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Abstract

The identification of categories in image databases usually relies
on clustering algorithms that only exploit the feature-based similar-
ities between images. The addition of semantic information should
help improving the results of the categorization process. Pairwise

constraints between some images are easy to provide, even when the
user has a very incomplete prior knowledge of the image categories
he/she can expect to find in a database. A categorization approach
relying on such semantic information is called semi-supervised clus-

tering. We present here a new semi-supervised clustering algorithm,
Pairwise-Constrained Competitive Agglomeration, based on a fuzzy
cost function that takes pairwise constraints into account. Our evalua-
tions show that with a rather low number of constraints this algorithm
can significantly improve the categorization.

1 Introduction

Effective access to the content of an image collection requires a meaningful
categorization of the images. To identify “natural” categories in a collection
of images (or other data items), unsupervised clustering (or cluster analy-
sis, see the surveys in [15], [16]) relies exclusively on measures of similarity
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between the images. When compared to what a human would find natural
on the same collection (note that a human may be unable to process very
high-dimensional data and huge volumes of data), the results produced by
clustering may be quite disappointing.

By letting the user provide some supervision to the system, one can ex-
pect to obtain more adequate results. Supervision may consist in class labels
for a few data items (not necessarily from all the classes) or in pairwise con-
straints specifying whether two items should be in a same category or rather
in different categories. Such pairwise constraints are indeed much easier to
provide than class labels when the user has a very incomplete prior knowledge
of the categories he/she can expect to find in the database. A categorization
approach that takes into account such simple semantic information during
the clustering process is called semi-supervised clustering and became a topic
of significant interest (see [11], [20], [2], [6], [3]).

In the case of image collections, pairwise constraints can either be directly
provided by users or obtained from the keyword annotations that are usually
few and only available for some categories. As a simple example, must-
link constraints can be defined between images that share many keywords
and cannot-link constraints between annotated images that have no keyword
in common. A deeper analysis of the semantic relations between keywords
(synonymy, etc.) can also be performed when generating the constraints, but
we do not address this issue here.

Existing semi-supervised clustering algorithms, such as Pairwise Con-
strained K-means (PCKmeans, [2]), rely on parameters that are difficult to
set (such as the desired number of clusters) and require a high number of
constraints to obtain significantly better results. The new semi-supervised
clustering algorithm we put forward in the following, Pairwise Constrained
Competitive Agglomeration (PCCA), brings improvements on both issues.

In the next section we review very briefly existing work on clustering and
suggest a taxonomy of the semi-supervised clustering algorithms. In section 3
we remind the Competitive Agglomeration clustering algorithm (CA, [13])
and explain why we selected it as the starting point for our current work.
PCCA, our new semi-supervised fuzzy clustering algorithm, is then described
in section 4, where we also discuss the choice of its parameters. Section 5
presents an experimental evaluation of PCCA on a well-known benchmark
and on an image categorization problem. In the conclusion we highlight the
advantages of PCCA and we give directions for future work.
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2 Related Research

The many existing clustering algorithms (see [15], [16]) can be grouped into
two broad categories: partitional or hierarchical. The partitional algorithms
aim at producing a partition of the data and are based on the optimization of
specific objective functions. Since our main concern here is the categorization
of a collection of images, we focus in the following on partitional algorithms.

Prototype-based partitional algorithms rely on the possibility to repre-
sent each cluster by a prototype and attempt to minimize a cost function
that measures the dispersion of the clusters. In general, the prototypes are
the cluster centroids, as in the popular k-means algorithm [19] or in its fuzzy
evolution, Fuzzy C-Means (FCM, [5]). FCM has been constantly improved
for more than twenty years by the use of the Mahalanobis distance [14], the
definition of competitive agglomeration [13], [7] or the addition of a noise
cluster [10], [18]. Due to their simplicity, computational efficiency (complex-
ity of O(CN), C being the number of prototypes and N the number of data
items to cluster) and flexibility in using various metrics, prototype-based
clustering algorithms are very popular. When compared to their crisp coun-
terparts, fuzzy clustering algorithms are significantly more robust and can
also model situations where clusters actually overlap.

In a probabilistic framework, mixture-resolving clustering algorithms as-
sume that the data items in a cluster are drawn from one of several distribu-
tions and attempt to estimate the parameters of these distributions. A major
step was the introduction of the expectation maximization (EM) algorithm
in [12]. Recent developments concern the choice of the number of clusters,
see [1] or [8]. Mixture-resolving methods usually have a higher computational
complexity and make rather strong assumptions regarding the distribution
of the data.

Unsupervised clustering algorithms don’t take into account prior knowl-
edge unless it can be expressed directly in the metric (or, for mixture-
resolving methods, in the distributions considered), so quite often the result-
ing categories do not reflect user expectations. Consequently, semi-supervised
clustering—letting “knowledge” provide a limited form of supervision—has
recently become a topic of interest. More specifically, to help unsupervised
clustering a small amount of knowledge can be used, concerning either class
labels for some items (not necessarily from all the classes) or pairwise con-
straints between data items; the constraints specify whether two data items
should be in the same cluster or not.
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Unlike traditional clustering, the semi-supervised approach to clustering
has a short history and few methods were published until now. Two sources
of information are usually available to a semi-supervised clustering method:
the similarity between data items and some must-link or cannot-link pair-
wise constraints. Semi-supervised clustering implicitly assumes that these
two sources of information do not contradict each other completely. These
two sources of information are combined either by modifying the search for
appropriate clusters or by adapting the similarity measure (see [4]).

• In search-based methods, the clustering algorithm itself is modified so
that user-provided constraints can be used to bias the search for an
appropriate partition. This can be done in several ways, such as by
performing a transitive closure of the constraints and using them to
initialize clusters [2], by including in the cost function a penalty for
lack of compliance with the specified constraints [11], or by requiring
constraints to be satisfied during cluster assignment in the clustering
process [20].

• In similarity-adapting methods, an existing clustering algorithm using
a similarity measure is employed; however, the similarity measure is
first adapted in order to satisfy the constraints in the supervised data.
Several similarity measures have been used for similarity-adapting semi-
supervised clustering: the Jensen-Shannon divergence trained by gra-
dient descent [9], the Euclidean distance modified by a shortest-path
algorithm [17] or Mahalanobis distances adjusted by convex optimiza-
tion [21]. Among the clustering algorithms using such adapted similar-
ity measures we can mention hierarchical single-link [6] or complete-link
[17] clustering and k-means [21], [6].

Similarity-adapting methods can potentially be applied to a wider range
of situations, but they either need a significantly higher amount of supervision
or rely on specific strong assumptions regarding the relation between the
initial and the target similarity measures.
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3 Competitive Agglomeration: a Short Re-

minder

Most early partitional algorithms assumed that the number of clusters was
known prior to clustering; since this is rarely the case, techniques for find-
ing an “appropriate” number of clusters had to be devised. For methods
based on the minimization of a cost function, the problem is partly solved
by including a regularization term in the cost function. This way, instead of
having to specify arbitrarily a value for the desired number of clusters—with
a strong impact on the outcome of the clustering—one must set a regulariza-
tion parameter for which a relatively wide range of values allows to obtain
good clustering results.

In the Competitive Agglomeration (CA) fuzzy partitional algorithm intro-
duced in [13], regularization makes clusters compete for membership of data
items and the number of clusters is progressively reduced until a minimum
of the full cost function is reached. Let xi, i ∈ {1, .., N} be the vectors rep-
resenting the N data items to be clustered, V the matrix having as columns
the prototypes µk, k ∈ {1, .., C} of C clusters (C ≪ N) and U the matrix
of the membership degrees, with uik being the membership of xi to the clus-
ter k. Let d(xi, µk) be the distance between the vector xi and the cluster
prototype µk. The cost function CA attempts to minimize is (see [13]):

J (V,U) =
C
∑

k=1

N
∑

i=1

u2
ik d2(xi, µk) (1)

− β(t)
C
∑

k=1

(

N
∑

i=1

uik

)2

under the constraint

C
∑

k=1

uik = 1, for i ∈ {1, . . . , N} (2)

The first term in (1) is the standard Fuzzy C-Means (FCM, [5]) cost
function. The second term defines the competition that progressively reduces
the number of clusters. The β(t) factor sets a balance between the terms and
its dependence on t (iteration number) will be explained later.

We selected CA as the basis for our semi-supervised clustering algorithm
(presented in the following) because CA has a low computational complexity,
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shows good robustness and does not require a prior specification of the desired
number of clusters.

4 Pairwise Constrained Competitive Agglom-

eration

4.1 Principle of the Method

The cost function to be minimized by our semi-supervised clustering algo-
rithm must take into account both the feature-based similarity between data
points and knowledge of the pairwise constraints. Let M be the set of must-
link constraints, (xi,xj) ∈ M implying that xi and xj should be assigned
to the same cluster, and C the set of cannot-link constraints, (xi,xj) ∈ C
implying that xi and xj should be assigned to different clusters. With the
notations defined for CA, the objective function PCCA minimizes is:

J (V,U) =
C
∑

k=1

N
∑

i=1

u2
ik d2(xi, µk) (3)

+ α
(

∑

(xi,xj)∈M

C
∑

k=1

C
∑

l=1,l 6=k

uikujl

+
∑

(xi,xj)∈C

C
∑

k=1

uik ujk

)

− β
C
∑

k=1

(

N
∑

i=1

uik

)2

with the same constraint (2).
The prototype of a cluster k (k ∈ {1, . . . , C}) is given by

µk =

∑N
i=1 u2

ik xi
∑N

i=1 u2
ik

(4)

and the cardinality of the cluster is defined as

Nk =
N
∑

i=1

uik (5)
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The first term in (3) is the sum of the squared distances to the prototypes,
weighted by the memberships and originates in the FCM cost function. This
term attempts to reinforce the compactness of the clusters.

The second term is composed of

• The cost of violating the pairwise must-link constraints. The penalty
corresponding to the presence of two such points in different clusters is
weighted by the corresponding membership values.

• The cost of violating the pairwise cannot-link constraints. The penalty
corresponding to the presence of two such points in a same cluster is
weighted by the membership values.

This term is weighted by α, a factor that specifies the relative importance of
the supervision and is discussed later.

The last term in (3), coming from the CA cost function, is the sum of
the squares of the cardinalities of the clusters and controls the number of
clusters.

When all the terms are combined and α, β have appropriate values, the
final partition will minimize the sum of intra-cluster distances, while par-
titioning the data set into the smallest number of clusters such that the
specified constraints are respected as well as possible. When the desired
number of clusters is given and the membership degrees are crisp, this cost
function can be simplified to obtain the one defined in [2] for the PCKmeans
algorithm.

We show in the appendix that the equation for updating memberships is

urs = uFCM
rs + uConstraints

rs + uBias
rs (6)

where

uFCM
rs =

1
d2(xr ,µs)

∑C
k=1

1
d2(xr ,µk)

(7)

uConstraints
rs =

α

2d2(xr, µs)
(Cvr

− Cvrs
) (8)

uBias
rs =

β

d2(xr, µs)
(Ns − Nr) (9)
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In (8), Cvrs
and Cvr

are defined as

Cvrs
=

∑

(xr ,xj)∈M

C
∑

l=1,l 6=s

ujl +
∑

(xr ,xj)∈C

ujs (10)

Cvr
=

1
∑C

k=1
1

d2(xr ,µk)

×
C
∑

k=1

(

∑

(xr ,xj)∈M

∑C
l=1,l 6=k ujl

d2(xr, µk)

+
∑

(xr ,xj)∈C ujk

)

and Nr in (9) is

Nr =

∑C
k=1

Nk

d2(xr ,µk)
∑C

k=1
1

d2(xr ,µk)

(11)

The first term in (6), uFCM
rs , is the same as the membership term in FCM

and only considers distances between data items and cluster prototypes. The
second term, uConstraints

rs , takes into account the available supervision: mem-
berships are reinforced or deprecated according to the pairwise constraints
available. The third term, uBias

rs , controls the competition that leads to a
reduction of the cardinality of spurious clusters; as for CA, these clusters are
discarded if their cardinality drops below a threshold (see section 4.2).

The β factor controls the competition between clusters and is defined at
iteration t by:

β(t) =
η0 exp(−|t − t0|/τ)
∑C

j=1

(

∑N
i=1 uij

)2 (12)

×

[

C
∑

j=1

N
∑

i=1

u2
ij d2(xi, µj)

]

Because of the exponential component of β(t), the last term in (3) will
dominate during the early iterations of the algorithm in order to eliminate
spurious clusters, then the first two terms will become dominant and help
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finding the best partition of the data. Wide ranges of values for η0 and τ
allow competition to operate correctly. The effects of competition can be seen
very quickly, so the value of t0 does not need to be high (we used t0 = 5).

The choice of α is very important for PCCA because α is the weight given
to the supervision. Since the number of available constraints is expected
to be much lower than the total number of data items, to make sure that
constraints have an impact on the clustering process the value of α should
balance the first two terms of J in (3). Also, we consider the normalized
performance index (NPI, the sum of the squared distances between items
and prototypes divided by the sum of the squared memberships) to be a
good quantifier of the need for supervision: the higher the value of the NPI,
the more we need supervision. We then suggest the following expression for
alpha:

α =
N

M

∑C
k=1

∑N
i=1 u2

ik d2(xi, µk)
∑C

k=1

∑N
i=1 u2

ik

(13)

M being the number of pairwise constraints available. This expression for α
also guarantees that the second term in (3) is commensurate with the others.

The constraint-related terms in (3) can also be added to other fuzzy un-
supervised clustering algorithms, such as the Adaptive Robust Competition
(ARC, [18]), but the interaction between the semi-supervision and the of
these other algorithms has to be studied.

4.2 Cluster Merging

In CA, as clustering proceeds, the clusters whose cardinality drops below a
threshold are discarded [13]. This threshold reflects the minimum cardinality
of the final clusters. However, this method for discarding the spurious clusters
has two drawbacks:

• The outcome of the clustering process is very sensitive to this threshold,
even if choosing a minimum cardinality for the clusters is often less
arbitrary than setting a desired number of clusters.

• Since well-defined clusters may have very different cardinality numbers,
for many data sets there may be no good compromise for the value of
the threshold. With a low value, several clusters (each with its own
prototype) can co-exist for a single large well-defined cluster. If the
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threshold value is high, rather small but well-defined clusters can be
incorrectly discarded.

We suggest a strategy for improving the agglomeration process in CA.
First, we fix the minimum cardinality threshold to a small percentage of the
number of items in the data set, such as to let even small clusters survive.
Then we reduce the number of clusters by merging the clusters having the
nearest prototypes among all possible pairs of clusters. This process is re-
peated until no more merging is possible. At every iteration we first compute
all the distances between prototypes. If dmax = max{d(µk, µh) | 1 ≤ k, h ≤
C}, then we merge clusters k and h when

d(µk, µh)

dmax

< proximity threshold (14)

The proximity threshold was fixed to 0.1 in all the experiments reported here,
but can be seen as a relative resolution parameter whose value is set by the
user according to his desired resolution.

4.3 PCCA Algorithm

The Pairwise-Constrained Competitive Agglomeration algorithm performs
the minimization of the cost function 1 and includes the cluster merging
method put forward in the previous section. The computational steps are
summarized in Algorithm 1 below.

The pairwise constraints are provided before starting PCCA. Depending
on the application context, the set of constraints can be available a priori
or obtained from the user. For producing a set of constraints before starting
PCKmeans, Basu et al. [3] proposed a constraint selection method relying on
querying the user with pairs of items issued from a farthest-first traversal of
the data. A similar method can be employed for PCCA, but we believe that
a more attractive solution is to query the user during the clustering process,
according to the partial results obtained.

5 Experimental Evaluation

We evaluated PCCA by comparing it to CA, the unsupervised clustering
algorithm it is based upon, and to the PCKmeans [2] semi-supervised clus-
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Algorithm 1 PCCA algorithm outline

fix the maximum number of clusters C;
randomly initialize cluster prototypes;
initialize memberships to uik = 1/C for all items and clusters;
compute initial cardinality for every cluster;
repeat

compute β using equation (12);
compute α using equation (13);
compute memberships uik using equation (6);
compute cardinality for every cluster using equation (5);
compute dmax = max{d(µk, µh) | 1 ≤ k, h ≤ C};
for 1 ≤ k, h ≤ C do

if
d(µk ,µh)

dmax
< proximity threshold then

merge clusters k and h;
end if

end for

update the prototypes using equation (4);
until prototypes stabilize

tering algorithm. It is important to note that unsupervised clustering, semi-
supervised clustering and supervised classification rely on different assump-
tions concerning the data, so benchmarks designed for unsupervised cluster-
ing or for supervised classification cannot be directly used for the evaluation
of semi-supervised clustering. Standard benchmarks for unsupervised algo-
rithms prove to be too simple for semi-supervised clustering, while bench-
marks for supervised classification may be too difficult. Since the semi-
supervised approach has a short history, few specific benchmarks exist. We
selected for our evaluation the well-known IRIS benchmark (also used in [2])
containing 3 classes of 50 instances each and a ground truth image database
containing 4 classes of 100 images each. A sample taken from the image
database is shown in Figure 2. The classes are rather diverse and many im-
ages belonging to different classes are quite similar. In both experiments,
random pairs of data items are selected and corresponding constraints are
provided from the ground truth: depending on whether the two items belong
to the same class or not, a must-link or a cannot-link constraint is generated.

The image features we used are the Laplacian weighted histogram, the
probability weighted histogram, the Hough histogram, the Fourier histogram
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and a classical color histogram obtained in HSV color space. The dimension
of the joint feature vector (originally above 600) was reduced of about 5 times
using linear principal component analysis.

Since the shape of the clusters is usually not spherical, we employ the
Mahalanobis distance rather than the classical Euclidean distance.

Figures 3 and 4 present the dependence between the percentage of well-
categorized data items and the number of pairwise constraints considered,
for each of the two data sets. The graphs for CA and for K-means (both
ignoring the constraints) are shown for reference.

The correct number of classes was directly provided to K-means and PCK-
means. CA and PCCA were initialized with a significantly larger number of
classes and found the appropriate number (i.e. the one in the ground truth)
by themselves.

For the fuzzy algorithms (CA and PCCA) every data item is assigned to
the cluster to which its membership value is the highest. For every number of
constraints, 100 experiments were performed with different random selections
of the pairs of data items for which constraints are provided (from the ground
truth). This resulted in error bars for PCCA and for PCKmeans.

The significant difference between the graphs for the unsupervised clus-
tering and the semi-supervised clustering algorithms clearly shows that, by
providing a simple form of semantic information (the pairwise constraints)
the quality of the resulting categories can be significantly improved. It can
also be seen that the number of pairwise constraints required for reaching
such an improvement is relatively low with respect to the number of items
in the data sets.

With a similar number of constraints, PCCA performs significantly better
than PCKmeans by making a better use of the available constraints. The
signed constraint terms in (10) let the fuzzy clustering process directly take
into account the pairwise constraints.

The error bars given for PCCA and PCKmeans in Fig. 3 and 4 show
that, with a given number of constraints, there is a significant variance in the
quality of the final clustering results. Performance clearly depends not only
on the number of constraints, but also on the specific constraints employed. It
is then useful to study criteria for finding the constraints that are potentially
the most informative for the clustering algorithm.
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6 Conclusion

We have shown that the provision of a limited amount of simple semantic
information—pairwise constraints—brings the results obtained for the cate-
gorization of the images in a database closer to user’s expectations. We put
forward a new semi-supervised clustering algorithm, Pairwise-Constrained
Competitive Agglomeration, based on a fuzzy cost function that directly
takes pairwise constrains into account.

Experimental evaluation on the Iris data set and on a ground truth image
database shows that PCCA performs considerably better than Competitive
Agglomeration, the unsupervised algorithm PCCA is based upon, and than
PCKMeans, an existing semi-supervised clustering algorithm. By making
better use of the constraints, PCCA allows the number of constraints to
remain sufficiently low for this semi-supervised approach to be an interesting
alternative in the categorization of image databases. Also, the computational
complexity of PCCA is linear in the number of data vectors and in the
number of clusters, making this algorithm suitable for real-world clustering
applications.

We have found experimentally that performance also depends on the spe-
cific constraints selected. In an attempt to diminish the number of con-
straints required in a scenario where constraints are provided interactively
by the user, we currently explore active mechanisms for the selection of pairs
of candidate items. We are also working towards a further reduction in the
computational complexity in order to be able to categorize fast very large
image databases.
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8 Appendix

To minimize (3) with respect to V and U under the constraints (2), we
introduce the Lagrange multipliers λi, i ∈ {1, .., N} and have

JΛ(V,U) =
C
∑

k=1

N
∑

i=1

u2
ik d2(xi, µk) (15)

+ α

(

∑

(xi,xj)∈M

C
∑

k=1

C
∑

l=1,l 6=k

uik ujl

+
∑

(xi,xj)∈C

C
∑

k=1

uik ujk

)

− β
C
∑

k=1

(

N
∑

i=1

uik

)2

−
N
∑

i=1

λi

(

C
∑

k=1

uik − 1

)

The cluster prototypes and the memberships that produce extreme values
for J (V,U) under the constraints (2) must satisfy

∂JΛ

∂µsj

(V,U) = 0 and
∂JΛ

∂urs

(V,U) = 0 (16)

for s ∈ {1, . . . , C}, r ∈ {1, . . . , N}, where µsj is the j-th component of
cluster prototype µs. When computing the partial derivatives we ignore the
dependencies through α and β. Then, the first condition directly produces
the expression (4) for updating the prototypes. The second condition in (16)
becomes

∂JΛ

∂urs

= 2ursd
2(xr, µs) (17)

− 2β
N
∑

i=1

uis − λr

+ α
(

∑

(xr ,xj)∈M

C
∑

l=1,l 6=s

ujl

+
∑

(xr ,xj)∈C

ujs

)

= 0
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for s ∈ {1, . . . , C}, r ∈ {1, . . . , N}, to be solved together with (2).
To obtain the updating equation for the memberships, we assume that

the cardinality of the clusters (Ns =
∑N

i=1 uis for cluster s, s ∈ {1, . . . , C})
does not change significantly from one iteration to the next, so we can use
the values obtained in the previous iteration. With this assumption, (17)
becomes

urs =
2βNs + λr

2d2(xr, µs)
(18)

− α

∑

(xr ,xj)∈M

∑C
l=1,l 6=s ujl +

∑

(xr ,xj)∈C ujs

2d2(xr, µs)

From (18) and (2) we obtain

C
∑

k=1

2βNk + λr

2d2(xr, µk)
(19)

− α
C
∑

k=1

∑

(xr ,xj)∈M

∑C
l=1,l 6=k ujl

2d2(xr, µk)

+
∑

(xr ,xj)∈C ujk

= 1

As a consequence,

λr =
1

∑C
k=1

1
d2(xr ,µk)

[

1 − β
C
∑

k=1

Nk

2d2(xr, µk)
(20)

+ α
C
∑

k=1

∑

(xr ,xj)∈M

∑C
l=1,l 6=k ujl

2d2(xr, µk)

+
∑

(xr ,xj)∈C ujk

]

Substituting (20) in (17), we obtain the final update equation for the
membership of the data item xr to the cluster µs:

urs =

1
d2(xr ,µs)

∑C
k=1

1
d2(xr ,µk)

17



+
β

d2(xr, µs)



Ns −

∑C
k=1

Nk

d2(xr ,µk)
∑C

k=1
1

d2(xr ,µk)





+
α

2d2(xr, µs)
∑C

k=1
1

d2(xr ,µk)

×
C
∑

k=1

(

∑

(xr ,xj)∈M

∑C
l=1,l 6=k ujl

d2(xr, µk)

+
∑

(xr ,xj)∈C ujk

)

−
α

2d2(xr, µs)

(

∑

(xr ,xj)∈M

C
∑

l=1,l 6=s

ujl

+
∑

(xr ,xj)∈C

ujs

)

18



1 2

3

Figure 1: An illustration of semi-supervised clustering using pairwise con-
straints. The clustering process takes into account the must-link (continuous
line) and cannot-link (dashed line) constraints provided.

Figure 2: Every line shows a sample of images from a different class of the
image database.
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Figure 3: Results obtained by the different clustering algorithms on the Iris
benchmark
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Figure 4: Results obtained by the different clustering algorithms on the
ground truth image database
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