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ABSTRACT
Many of the available image databases have keyword anno-
tations associated with the images. In spite of the availabil-
ity of good quality low-level visual features that reflect well
the physical content, image retrieval based on visual fea-
tures alone is subject to semantic gap. Text annotations are
related to image context or semantic interpretation of the
visual content and are not necessarely directly linked to the
visual appearance of the images. Keywords and visual fea-
tures thus provide complementary information. Using both
sources of information is an advantage in many applications
and recent work in this area reflects this interest. In this
paper, we address the challenge of semantic gap reduction
using a hybrid visual and conceptual representation of the
content within an active relevance feedback context. We
introduce a new feature vector, based on the keyword anno-
tations available for the images, which makes use of concep-
tual information extracted from an external lexical database,
information represented by a set of “core concepts”. Our
experiments show that the use of the proposed hybrid con-
ceptual and visual feature vector dramatically improves the
quality of the relevance feedback results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Relevance feedback

General Terms
Algorithms, Experimentation, Performance.
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Image retrieval, image descriptors, keyword annotations, rel-
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1. INTRODUCTION
The amount of available multimedia documents has steadily

increased lately and with it the need for efficient organiza-
tion and retrieval of this information when needed. Sim-
ple arrangements of items in the database and immediate
lookup is no longer sufficient with users more interested
by the content than by the description tags found in most
archives. These growing needs have boosted research ac-
tivities in the field of content-based image retrieval (CBIR).
Hence, besides these human-based metadata (text) that usu-
ally bring semantic information, machine-based meta-data
related to the physical content and its low-level features be-
come available for information retrieval [22], [7], [15].

In query by visual example (QBVE), the retrieval results
express an overall global visual similarity, thus an approxi-
mate similarity. For many visual queries, this leads to dif-
ferences between user intention/target and the retrieved re-
sults. The concept of semantic gap is widely used in content
based image retrieval to express the discrepancy that exists
between the low level visual features extracted from the im-
ages and descriptions that are meaningful to the user [12].
If we consider either the information provided regarding the
target concept or the possibilities of interaction between the
user and the system, keywords and visual content appear
to be complementary to each other and is valuable to rely
on both of them for retrieval. Combined image and text in-
dexing and retrieval approaches are of great interest for the
semantic gap reduction and are heavily investigated lately.

Part of the work attempting to establish a relation be-
tween keywords and visual content consists in the modeling
of the visual appearance of images or of image regions corre-
sponding to given concepts. In [8], the authors are searching
for a correspondence between image regions and keywords
that were only provided for entire images but refer to re-
gions; the method is based on the development (using ex-
pectation maximization) of a joint statistical model of the
occurrence of keywords and low-level visual descriptions. Hi-
erarchical aspect models and latent Dirichlet allocation are
evaluated in [2], where the authors also study the extension
of annotations to other entire images.

Supervised learning is used in [1] (see also [23]) for obtain-
ing models (Markov models or support vector machines) of
the “visual content” of “atomic concepts” that can be ob-
jects, scenes or events and are associated to keywords. In
[17], descriptions of image regions are directly associated to
user-provided rough visual descriptions—in terms of color,
position, size, shape—of concepts in an ontology.



In [13], vectorial representations are produced for the texts
associated to images and latent semantic indexing is per-
formed. Every image is then described both by a vector of
visual features and by the latent semantic index (vector) of
the text associated to the image. The resulting feature vec-
tor is based on statistical information computed from the
available corpus, so it strongly depends on the quantity and
relevance of the available textual data. The presence of joint
representations (including both visual and textual features)
makes combined search possible, often using some form of
relevance feedback (RF) as in [26].

In [27], the authors use relevance feedback with the visual
features to create a set of synonymy relations linking the
keywords used in image annotations. This a posteriori ap-
proach relies on the consistency of the image classes found by
RF, and also on how well the visual features reflect the rela-
tions between keywords. Moreover, large images databases
are usually annotated with thousands of different keywords:
standard keyword vector descriptors are thus very high di-
mensional, fact that limits their use with RF.

Our approach is complementary to the work described
above: as textual annotations available for an image are
not sufficient to provide a reasonably accurate statistical
description of the relation between words, we use a concep-
tual generalization approach, based on an external ontology,
to derive a priori, independently of RF, a low dimensional
vector of “core concepts” that is capable of representing a
large number of keywords and takes into account their their
conceptual relations. Because of its small footprint, our
conceptual descriptor can be effectively used with relevance
feedback for large generalist image databases. We deal with
databases where every image is annotated by some keywords
and we introduce a new concept-based feature vector relying
on core concepts extracted from keyword annotations.

We use WordNet[9] as an external ontology and we derive
a set of core semantic concepts linked with the keywords
used for annotating all the images. For each image in the
database we project the keywords in its annotation on the se-
lected core concepts obtaining a vector representation. This
feature vector can be used as any other image descriptor, for
enhancing the results of a query by example or for improv-
ing relevance feedback. In Sec. 2.1 we present the visual
features we employ and in Sec. 2.2 we introduce our new
concept-based feature vector. In section 3 we describe our
relevance feedback framework and in Section 4 we present
experimental results obtained on a real-world database from
the Alinari Picture Library. We conclude the paper by a
summary of the main achievements of our approach.

2. DESCRIPTION OF THE IMAGES
We start by a brief presentation of the visual descriptors

we employ and then we introduce our new keyword-based
conceptual descriptor.

2.1 Visual content descriptors
To describe the visual content of the images we employ

the weighted color histograms described in [4], using the
Laplacian and local probability as pixel weighting functions.
Weighting functions bring additional information into the
histograms (e.g. local shape, texture), which is important
for building compact and reliable image descriptors. The re-
sulting integrated signatures generally perform better than
a combination of classical, single-aspect descriptors. To de-

scribe the shape content of an image we use a histogram
based on the Hough transform, which gives the global be-
havior along straight lines in different directions. Texture
feature vectors are based on the Fourier transform, obtain-
ing a distribution of the spectral power density along the
frequency axes. This descriptor performs well on texture
images and, used in conjunction with other image descrip-
tors, can significantly improve the overall behavior. We use
linear principal component analysis to reduce the number
of dimensions more than 5 times, with a less than 2% loss
of performance on the precision/recall diagrams for several
ground truth databases.

2.2 New concept-based descriptor
We put forward here a new conceptual feature vector

based on the set of keywords that annotate an image. This
new feature vector provides complementary information both
to the relevance feedback (RF) mechanism and to the evalu-
ation of the similarity between images in a query by example
(QBE) framework. With such a feature vector representa-
tion, the conceptual information brought in by the anno-
tations can be processed by RF or QBE exactly as more
classical visual feature vectors.

A simple solution for representing the set of keywords as-
sociated to the images as feature vectors consists in using
one dimension for every keyword annotating an image. Not
only this solution lacks scalability, but the result of a sim-
ple distance computation between such vectors would only
depend on the number of keywords shared by the two im-
ages and not on the conceptual similarities between differ-
ent keywords. Standard dimension reduction methods may
provide more compact representations, but their quality is
conditioned by the statistical representativity of the data.
Also, the individual dimensions in these new representations
would no longer be interpretable, so the individual feature
vectors would not be comprehensible any more.

To obtain a scalable solution for representing sets of key-
words as reliable and comprehensible feature vectors, we
suggest to select a limited set of “core” concepts and to
associate to every such concept a dimension in the feature
vector. We rely on an external ontology, defining semantic
relations between concepts, to find good candidates for the
core concepts and to define the feature vectors for sets of
keywords. WordNet is a well-known general purpose ontol-
ogy that organizes nouns, verbs, adjectives and adverbs into
synsets (set of words having similar meaning), each repre-
senting one underlying lexical concept. The concepts are
linked by semantic relations of various types, such as syn-
onymy, hypernymy, hyponymy, etc. Further details regard-
ing WordNet can be found in [3], and [9].

The core concepts we need for building the conceptual
feature vectors should allow us to evaluate the conceptual
similarity between keywords w that are mapped to different
concepts c(w) in the ontology. We must then rely on the hy-
pernymy/hyponymy subgraph in WordNet linking the con-
cepts associated to all the keywords in the database to the
most generic concepts. For every concept corresponding to
a keyword annotating an image, we find all the paths in the
ontology that lead to the most generic concepts (see Fig. 1
for an example subgraph). The paths obtained for all the
keywords in the database define the hypernyms graph we
will use later. A small set (compared to the number of dif-
ferent keywords) of core concepts is then manually selected;



good candidates are super-concepts of several c(w) concepts
that are relatively close to these; also, the core concepts
must be balanced among all the branches containing c(w)
concepts. This issue is also under study in the text retrieval
literature (e.g. [21]), but applied to data having different
statistical characteristics. Then, we compute for every im-
age a conceptual feature vector representing the “pro-
jection” of its keywords on the set of core concepts. We first
study representations for a single keyword, then we turn to
sets of keywords.

abstraction

attribute

shape, form

figure

solid figure, three-dimensional figure

sculpture

statue

entity

object, physical object

artifact, artefact

whole, whole thing, unit

creation

art, fine art

plastic art

Figure 1: Hypernym subgraph generated by Word-
Net for the concept “statue”.

In our feature vector, one dimension is dedicated to every
core concept. Suppose that {Ci|1 ≤ i ≤ n} are the n core
concepts selected. Let us consider a keyword w mapped to
a concept c(w) and denote by v(c(w)) the feature vector
representing this keyword alone. One solution is to define
the components of the feature vector according to

vi(c(w)) =

(

1, if Ci is a super-concept of c(w)

0, otherwise

This method for computing feature vectors is denoted in
the following by WNS-BINARY. The keywords mapped to
concepts that are different but have the same core super-
concepts will have the same feature vectors. A refined so-
lution should include in v(c(w)) the degrees of similarity
between c(w) and its core super-concepts. Such a degree of
similarity can be interpreted as the relevance of a core con-
cept for describing an image annotated with the keyword.
We thus have to evaluate the semantic similarity between
concepts.

Apart from the binary measure presented above, there are
several measures of conceptual similarity, relying on

WordNet, that can be used for the definition of our keyword-
based feature vector. The measures put forward in [14] and
[25] rely on knowledge-rich sources (ontologies) alone, while
those in [5], [16], [19] combine these sources with knowledge-
poor sources (corpus statistics).

Leacock and Chodorow [14] rely on the length of the short-
est path following IS-A relations, len(c1, c2), between two
concepts c1 and c2, to measure their semantic similarity.
The length of the path is scaled by the overall depth D of the
concept taxonomy: simLC(c1, c2) = − log(len(c1, c2)/2D).
Wu and Palmer [25] evaluate the similarity according to
how close the two concepts are in the concept hierarchy,
sim(c1, c2) = 2N3/(N1 + N2 + 2N3), where c3 is the nearest
common super-concept (or lowest super-ordinate) of c1 and
c2, N1 is the number of nodes in the path from c1 to c3, N2

from c2 to c3 and N3 from c3 to the root node.
For Resnik [19], the similarity between two concepts de-

pends on the extent to which they share information. The
similarity between two concepts is defined as the informa-
tion content of their lowest super-ordinate lso(c1, c2) accord-
ing to simR(c1, c2) = − log p(lso(c1, c2)), where p(c) is the
probability of encountering an instance of a concept c in
some specific corpus. The proposal in Lin [16] is based on
an information-theoretic similarity measure for arbitrary ob-
jects. With the notations above:

simL(c1, c2) = 2 log(p(lso(c1, c2)))/[log(p(c1)) + log(p(c2))]

In a comparative study, Budanitsky and Hirst [5] present the
correlations between the human rating of similarity and sev-
eral similarity measures. According to their results, among
the measures described above, the Lin similarity measure is
closest to the way human subjects interpret semantic simi-
larity, which is why it is our main focus in the experimental
evaluations.

Using any of these measures (indicated by the short names
LCH, RES and respectively LIN), we defined two different
types of feature vectors v(c(w)) for representing the key-
word w mapped to a concept c(w). In the first one, the
components of the feature vector are

vi(c(w)) =

(

sim(c(w), Ci), if Ci is a super-concept of c(w)

0, otherwise

In a second representation, we do not limit the evaluation
of the similarity to the super-concepts of c(w), so we set
vi(c(w)) = sim(c(w), Ci); in the following, the use of this
method will be indicated by the “-ALL” string appended
after the short name of the similarity measure employed.

If an image I is annotated with the set of keywords K(I),
we define the components of the feature vector v(K(I)) rep-
resenting K(I) as vi(K(I)) = maxw∈K(I) vi(c(w)). Because
of the maximum, for every core concept only the keyword
that is closest to this concept has an impact on the vector.

3. ACTIVE RELEVANCE FEEDBACK
FRAMEWORK

Relevance feedback (RF) is often used in image retrieval as
a tool to refine queries or to define complex, user-dependent
classes not easily described in terms of visual features [28].
Also, RF can be used for interactively defining image classes,
so that annotations can be provided for an entire class at
once (semi-automatic database annotation).



We use a SVM-based relevance feedback framework with
two enhancements that can ameliorate its performances in
an interactive image query scenario. To optimize the trans-
fer of information between the user and the system, we
employ a new active learning selection criterion that mini-
mizes redundancy between the candidate images shown to
the user. Also, we find that insensitivity to the spatial scale
of the data is a desirable property for the SVM-machine
employed as the learner in relevance feedback and we show
how to obtain such insensitivity by the use of specific kernel
functions. A detailed description of our RF scheme as well
as extensive experimental evaluations, using several image
databases, can be found in [10].

3.1 Reducing the redundancy
The concept of semantic gap is used in Content Based Im-

age Retrieval (CBIR) community to qualify the difficulty as-
sociated with searching for semantic entities in image data-
bases [12]. Relevance feedback is often used as a tool to ap-
proach the semantic gap by interactively asking the user to
qualify the decisions made by the machine. An RF method is
usually defined by two components, a learner and a selector:
at every feedback round, the learner uses the images marked
as “relevant” or “irrelevant” by the user to re-estimate the
target of the user. Given the current estimation of the tar-
get, the selector chooses the images for which the user is
asked to provide feedback during the next round.

Cox et al. [6] introduce some interesting ideas for the
target search scenario, where the goal is to find a specific
image in the database. The user is required to choose be-
tween the two images presented by the engine, the one that
is closest to the target image. The selection strategy put
forward in this case attempts to identify at every round the
most informative binary selections, i.e. those that are ex-
pected to maximize the transfer of information between the
user and the engine We consider that this criterion trans-
lates into two complementary conditions for the images in
the selection: each image must be ambiguous given the cur-
rent estimation of the target and the redundancy between
the different images has to be low.

Tong et al. [24] present several selection criteria for SVM-
learners applied to content-based image retrieval with rele-
vance feedback. The simplest (and computationally cheap-
est) of these criteria consists in selecting the texts whose
representations (in the feature space induced by the ker-
nel) are closest to the hyperplane currently defined by the
SVM. We call this simple criterion the selection of the “most
ambiguous” (MA) candidate(s). This selection criterion is
justified by the fact that knowledge of the label of such a
candidate halves the version-space. While the MA criterion
provides a computationally effective solution to the selection
of the most ambiguous images (satisfying the first condition
mentioned above), when used for the selection of more than
one candidate image it does not remove the redundancies
between the candidates.

In the early stages of the learning, the classification of
new examples is likely to be wrong, so the fastest reduc-
tion in generalization error can be achieved by selecting the
example that is farthest from the current estimation of the
frontier. For this situation, Mitra et al. [18] suggest a prob-
abilistic framework where a sample is selected according to
the likelihood that it belongs to the real set of support vec-
tors. In the initial learning phase, when the actual set of

support vectors is not close enough to the optimal set, their
algorithm explores a higher number of interior points. Dur-
ing late stages of learning, the classification of new examples
is likely to be right but the margin may be suboptimal, so
the fastest reduction in error can be achieved by selecting
the example that is closest to the current estimation of the
frontier.

For two candidates images, xi and xj , we require a low
value for K(xi, xj). If all the images of vectors in the input
space have constant norm and if the kernel K is inducing a
Hilbert structure on the feature space, then this condition
corresponds to a requirement of quasi-orthogonality between
the images in the feature space. We shall call this crite-
rion the selection of the “most ambiguous and orthogonal”
(MAO) candidates. To implement this criterion, we first
perform an MA selection of a larger set of unlabeled exam-
ples. If S is the set of images not yet included in the current
MAO selection and xi, i = 1 . . . n are the already chosen
candidates, then we choose as a new example the vector
xj ∈ S that minimizes the highest of the values taken by
K(xi, xj):

xj = argminx∈S maxi K(x, xi) (1)

Figure 2: Example of RF-based retrieval in a
database of 2800 satellite images. The user is look-
ing for details of routes and highways, which are
difficult to filter by a QBE approach. The images
are returned by the system with 3 positive exam-
ples and 6 negative examples.

3.2 Invariance to scale
During the study of several groundtruth databases we

found that the size of the various classes often covers an
important range of different scales in the space of low level
descriptors (1 to 7 in our tests). We expect yet more signifi-
cant changes in scale to occur from one database to another,
from one user-defined image class to another within a large
database or between parts of the frontier of some classes. A
too strong sensitivity of the learner to the scale of the data
could then strongly limit its applicability in an RF context.
The kernels usually employed in SVM-based RF (e.g. the
RBF kernel or the Laplace kernel) depend on a scale param-
eter that makes difficult to adapt to the scale of the data.



The triangular kernel, K(xi, xj) = −‖xi − xj‖, is a con-
ditionally positive definite kernel, but the convergence of
SVMs remains guaranteed with this type of kernel [20]. Fleuret
and Sahbi [11] show that the triangular kernel have a very
interesting property: it makes the frontier found by SVMs
invariant to the scale of the data. In real applications, the
scales of the user-defined classes cannot be known a pri-
ori and the scale parameter of a kernel cannot be adjusted
online. The scale-invariance obtained by the use of the tri-
angular kernel becomes then a highly desirable feature and
experiments on several image databases prove this kernel to
be a very good alternative.

4. EXPERIMENTAL EVALUATION
In this section we present experimental evaluation results

of image retrieval using both the visual features we described
and our new conceptual descriptor. We start by introduc-
ing the experimental setup and the performance measures
we use, after which we present results both for QBE and
relevance feedback.

4.1 Experimental setup
Ground truth database. We built our ground truth

(GT) test database starting from an image database pro-
vided by Fratelli Alinari. This database has a heterogeneous
content, featuring images illustrating many categories of hu-
man activity, e.g. art, archaeology, architecture, etc. There
are 20000 images, 85601 annotations using 2059 keywords,
many images being annotated by several keywords. We se-
lected a test database having 3585 files for a total of 6664
annotations using 90 keywords. Keywords annotate between
26 and 274 images.

To have realistic classes, defined by both visual aspect
and higher-level semantics, we built by hand a new ground
truth, independent of the keyword annotations (no GT class
is the union or intersection of sets of images annotated with
the same keywords). We defined 20 classes in the GT, hav-
ing between 15 and 174 images each. The number of im-
ages included in the groudtruth is 1073 and the degree of
overlapping between classes is of about 10%. A certain de-
gree of overlapping between GT classes corresponds better
to real situations where an image may belong to several dif-
ferent user-defined image classes. While the ground truth
is smaller than the database, we perform all the evaluations
on the entire database of 3585 images.

The conceptual feature vector. We built, as presented
in Sec. 2.2, the hypernym graph associated with the whole
test database and we choose 28 representative core concepts
to be used for projecting the sets of keywords that annotate
the images. Thus, the conceptual feature vector has 28 di-
mensions. No keyword was included as a core concept. To
represent the visual content of the images, we use the visual
feature vector presented in Sec. 2.1.

4.2 Evaluation of the relevance feedback
mechanism

First, we evaluate the relevance feedback mechanism in-
troduced in Sec. 3 on the test image database described
above. At every feedback round the emulated user labels as
“relevant” or “irrelevant” all the images in a window of size
ws = 9. Every image in every GT class serves as the initial
“relevant” example for a different RF session, while the as-
sociated initial ws − 1 “irrelevant” examples are randomly

selected. The target of each RF session is to find all images
in the GT class where the initial positive example belongs.
When we use the MAO selection criterion, it is computed
on a window of size 2 × ws.
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Figure 4: Comparison of several selection strategies
for the triangular kernel using visual features and
the WNS-LIN-ALL keyword-based signature.

We follow each relevance feedback session for 30 iterations
(rounds)and we measure the precision within a window of
size equal to the class size. This window size gives the sys-
tem a chance to achieve the perfect recall, R = 1. Since we
perform an exhaustive testing by starting a RF for each im-
age in every class, at every iteration we compute the mean
value of the precision measure over all feedback sessions.
This provides a measure of how well performs relevance feed-
back, iteration by iteration, in its task of finding the target
class. As image features, we employ a combination of the
visual features and the WNS-LIN-ALL signature introduced
in Sec. 2.2.

First, we evaluate the sensitivity of the RBF kernel to the
scale of the classes of images included in the ground truth.
We use several values for the scale parameter, and for each
diagram we take the mean value of the precision for the
first 30 feedback iteration. This is a measure of how well
performs relevance feedback with respect to the proposed
GT for the given scale parameter. In Fig. 3 we present
the results obtained for seven values of the scale parameter,



γ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000} vs. the behavior of the
triangular kernel (that has no scale parameter). As we can
see, the RBF kernel is very sensitive to the scale of the data.
Moreover, no scale parameter value is really convenient for
all classes in the ground truth, which explains why the per-
formances of the RBF kernel are rather poor compared to
those of the triangular kernel. The invariance to scale pro-
vided by the triangular kernel proves to be a very useful
property for generalist databases, when the target class is
complex and is best described in semantic terms.

Fig. 4 presents mean precision vs. iteration diagrams for
several selection strategies: MAO, MA and MP (see Sec. 3).
The MAO criterion provides better results than both MA
and MP criteria. These new results both extend and confirm
the evaluations presented in [10] for several GT databases
and using visual descriptors alone.

4.3 Evaluation of the combined use of visual
and conceptual descriptors

We present the evaluation of the combined use of visual
features and the keyword-based WNS signatures both in a
QBE context and with relevance feedback. For the QBE
situation, we test several types of conceptual feature vec-
tors (WNS signatures) presented in Sec. 2.2 and we build
precision-recall diagrams using the ground truth described
previously.

In Fig. 5 we present precision/recall diagrams for QBE
using jointly the visual and WNS-LIN descriptors, the joint
use of visual and WNS-LIN-ALL descriptors, and for the
visual feature vector alone. The WNS-LIN-ALL signature
performs clearly better than WNS-LIN when combined with
the visual features, and much better than the visual feature
vector alone. We obtained similar diagrams for the LCH
and RES similarity measures. These findings were verified
throughout the tests we performed in the QBE scenario:
using both visual and conceptual feature vectors visibly im-
proves the quality of the results compared to using visual
features alone, and projecting the keywords on all the core
concepts (WNS-LIN-ALL in the figure) gives better perfor-
mance than projecting only on their core super-concepts.
Projecting keywords on all the core concepts allows the use
of semantic relations in WordNet other than hypernymy,
through the similarity functions, which has a positive influ-
ence on the results returned by the system. However, we
could not obtain experimental evidence to favor any of the
similarity measures mentioned in Sec. 2.2.

We also tested the new WNS feature vectors using rele-
vance feedback on our ground truth database.

In Fig. 6 we compare the WNS-BINARY signatures with
WNS-LIN-ALL. We see that the LIN-ALL outperforms sig-
nificantly the BINARY version, both when considered alone
and when it is combined with the visual feature vector. Also,
the joint use of visual and conceptual feature vectors con-
siderably improves the results compared to the use of con-
ceptual or visual features alone.

Fig. 7 presents mean precision vs. iteration diagrams for
the WNS-LIN-ALL signature, employed alone or in combi-
nation with the visual feature vector. We see that the joint
use of the visual and conceptual feature vectors produces a
dramatic improvement of the results, compared to the use
of visual or conceptual descriptors alone.

The tests performed with relevance feedback strongly re-
inforce the conclusions of the QBVE evaluation: the con-
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Figure 6: Relevance feedback: the combined use of
visual and conceptual feature vectors give much bet-
ter results compared to using the conceptual feature
vector alone. Also, using a similarity measure (e.g.
LIN) for the conceptual features provides better re-
sults than using the binary projection.

ceptual descriptors relying on semantic similarity measures
presented in Sec. 2.2 work better than the binary concep-
tual descriptor, and projecting the keywords on all the core
concepts gives better results than using only the core super-
concepts. Also, the joint use of both feature vectors per-
forms much better than using the visual feature vector alone.
Moreover, the improvements obtained by using the com-
bined feature vector were much more visible with RF than
in QBVE. This is an indication of the fact that user feed-
back allows the system to make a better use of the informa-
tion provided separately by the two types of feature vectors,
choosing during successive iterations only what is useful in
the identification of the target.

As an illustration, in Figs. 8–10 we present three screens
of results returned by our system in a QBE scenario, the
query image being in the top-left corners of the screenshots.
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Figure 7: Relevance feedback: using the combined
visual and conceptual descriptor dramatically im-
proves the results compared to using the visual or
conceptual descriptors alone.

Figure 8: First page of QBE retrieval results with
the visual descriptor.

In Fig. 8 we see the results when the system is using only
the visual features; in this case the system is confused by
too many images in the database having the same visual
appearance as the query image. The results in Fig. 9 cor-
respond to the use of the WNS-LIN-ALL signature alone;
while the returned images are conceptually related to the
query image, their semantic content is too abstract and does
not always represent well user’s intent. Fig. 10 shows the
results obtained when employing both visual and keyword-
based descriptors. In this case, the returned images clearly
correspond better to the intent of the user.

5. CONCLUSION
Although image retrieval using low-level visual features

works well in many applications, in some situations the se-
mantic gap limits its use with generic image databases. Al-
ternatively, text annotations are more directly related to the
high-level semantics of the images, but do not naturally re-
flect visual content. Keywords and visual features provide

Figure 9: First page of QBE retrieval results with
the WNS-LIN-ALL descriptor.

Figure 10: First page of QBE retrieval results with
the combined visual and WNS-LIN-ALL descrip-
tors.

complementary information and using both of them is ad-
vantageous in many applications.

In this paper, we introduced a new conceptual feature
vector that makes use of an external ontology (WordNet) to
induce a semantic generalization of the concepts correspond-
ing to keywords. Evaluations performed on a ground truth
build from a real world generalist database confirm that our
new feature vector can improve dramatically the quality of
the returned results, both with QBE and with relevance
feedback. Moreover, because of its small memory use and
computing time complexity, our new feature vector can be
used with relevance feedback for large image databases.
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