discrimination information [18, 8, 12]. Specific ker-
nels taking configuration information into account were also
developed, see e.g. [1]. This additional information can even
allow to find some classes of objects in an unsupervised way
(e.g. [4]). For the plant image databases we focus on, view-
point variation is often significant, so geometric configura-
tions do not provide reliable information. We only employ
here distributions of LF, obtained from positive and negative
examples corresponding to user-selected image regions.

The selections often concern concave or “sparse” objects
and users tend to be generous in delimiting the relevant re-
gions. So the sets of LF provided as positive or negative
examples include a large share of features that should not
be taken into account for the the definition of the target class
of objects. It appears necessary then to perform feature se-
lection, in a difficult context because during an interactive
session very little labeled data is provided. One could think
of an alternative approach, consisting in directly performing
object class recognition rather than interactively defining a
class of interest. But this alternative approach can only be
used for predefined classes and requires a large annotated
database for training the class recognizers. While for gen-

eral object classes the contribution of a broad community
can support large scale annotation initiatives like LabelMe
or ImageNet, for specialized databases (like plant image col-
lections) expert knowledge is needed and such a solution
cannot be employed. On the other hand, the interactive
construction of a concept class of images can make expert
annotation easier.

3. PROPOSED APPROACH
A relevance feedback (RF) session is divided into several

consecutive rounds. Starting from an initial query (here, a
set of LF), at every round the user provides feedback regard-
ing the retrieval results, by selecting regions in the returned
images and qualifying each region as either a positive or a
negative example. From this feedback, the search engine
learns the features describing the truly relevant image re-
gions and returns improved results to the user. For the RF
method we suggest, every round consists of two stages (see
the for loop in Algorithm 1): (i) query by example (QBE)
using as query the LF that were previously found relevant,
(ii) result re-ranking according to the SVM decision func-
tion applied to the potentially relevant set of features in
every returned image.

This joint use of QBE (retrieval by similarity) and SVM
classification serves two purposes. First, it allows to locate,
in the returned images, the potential regions of interest to
be evaluated by the SVM. A region of interest is here the
set of LF that were found to be individually similar to some
LF in the query. In this context, the task of the SVM is to
distinguish sets of LF that belong to the target class from
sets composed of LF that are individually similar to relevant
LF but, when considered together, do not correspond to the
target class. Second, QBE can be very fast with an appro-
priate index structure, so the SVM only has to be applied
to relatively few sets of LF for the selection of an unlabeled
sample for the next round. QBE relies here on a posteriori

multi-probe locality sensitive hashing [9]. In Algorithm 1
the following notations are employed: P(I) is the set of LF
in image I ; Q is a set of LF used as a query; R+ and R−

are sets of LF defining a relevant and, respectively, an irrel-
evant region; Ik is a set of images; Ps(Ik) is the set of LF
in the images Ik that contributed to their retrieval as the k

most similar images to the corresponding query Q; f is the
decision function of an SVM.

Figure 2 shows examples of images retrieved by QBE (lines
3 and 11 of Algorithm 1); the LF found similar to the query,
called below “candidate LF”, are shown in green (when be-
longing to a target object) or red (when belonging to another
object), while the other LF in the image are in blue. The
decision function of the SVM is only computed for the can-
didate LF (line 12), the other LF of the image are ignored.

We assume that the distribution of LF in the selected
sets brings relevant discrimination information with respect
to the joint presence of LF, so we employ PMK [7] or the
kernel based on RH [5]. We noticed that for the plant image
databases we have to deal with LF configurations are too
diverse, within a same class, to provide reliable information,
so we do not employ here configuration-based kernels. In
line 12 of Algorithm 1, the SVM has to downgrade image
regions (sets of LF) whose LF that are individually similar
to LF of the target object, but whose distribution does not
correspond to a target object.
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Algorithm 1 Proposed relevance feedback method

1: User provides one relevant region R+

0 in one image;
2: Q0 = R+

0 ;
3: QBE with Q0 → set I0k of k images;
4: Rank Ij ∈ I0k, 0 ≤ j ≤ k, by decreasing similarity

between P(Ij) and Q0;
5: Evaluate the ranking with respect to ground truth;
6: for i ∈ 1, . . . , T do
7: User marks set of relevant regions E+

i =
{R+

il}l∈{1,...,Li} and set of irrelevant regions

E−
i = {R−

im}m∈{1,...,Mi};

8: Define E+

is = {R+

il ∩ Ps(Ii−1,k)}l∈{1,...,Li} and E−
is =

{R−
im ∩ Ps(Ii−1,k)}m∈{1,...,Mi};

9: Train SVMi (to obtain fi) on
⋃i

j=0
E+

js and
⋃i

j=0
E−
js;

10: Qi = Qi−1 ∪ (
⋃

l∈{1,...,Li}
R+

il );

11: QBE with Qi → set Iik of k images;
12: Rank Ij ∈ Iik, j ∈ {1, . . . , k}, by decreasing

fi(P(Ij) ∩ Ps(Iik));
13: Evaluate the ranking with respect to ground truth;
14: end for

Figure 2: Candidate LF belonging to the target
(green) or not (red), and the other LF (blue).

4. EXPERIMENTAL EVALUATION
The evaluation aims to provide answers to several ques-

tions: (i) is the contribution of each component of the pro-
posed method (QBE and SVM learning) valuable, (ii) does
the distribution of LF in the selected sets bring relevant dis-
crimination information with respect to the joint presence of
LF, (iii) knowing that users’ selections are typically broader
than the truly relevant sets of LF, what improvement can
we expect from a method that would remove those selected
LF that do not belong to the target object?

To answer the first two questions, we compare the method
described above to a basic query expansion solution (denoted
BasicQE), a “naive” feedback (denoted NaiveRF) and to an
existing RF solution based on boosting [11]. BasicQE sim-
ply adds to the query, at every feedback round, the sets of
LF that were marked “relevant” by the user. NaiveRF con-
sists in using all the LF in an image to compare against the
discrimination frontier of the SVM (there is no preliminary
QBE to find only the potentially relevant set of LF).

Since we do not have a large enough ground truth for our
plant image database, we looked for existing benchmarks
that could raise similar difficulties. The best candidate we
found is Graz-021 also used in [15, 11]. This database (see
figure 2 for examples) consists of images of bikes (365), cars
(420) and people (311), plus 380 images not containing any
of these objects. The objects appear in a natural scene, the
bikes are “sparse” and there may be more than one relevant
object in an image. These characteristics are shared with
the plant image database mentioned in Section 2; however,
the plant image database has many more classes and some of
them are quite similar to each other. For Graz-02, the basic
ground truth is provided as rectangles (this is also what
can be expected from real users) surrounding the objects
belonging to the target class.

The comparisons were (classically) performed in batch
mode, using the ground truth to emulate user feedback.
Each RF session consists of 8 iterations; at each iteration,
the emulated user labels the first 3 relevant and the first 3 ir-
relevant unlabeled regions, the ranking being obtained from
the SVM decision function (see also Algorithm 1). For the
results are reported here, the kernel is the normalized dot
product on Random Histograms (RH) [5] embedding space.
We employ a 5 times folded concatenation of 20 elementary
210-dimensional histograms (B=10, M=5, N=20 with the
notations in [5]). Even with such fine histograms, the sys-
tem is sufficiently fast for real time interaction. Retrieval can
be accelerated by trading speed against accuracy in produc-
ing the RH embedding and by using more localised interest
regions (having fewer LF). Two types of LF were employed:
(i) a concatenation of histograms (Laplacian weighted RGB
histogram, Fourier-based histogram and Hough histogram,
see [6]) obtained in the neighborhood of Harris color points,
and (ii) SIFT. Figure 3 shows the evolution of the mean av-
erage precision (MAP) obtained for the point where Recall
= Precision, and averaged over 450 RF sessions (150 sessions
for each class: bike, car, person).
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Figure 3: Comparison between BasicQE, NaiveRF,
boosting and the proposed approach.

As seen in Figure 3, after a few RF iterations, the pro-
posed method significantly outperforms BasicQE, NaiveRF
and boosting. This shows that both QBE and SVM learn-
ing have a valuable contribution to the overall performance
(comparison with BasicQE and NaiveRF). Also, the distri-
bution of LF brings relevant discrimination information with
respect to the joint presence of LF (comparison with boost-

1http://www.emt.tugraz.at/∼pinz/data/GRAZ_02/
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ing [11]). The results obtained with SIFT are not as good;
to avoid overload, they were not shown in Figure 3.

To answer the third question mentioned above, we took
advantage of the more refined segmentation that is also avail-
able for Graz-02. Figure 4 shows the results of a comparison
between the use of rectangular selections as above (Rand-
HistSVM) and of refined segmentations (RandHistSVMWith-
Masks). Surprisingly, the use of refined segmentations brings
almost no improvement to accuracy. This shows that feature
selection for removing those selected LF that do not belong
to the target object may not be essential.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8

M
A

P 
 a

t  
R

=
P

Iteration

HarrisDescRandHistSVM 
HarrisDescRandHistSVMWithMasks 

SIFTRandHistSVM 
SIFTRandHistSVMwithMasks 

Figure 4: Rectangular selections vs. segmentation

5. CONCLUSION
To address the challenging problem of learning heteroge-

neous visual concepts with local features, we present a new
interactive learning method that performs both the identi-
fication of potentially relevant image regions and the subse-
quent classification of these regions based on distributions
of local features. We evaluate this method on the Graz-
02 database that represents, to some extent, the difficulties
raised by real plant image databases. The evaluation results
shows that the distribution of local features brings relevant
discrimination information in this challenging learning con-
text, and that the combined use of retrieval by similarity and
SVM-based re-ranking allows to improve retrieval results.
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