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ABSTRACT

Clustering algorithms are increasingly employed for the cat-
egorization of image databases, in order to provide users
with database overviews and make their access more effec-
tive. By including information provided by the user, the
categorization process can produce results that come closer
to user’s expectations. To make such asemi-supervisedcat-
egorization approach acceptable for the user, this informa-
tion must be of a very simple nature and the amount of in-
formation the user is required to provide should be mini-
mized. For a semi-supervised fuzzy clustering algorithm we
developed, Pairwise-Constrained Competitive Agglomera-
tion, we put forward here a criterion for theactiveselection
of constraints. We show that this selection criterion allows
a significant reduction in the number of pairwise constraints
required, making the resulting algorithm an attractive alter-
native in the categorization of image databases.

1. INTRODUCTION

To let users easily apprehend the contents of image databases
and to make their access to the images more effective, a rel-
evant organisation of the contents must be achieved. While
it is easy to apply standard unsupervised clustering algo-
rithms to the descriptors of the images in a database, the
results of this fully automatic categorization are rarely satis-
factory. Some supervision information provided by the user
is then needed for obtaining results that are closer to user’s
expectations. Supervised classification andsemi-supervised
clusteringare both candidates for such a categorization ap-
proach.

When the user is able and willing to provide class labels
for a significant sample of images in the database, super-
vised classification is the method of choice. In practice, this
will be the case for specific classification/recognition tasks,
but not so often for database categorization tasks.

When the goal is general image database categorization,
not only the user does not have labels for images, but he
doesn’t even knowa priori what most of the classes are

and how many classes should be found. Instead, he ex-
pects the system to “discover” these classes for him. To
improve results with respect to what an unsupervised algo-
rithm would produce, the user may accept to provide some
supervision if this information is of a very simple nature
and in a rather limited amount. A semi-supervised cluster-
ing approach should then be employed.

We assume that users can easily evaluate whether two
images should be in the same category or rather in different
categories, so they can easily definemust-linkor cannot-
link constraints between pairs of images. Following previ-
ous work by Demiriz et al. [1], Wagstaff et al. [2] or Basu et
al. [3], in [4] we introduce Pairwise-Constrained Competi-
tive Agglomeration (PCCA), a fuzzy semi-supervised clus-
tering algorithm that exploits the simple information pro-
vided by pairwise constraints.

In the original version of PCCA [4] we do not make fur-
ther assumptions regarding the data, so the pairs of items for
which the user is required to define constraints are randomly
selected. But in many cases, such assumptions regarding the
dataareavailable. We argue here that quite general assump-
tions let us perform a more adequate,activeselection of the
pairs of items and thus significantly reduce the number of
constraints required for achieving a desired level of perfor-
mance.

In section 2 we give a brief overview of existing algo-
rithms for semi-supervised clustering. The semi-supervised
fuzzy clustering algorithm we developed, Pairwise-Cons-
trained Competitive Agglomeration, is shortly presented in
section 3. We then introduce in section 4 our criterion for
the active selection of constraints. The experimental results
obtained with this criterion on a benchmark dataset and on
a real-world problem are then given in section 5.

2. SEMI-SUPERVISED CLUSTERING

To organize a collection of data items into clusters, unsuper-
vised clustering (orcluster analysis, see the surveys in [5],
[6]) relies exclusively on a measure of similarity between
data items. Semi-supervised clustering also takes into ac-
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Fig. 1. Influence of pairwise constraints on clustering: (a)
data items to cluster, (b) and (c) alternative potential solu-
tions for unsupervised clustering, (d) specification of pair-
wise constraints (green dashed line for themust-linkand red
continuous line for thecannot-link), (e) solution obtained by
semi-supervised clustering using these constraints.

count information regarding either the membership of some
data items to specific clusters or, more often, pairwise con-
straints (must-link, cannot-link) between data items. For
semi-supervised clustering to be successful, the supervision
information should correct rather than completely contra-
dict the similarities between data items.

Figure 1 shows a simple and not all-encompassing ex-
ample of the role pairwise constraints can have when used
for semi-supervised clustering in addition to the similarities
between data items. Any of the partitions (b) and (c) of the
data items in (a) can be solutions to an unsupervised clus-
tering algorithm, and for some algorithms the choice will
depend on random factors (such as the initialisation of the
prototypes). By providing pairwise constraints like the ones
pictured in Figure 1(d), the user can guide clustering to the
solution he prefers.

Unlike unsupervised clustering, the semi-supervised ap-
proach to clustering has a short history and few methods
were published until now. The main distinction between
these methods concerns the way the two sources of infor-
mation are combined [7]: either by modifying the search for
appropriate clusters or by adapting the similarity measure.

• In search-based methods, the clustering algorithm it-
self is modified so that user-provided constraints or
labels can be used to bias the search for an appropri-
ate clustering. This can be done in several ways, such
as by performing a transitive closure of the constraints
and using them to initialize clusters [3], by including
in the cost function a penalty for lack of compliance
with the specified constraints [1], or by requiring con-

straints to be satisfied during cluster assignment in the
clustering process [2].

• In similarity-adapting methods, an existing cluster-
ing algorithm using some similarity measure is em-
ployed, but the similarity measure is adapted so that
the available constraints can be easier satisfied. Sev-
eral similarity measures were employed for similarity-
adapting semi-supervised clustering: the Jensen-Shan-
non divergence trained with gradient descent [8], the
Euclidean distance modified by a shortest-path algo-
rithm [9] or Mahalanobis distances adjusted by con-
vex optimization [10], [11]. Among the clustering al-
gorithms using such adapted similarity measures we
can mention hierarchical single-link [11] or complete-
link [9] clustering and k-means [10], [11].

It is important to note that these two families of semi-
supervised clustering methods rely on slightly different as-
sumptions. Search-based methods consider that the similar-
ities between data items provide relatively reliable informa-
tion regarding the target categorization, but the algorithm
needs some help in order to find the most relevant clusters.
Similarity-adapting methods assume that the initial similar-
ity measure has to be significantly modified (at a local or
a more global scale) by the supervision in order to reflect
correctly the target categorization.

While similarity-adapting methods appear to apply to
a wider range of situations, they need either significantly
more supervision (which can be an unacceptable burden for
the user) or specific strong assumptions regarding the target
similarity measure (which can be a strong limitation in their
domain of application).

3. PAIRWISE-CONSTRAINED COMPETITIVE
AGGLOMERATION

Let xi, i ∈ {1, .., N} be a set ofN vectors representing the
data items to be clustered,V the matrix having as columns
the prototypesµk, k ∈ {1, .., C} of C clusters (C ≪ N )
andU the matrix of the membership degrees, such asuik

is the membership ofxi to the clusterk. Let d(xi, µk) be
the distance between the vectorxi and the cluster prototype
µk. The CA algorithm minimizes the following objective
function [12]:

J (V,U) =

C
∑

k=1

N
∑

i=1

(uik)2d2(xi, µk)−β(t)

C
∑

k=1

[

N
∑

i=1

(uik)
]2

(1)
under the constraint

C
∑

k=1

uik = 1, for i ∈ {1, .., N} (2)



The first term in (1) is the standard Fuzzy C-Means (FCM,
[13]) objective function. The second term defines a compe-
tition that progressively reduces the number of clusters. The
β(t) factor sets a balance between the terms and progres-
sively decreases witht, the iteration number.

For PCCA, the objective function to be minimized must
combine the feature-based similarity between data items and
knowledge of the pairwise constraints. LetM be the set of
available must-link constraints, i.e.(xi,xj) ∈ M implies
xi andxj should be assigned to the same cluster, andC the
set of cannot-link constraints, i.e.(xi,xj) ∈ C impliesxi

andxj should be assigned to different clusters. Using the
same notations as for CA, we can write the objective func-
tion PCCA must minimize [4]:

J (V,U) =

C
∑

k=1

N
∑

i=1

(uik)2d2(xi, µk) (3)

+ α
(

∑

(xi,xj)∈M

C
∑

k=1

C
∑

l=1,l 6=k

uikujl

+
∑

(xi,xj)∈C

C
∑

k=1

uikujk

)

− β

C
∑

k=1

[

N
∑

i=1

(uik)
]2

under the same constraint (2).
The prototypes of the clusters, fork ∈ {1, .., C}, are

given by

µk =

∑N
i=1(uik)2xi

∑N
i=1(uik)2

(4)

and the fuzzy cardinalities of the clusters are

Nk =
N

∑

i=1

uik (5)

The first term in (3) is the sum of the squared distances
to the prototypes weighted by the memberships and comes
from the FCM objective function. This term reinforces the
compactness of the clusters.

The second term is composed of the cost of violating
the pairwise must-link constraints and the cost of violat-
ing the pairwise cannot-link constraints. The penalty cor-
responding to the presence of two such points in different
clusters (for a must-link constraint) or in a same cluster
(for a cannot-link constraint) is weighted by their member-
ship values. The term taking the constraints into account is
weighted byα, a constant factor that specifies the relative
importance of the supervision.

The last term in (3) is the sum of the squares of the car-
dinalities of the clusters (comes from the CA objective func-
tion) and controls the competition between clusters.

When all these terms are combined andβ is well cho-
sen, the final partition will minimize the sum of intra-cluster

distances, while partitioning the data set into the smallest
number of clusters such that the specified constraints are
respected as well as possible. Note that when the member-
ships are crisp and the number of clusters is pre-defined,
this cost function reduces to the one used by the PCKmeans
algorithm in [3].

It can be shown (see [4]) that the equation for updating
memberships is

urs = uFCM
rs + uConstraints

rs + uBias
rs (6)

where

uFCM
rs =

1
d2(xr,µs)

∑C
k=1

1
d2(xr,µk)

(7)

uConstraints
rs =

α

2d2(xr , µs)
(Cvr

− Cvrs
) (8)

uBias
rs =

β

d2(xr, µs)
(Ns − Nr) (9)

In (8),Cvrs
andCvr

are defined as

Cvrs
=

∑

(xr,xj)∈M

C
∑

l=1,l 6=s

ujl +
∑

(xr,xj)∈C

ujs (10)

Cvr
=

∑C
k=1

(

∑

(xr,xj)∈M

∑

C

l=1,l 6=k
ujl+

∑

(xr,xj)∈C
ujk

)

d2(xr,µk)
∑C

k=1
1

d2(xr,µk)

andNr in (9) is

Nr =

∑C
k=1

Nk

d2(xr,µk)
∑C

k=1
1

d2(xr,µk)

(11)

The first term in equation (6),uFCM
rs , is the same as the

membership in the FCM algorithm and only focusses on the
distances between data items and prototypes. The second
term,uConstraints

rs , takes into account the available supervi-
sion: memberships are reinforced or deprecated according
to the pairwise constraints given by the user. The third term,
uBias

rs , leads to a reduction of the cardinality of spurious
clusters, which are discarded when their cardinality drops
below a threshold.

Theβ factor controls the competition between clusters
and is defined at iterationt by:

β(t) =
η0 exp(−|t − t0|/τ)
∑C

j=1

(

∑N
i=1 uij

)2 (12)

×

[

C
∑

j=1

N
∑

i=1

u2
ij d2(xi, µj)

]



The exponential component ofβ makes the last term in
(3) dominate during the first iterations of the algorithm, in
order to reduce the number of clusters by removing spurious
ones. Later, the first three terms will dominate, to seek the
best partition of the data. The resulting PCCA algorithm is
given below. In the original version of PCCA, the pairs of
items for which the user is required to define constraints are
randomly selected, prior to running the clustering process.

Outline of the PCCA algorithm

• Fix the maximum number of clustersC.

• Randomly initialize prototypesµj , j ∈ {1, .., C}.

• Initialize membershipsuij : equal membership of ev-
ery data item to every cluster.

• Compute initial cardinalitiesNj using (5).

• Repeat

– Updateβ using (12).

– Update the membershipsuij using (6).

– Update the cardinalitiesNj , j ∈ {1, .., C}, us-
ing (5).

– For j ∈ {1, .., C}, if Nj < threshold then dis-
card clusterj.

– Update the number of clustersC.

– Update the prototypesµj , j ∈ {1, .., C}, using
(4).

• Until prototypes stabilize.

As distanced(xi, µj) between a data itemxi and a clus-
ter prototypeµj one can use either the ordinary Euclidean
distance when the clusters are assumed to be spherical or
the Mahalanobis distance (13) when they are assumed to be
elliptical:

d2(xi, µk) = |Ck|
1/p(xi − µk)T C−1

k (xi − µk) (13)

wherep is the dimension of the space considered andCk is
the covariance matrice of the clusterk:

Ck =

∑N
i=1(uik)2(xi − µk)(xi − µk)T

∑N
i=1(uik)2

(14)

When the Mahalanobis distance is employed, the com-
putation ofCk in (14) are performed at the beginning of the
main loop, right before the update ofβ.

4. ACTIVE SELECTION OF CONSTRAINTS

We consider that, most of the time, users can easily define
must-link or cannot-link constraints between pairs of im-
ages, so it is possible to rely on such pairwise constraints to
perform a semi-supervised categorization of image databases.
To make this approach attractive for the user, it is also im-
portant to minimize the number of constraints he has to pro-
vide for reaching some given level of quality. This can be
done by asking the user to define must-link or cannot-link
constraints for the pairs of data items that are expected to
have the strongest corrective effect on the clustering algo-
rithm (i.e. that aremaximally informative).

But does theidentity of the constraints one provides
have a significant impact on performance or all constraints
are relatively alike and only thenumberof constraints mat-
ters? In a series of repeated experiments with PCCA using
random constraints, we found a significant variance in the
quality of the final clustering results. So the selection of
constraints can have a strong impact and we must find ap-
propriate selection criteria. Such criteria may depend on
further assumptions regarding the data; for the criteria tobe
relatively general, the assumptions they rely on should not
be too restrictive.

In previous work on this issue, Basu et al. [14] de-
veloped a scheme for selecting pairwise constraintsbefore
running their semi-supervised clustering algorithm (PCK-
means). They defined a farthest-first traversal scheme of the
set of data items, with the goal of findingk items that are
far from each other to serve as support for the constraints.

This issue was also explored in unsupervised learning
for cases where prototypes cannot be defined. In such cases,
clustering can only rely on the evaluation of pairwise simi-
larities between data items, implying a high computational
cost. In [15], the authors consider subsampling as a solu-
tion for reducing cost and perform an active selection of
new data items by minimizing the estimated risk of making
wrong predictions regarding the true clustering from the al-
ready seen data. This active selection method can also be
seen as maximizing the expected value of the information
provided by the new data items. The authors find that their
active unsupervised clustering algorithm spends more sam-
ples of data to disambiguate clusters that are close to each
other and less samples for items belonging to well-separated
clusters.

As for other search-based semi-supervised clustering meth-
ods (see section 2), when using PCCA we consider that the
similarities between data items provide relatively reliable
information regarding the target categorization and the con-
straints only help in order to find the most relevant clusters.
There is then little uncertainty in identifying well-separated
compact clusters. To be maximally informative, supervision
effort (i.e. constraints) should rather be spent for defining
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Fig. 2. Illustration of the clustering process. (a) Raw data
and desired categorization. (b) Clusters formed at iteration
t. (c) Least well-defined cluster (thick frontier) found as
the one having the highest fuzzy hyper-volume (FHV). (d)
Data items at the frontier of the least well-defined cluster
(depicted as filled circles) are the items having the lowest
membership degrees among the items assigned to this clus-
ter. (e) For each of these items, we select the nearest cluster
as the one corresponding to the second highest membership
value of the data item under focus (frontier of the nearest
cluster is dashed in the figure). To define a constraint, we
then take the nearest item in the nearest cluster. (f) Gen-
erating constraints between the two selected items to bias
categorization towards the one expected in (a).

those clusters that are neither compact, nor well-separated
from their neighbors. One can note that this is consistent
with the findings in [15] regarding unsupervised clustering.

To find the data items that provide the most informa-
tive must-link or cannot-link pairwise constraints, we shall
then focus on the least well-defined clusters (see Fig. 2) and,
more specifically, on the frontier with their neighbors (see
Fig. 3).

To identify the least well-defined cluster at some itera-
tion t (Fig. 2b), we use thefuzzy hypervolume(FHV), de-
fined by:

FHV = |Ck| (15)

|Ck| being the determinant of the covariance matrixCk of
clusterk, given by (14).

The FHV was introduced by Gath and Geva [16] as an
evaluation of the compactness of a fuzzy cluster; the smaller
the spatial volume of the cluster and the more concentrated
the data items are near its center, the lower the FHV of the
cluster.

We consider the least well-defined cluster at iterationt
to be the one with the largest FHV at that iteration (Fig. 2c).

Fig. 3. Following our assumptions, for the generation of
constraints we expect the most informative data items to be
at the frontier of the least well-defined clusters

Note that we don’t need any extra computation because we
already used the FHV to find the Mahalanobis distance, see
(13) and (14).

Once the least well-defined cluster at iterationt is found,
we need to identify the data items near its boundary. Note
that in the fuzzy setting, one can consider that a data item
represented by the vectorxr is assigned to clusters if urs

is the highest among its membership degrees. The data
items at the boundary are those having the lowest member-
ship values to this cluster among all the items assigned to it
(Fig. 2d).

Once we have a set of items that lie on the frontier of
the cluster, we find for each item the closest cluster, corre-
sponding to its second highest membership value (Fig. 2e).
The user is then asked whether one of these items should
be (or not) in the same cluster as the closest item from the
nearest cluster ((Fig. 2f).

It is easy to see that the time complexity of this method
is high. We suggest below an approximation of this method,
having a much lower cost.

After finding the least well-defined cluster with the FHV
criterion, we consider a virtual boundary that is only de-
fined by a membership threshold and will usually be larger
than the true one (this is why we call it “extended” bound-
ary). The items whose membership values are closest to
this threshold are considered to be on the boundary and con-
straints are generated directly between these items. We ex-
pect these constraints to be relatively equivalent (and nottoo
suboptimal when compared) to the constraints that would
have been obtained by the more complex method described
in the previous paragraphs.

This approximate selection method has two parameters:
the number of constraints at every iteration and the member-
ship threshold for defining the boundary. The first param-
eter concerns the selection in general, not the approximate
method specifically. In all the experiments presented next,
we generate 3 constraints at every iteration of the clustering
algorithm. For the comparative evaluations, we plot the ra-
tio of well-categorized items against the number of pairwise
constraints. With this selection procedure, when the maxi-
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Fig. 4. Informative pairwise constraints can be selected
on the extended boundary (dashed line) of the least well-
defined cluster

mal number of constraints is reached, clustering continues
until convergence without generating new constraints.

The second parameter is specific to the approximation
of the boundary and we use a fixed value of 0.3, meaning
that we consider a rather large approximation. These fixed
values for the two parameters are necessarily suboptimal,
but a significant increase in performance (or reduction in
the number of required constraints for a given performance)
is nevertheless obtained.

We use hereafter the name “most valuable pairs” (MVP)
for the constraints obtained by this approximate method.
Also, the PCCA algorithm including this active procedure
for the selection of constraints will be called Active-PCCA.

5. EXPERIMENTAL RESULTS

We evaluated the effect our criterion for the active selection
of constraints has on the PCCA algorithm and we compared
it to the CA algorithm [12] (unsupervised clustering) and to
PCKmeans [3] (semi-supervised clustering).

The first comparison is performed on the well-known
Iris benchmark database, also used in [3], containing 3 classes
of 50 instances (Iris flowers) each. Every Iris flower is de-
scribed by four numerical attributes, which are the length
and the width of its petals and sepals. The classes are not
spherical and only one class is linearly separable from the
other two. The simplicity and low dimension of this dataset
also allows us to display the constraints that are actually se-
lected (see Figure 8).

The second comparison is performed on a ground truth
database composed of images of different phenotypes of
Arabidopsis thaliana, corresponding to slightly different geno-
types. This scientific image database is issued from stud-
ies of gene expression. There are 8 categories, defined by
visual criteria: textured plants, plants with long stems and
round leaves, plants with long stems and fine leaves, plants
with dense, round leaves, plants with desiccated or yellow
leaves, plants with large green leaves, plants with reddish

Class 1: 22 plants Class 2: 28 plants

Class 3: 44 plants Class 4: 13 plants

Class 5: 18 plants Class 6: 32 plants

Class 7: 20 plants Class 8: 10 plants

Fig. 5. A sample of theArabidopsisimage database, with
the number of plants in each class

leaves, plants with partially white leaves. There are a total
of 187 plant images, but different categories contain very
different numbers of instances. The intra-class diversityis
high for most classes. A sample of the images (two images
from each category) is shown in Figure 5.

The global image features we used for theArabidopsis
database are the Laplacian weighted histogram, the proba-
bility weighted histogram, the Hough histogram, the Fourier
histogram and a classical color histogram obtained in HSV
color space (described in [17]).

By combining these descriptors, the resulting joint fea-
ture vector has over 600 dimensions. This very high number
of dimensions of the joint feature vector can not only make
clustering impractical for large databases, but also produce
curse of dimensionality -related difficulties during cluster-
ing. In order to reduce the dimension of the feature vectors,
we use linear principal component analysis (PCA), which is
actually applied separately to each of the types of features
previously described. The number of dimensions we even-
tually retain is 5 times smaller than the original one.

In all the experiments reported here we used the Ma-
halanobis distance (13) rather than the classical Euclidean
distance.

Figures 6 and 7 present the dependence between the
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Fig. 6. Results obtained by the different clustering algo-
rithms on the Iris database
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Fig. 7. Results obtained by the different clustering algo-
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percentage of well-categorized data points and the num-
ber of pairwise constraints considered, for each of the two
datasets. We provide as a reference the graphs for the CA
algorithm and for K-means, both ignoring the constraints
(unsupervised learning).

The correct number of classes was directly provided to
K-means and PCKmeans. CA, PCCA and Active-PCCA
were initialized with a significantly larger number of classes
and found the appropriate number by themselves.

For the fuzzy algorithms (CA, PCCA and Active-PCCA)
every data item is assigned to the cluster to which its mem-
bership value is the highest. For every number of constraints,
500 experiments were performed with different random se-
lections of the constraints in order to produce the error bars
for PCKmeans and for the original PCCA.

These experimental results clearly show that the user
can significantly improve the quality of the categories ob-

IRIS Cluster 1

IRIS Cluster 2

IRIS Cluster 3

MVP

Fig. 8. Positions of the data points composing the “most
valuable pairs” (MVP) produced by our selection criterion

tained by providing a simple form of supervision, the pair-
wise constraints. With a similar number of constraints, PCCA
performs significantly better than PCKmeans by making a
better use of the available constraints. The fuzzy cluster-
ing process directly takes into account the the pairwise con-
straints thanks to the signed constraint terms in (11).

The active selection of constraints (Active-PCCA) fur-
ther reduces the number of constraints required for reaching
such an improvement. The number of constraints becomes
very low with respect to the number of items in the dataset.

To visualize where our selection criterion actually gen-
erates the constraints, we displayed in Figure 8 the first 13
MVPs produced on the Iris dataset, corresponding to a cor-
rect clustering of 98% of the data items. Three of the orig-
inal four dimensions are shown. We can see that only one
point was selected (during an early iteration) in the well-
separated cluster and that the other points are spread near
the frontiers of the other two clusters.

6. CONCLUSION

By including information provided by the user, general im-
age database categorization can produce results that come
much closer to user’s expectations. But the user may have
difficulties accepting such a semi-supervised categorisation
approach unless the information he must provide is very
simple in nature and in a small amount.

We put forward here a criterion for the active selection
of constraints working well with our Pairwise-Constrained
Competitive Agglomeration (PCCA) semi-supervised clus-
tering algorithm, under rather general assumptions. The
experiments we presented on the Iris dataset and on the



Arabidopsisimage database show that the active selection
of constraints combined with PCCA allows the number of
constraints required to remain sufficiently low for this ap-
proach to become a really interesting alternative in the cate-
gorization of image databases. We shall evaluate this semi-
supervised clustering algorithm on larger image databases
that don’t have a ground truth.

The approximations we made allowed us to maintain a
low computational complexity for the resulting algorithm,
making it suitable for real-world clustering applications. We
shall continue exploring the active selection of constraints
in an attempt to find a better tradeoff between performance
and computational complexity.
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