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ABSTRACT

User-defined classes in large generalist image databases are
often composed of several groups of images and span very
different scales in the space of low-level visual descriptors.
The interactive retrieval of such image classes is then very
difficult. To address this challenge, we propose and evalu-
ate here two general improvements of SVM-based relevance
feedback methods. First, to optimize the transfer of infor-
mation between the user and the system, we focus on the cri-
terion employed by the system for selecting the images pre-
sented to the user at every feedback round. We put forward
a new active learning selection criterion that minimizes re-
dundancy between the candidate images shown to the user.
Second, for image classes having very different scales, we
find that a high sensitivity of the SVM to the scale of the
data brings about a low retrieval performance. We then
argue that insensitivity to scale is desirable in this context
and we show how to obtain it by the use of specific kernel
functions. The experimental evaluation of both ranking and
classification performance on several image databases con-
firms the effectiveness of our selection criterion and of the
use of kernels that reduce the sensitivity of SVMs to the
scale of the data.
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1. INTRODUCTION

The cost of providing rich and reliable textual annotations
for images in large databases, as well as the “linguistic gap”
associated to these annotations, explains why the retrieval of
images based on their visual content (content-based image
retrieval, CBIR) is of high interest today [11].

Recently, the concept of “semantic gap” has been ex-
tensively used in the CBIR research community to express
the discrepancy between the low-level features that can be
readily extracted from the images and descriptions that are
meaningful for the users of the search engine. The automatic
association of such descriptions to the low-level features is
currently only feasible for very restricted domains and ap-
plications. When searching more generic image databases,
one solution for reducing the semantic gap is to cut a search
session into several consecutive retrieval rounds (iterations)
and let the user provide feedback regarding the results of
every retrieval round (relevance feedback, RF).

The RF method embodied in a search engine should oper-
ate in real time and should maximize the ratio between the
quality (or relevance) of the results and the amount of inter-
action between the user and the system. An RF method (see
[20] for a review) is usually defined by two components, a
learner and a selector. At every feedback round, the learner
uses the images marked as “relevant” or “irrelevant” by the
user to re-estimate the target of the user. Given the current
estimation of the target, the selector chooses the images for
which the user is asked to provide feedback during the next
round.

The task of the learner is very difficult in the context of
RF (see [5], [20]) since training examples are scarce (their
number is usually lower than the number of dimensions of
the description space), the training set is heavily imbalanced
(there are often many more “irrelevant” examples than “rel-
evant” ones) and both training and evaluation must be per-
formed in real time. Much recent work is based on support
vector machines (SVM, [18], [15]) because they avoid too
restrictive assumptions regarding the data (e.g. that classes
should have elliptic shape), are very flexible (can be tuned
by kernel engineering) and allow fast learning and evaluation
for medium-sized databases.

We would like to emphasize here the fact that RF was
applied to two important problems of different nature.
The first and most common type of problem consists in
finding images in a specific target set; the focus is on ranking



most of the “relevant” images before the “irrelevant” ones
rather than on finding a frontier between “relevant” and
“irrelevant” images. The second use of RF is in defining a
class of images for extending a textual annotation of some
images in the class to the others; clearly, in this case the
focus is on identifying a good frontier between the class of
interest and the other images.

For each kind of problem a specific evaluation method
should be used: in the first case we must measure the speed
of improvement of the ranking (the precise ranking of the
“relevant” or of the “irrelevant” images is usually unimpor-
tant), while in the second case we have to evaluate the speed
of improvement of the classification.

In much of the work on RF, the images for which the
user is asked to provide feedback at the next round were
simply those that were currently considered by the learner
as (potentially) the most relevant; also, in some cases these
images are randomly selected. An interesting step ahead
was the introduction in [17] and [16] of an active learning
framework for RF using SVMs. We put forward here a sig-
nificant improvement, consisting in a selection criterion that
reduces the redundancy between the images for which the
user is asked to provide feedback; our criterion encourages
the selection of images that are far from each other in the
space of low-level visual descriptors and thus allows for a
better exploration of the current frontier.

The image classes found in generalist databases are the
potential targets of the users of an RF system. These classes
can have various, complex shapes and span very different
scales (from very compact to very spread) in the space of
low-level visual descriptors. If the learner strongly depends
of a scale parameter, no value for this parameter will be ad-
equate for all the classes in a database; also, with very few
training examples, the scale parameter is difficult to tune on-
line to suit the current class. Such sensitiveness to the scale
of the data does occur for SVMs when some kernels (such as
the RBF one) are employed. We argue that invariance (or at
least low sensitivity) to scale is then an important desirable
feature of the learner in an RF context and we propose to
use specific kernels that let SVMs achieve this.

To prepare the presentation of experimental results in the
last two sections of the paper, in the next section we ex-
plain our choice of ground-truth databases for evaluating
RF methods and we briefly describe the low-level image fea-
tures we employ.

Our active selection criterion with a reduction of the re-
dundancy is put forward in section 3 and compared to other
criteria. In section 4 we compare the results obtained with
different kernels and we show why kernels that produce
scale-invariance of the SVMs should be preferred. The com-
parisons presented in sections 3 and 4 concern both ranking
(first type of problem mentioned earlier) and classification
performance (second type of problem).

2. SETTING OF THE STUDY

2.1 Databasesfor the evaluation of RF

A specific RF method can be developed and evaluated on
a particular application, with a well-defined scenario and
a well-identified group of users. Knowing the specific as-
sumptions concerning the application, the scenario and the
users may help optimizing the RF method. It is neverthe-
less important to find improvements to RF methods that

are relatively general and apply to many contexts. Evaluat-
ing such improvements by experimenting with users is very
difficult to set up, since it would require the cooperation of
many different groups of people in various contexts.

The common alternative is to use image databases for
which a ground truth is available; this ground truth usually
corresponds to the definition of a set of mutually exclusive
image classes, covering the entire database. Of course, for
a ground-truth database an user can often find many other
classes that overlap those of the ground truth, so the eval-
uation of a retrieval method on such a database cannot be
considered exhaustive even with respect to the content of
that single database.

To cover a wide range of contexts, it is very important to
use several ground-truth databases and to have character-
istics that differ not only among these databases, but also
among the classes of each database. Note that by finding
correlations between the results of the RF methods and the
characteristics of some classes or databases, one can identify
ways for adapting RF to a specific context.

Relevance feedback methods must help reducing the se-
mantic gap. It may then be important for evaluating RF to
avoid having in the ground-truth databases too many “triv-
ial” classes, i.e. for which simple low-level visual similarity
is a sufficient classification criterion (this may be the case for
classes produced for evaluating simple queries by example),
because such classes may severely bias the results.

With these criteria in mind, we selected several ground-
truth databases for the evaluation:

e GT72 is composed of the 52 most difficult classes from
the Columbia color database, each class containing 72
different views of an object on an uniform background.
There is enough visual variability within every class of
this database and, at the same time, the identity of
each class is not subject to interpretation. The classes
are also sufficiently large to allow for a pertinent use
with RF.

e GT100 has 9 classes, each composed of 100 images se-
lected from the Corel database. While the high-level
semantics of each class are clearly defined, there is a
strong low-level visual diversity within each class. This
makes the GT100 database difficult for a QBVE ap-
proach but a good candidate for search with RF.

e GT30 (70 classes, each having 30 images) and GT9
(246 classes, each with 9 images only) were built from
several sources (Web Museum, Corel, Vistex). GT9
mainly contains many “simple” classes and was orig-
inally developed for the evaluation of image features,
while GT30 is composed of both “simple” classes and
more difficult ones, i.e. having more low-level visual
diversity.

By studying these databases, we found as a significant
common characteristic the fact that the spatial size of the
various classes (in the space of low-level visual descriptors)
covers an important range of different scales: 1 to 7 for
GT72, 1 to 8 for GT100, 1 to 9 for GT30 and 1 to 4 for GT9.
We evaluated the spatial size of a class by computing both
the mean distance between elements and the mean distance
between an element and the center of gravity of the class.

More generally, such significant changes in spatial scale
can occur from one database to another, from one class to



another within the same database or even between parts of
the frontier of a same class. For user-defined classes in a
bigger database associated to a real retrieval scenario, one
should expect even larger changes in spatial scale from one
class to another. This implies that a low sensitivity to the
scale of the data could be a desirable feature of the learner
employed for RF; we shall see in section 4 that this is indeed
the case.

2.2 Image content description

In this section we present the image descriptors we use
and we stress the important connection that exists between
the quality of the image descriptors and relevance feedback.

We employ weighted color histograms described in [19], [2]
using the Laplacian and local probability as pixel weighting
functions. Weighting functions bring additional information
into the histograms (e.g. local shape or texture), which is
an important principle in building reliable image signatures.
The resulting integrated signatures generally perform better
than a combination of classical, single-aspect features.

To describe the shape content of an image we use a his-
togram based on the Hough transform, which gives the global
behavior along straight lines in different directions. Texture
feature vectors are based on the Fourier transform, obtain-
ing a distribution of the spectral power density along the
frequency axes. This signature performs well on texture im-
ages and, used in conjunction with other image signatures,
can significantly improve the overall behavior. The resulting
joint feature vector has more than 600 dimensions.

2.3 Dimensionality reduction

The very high number of dimensions of the joint fea-
ture vector can make RF impractical even for medium-size
databases. Also, the higher the dimensionality of the de-
scription space, the more difficult is the task of the learner.
In order to reduce the dimension of the feature vectors, we
use linear principal component analysis (PCA), which is ac-
tually applied separately to each of the image features pre-
viously described.

We evaluate the retrieval performance of the resulting im-
age descriptors in a QBVE context by building a precision-
recall diagram for each database. After a reduction in di-
mension of about 5 times, we remain within a 5% overall
loss of quality in the precision-recall diagrams.

We expected kernel PCA ([15]) to better focus on relevant
nonlinear “dimensions”; this should indeed be the case when
the manifold spanned by the images is very low-dimensional
but significantly nonlinear. However, when comparing KPCA
to linear PCA we noticed that the first did not perform so
well on the generalist image databases we are using, suggest-
ing that the previous assumption is wrong in these cases.

If all the classes were known a priori, then other methods
such as discriminant analysis would be more appropriate for
reducing the dimension of the description space. Such an as-
sumption cannot be made in real situations where the classes
are defined interactively by the users, so we also avoided
making it here, for the ground-truth databases we used in
our evaluation.

3. REDUCTION OF THE REDUNDANCY

In order to maximize the ratio between the quality (or rel-
evance) of the results and the amount of interaction between
the user and the system, the selection of images for which

the user is asked to provide feedback at the next round must
be carefully studied.

Interesting ideas were introduced in [9] and [8], where the
problem under focus is the iterative search for one specific
image in a database (target search); at every round, the user
is required to choose, between the two images presented by
the engine, the one that is closest to the target image. The
selection criterion put forward in this case attempts to iden-
tify at every round the most informative binary selections,
i.e. those that are expected to maximize the transfer of
information between the user and the engine (or remove a
maximal amount of uncertainty regarding the target). We
consider that this criterion translates into two complemen-
tary conditions for the images in the selection: each image
must be ambiguous given the current estimation of the tar-
get and the redundancy between the different images has to
be low.

Unfortunately, the entropy criterion employed in [9], [8]
does not scale well to the search of images in a larger set
(category search) and to the selection of more than 2 images.
Computational optimizations must be found, relying on the
use of specific learners and, possibly, specific search contexts.

Based on the definition of active learning (see for exam-
ple [7]), the selection of examples for training SVMs to per-
form general classification tasks is studied in [4]. When the
classification error increases with the distance between the
misclassified examples and the frontier (a “soft margin” is
used for the SVM), the authors interestingly distinguish two
cases: early and late stages of learning.

In the early stages, the classification of new examples is
likely to be wrong, so the fastest reduction in generaliza-
tion error can be achieved by selecting the example that is
farthest from the current estimation of the frontier. During
late stages of learning, the classification of new examples
is likely to be right but the margin may be suboptimal, so
the fastest reduction in error can be achieved by selecting
the example that is closest to the current estimation of the
frontier. Note that, according to the classical formulation
of active learning, the authors only consider the selection of
single examples for labeling (for addition to the training set)
at every round.

For SVM learners, several selection criteria are presented
in [17] and applied to content-based text retrieval with rele-
vance feedback. The simplest (and computationally cheap-
est) of these criteria consists in selecting the texts whose
representations (in the feature space induced by the kernel)
are closest to the hyperplane currently defined by the SVM.
We shall call this simple criterion the selection of the “most
ambiguous” (MA) candidate(s).

This selection criterion is justified in [17] by the fact that
knowledge of the label of such a candidate halves the version-
space. In this case, the version space is the set of parameters
of the hyperplanes in feature space that are compatible with
the already labeled examples. The proof of this result as-
sumes that the version space is not empty and that, in the
feature space associated to the kernel, all the images of vec-
tors in the input space have constant norm.

These assumptions will hold with appropriate choices for
the kernel and for the bound (C) on the parameters of the
SVM (the «). In order to minimize the number of learning
rounds, the user is asked to label several examples at every
round and all these examples are selected according to the
MA criterion. In [16] the MA selection criterion is applied



to CBIR with relevance feedback and shown to produce a
faster identification of the target images than the selection
of random images for labeling.

While the MA criterion provides a computationally effec-
tive solution to the selection of the most ambiguous exam-
ples, when used for the selection of more than one candidate
example it does not remove the redundancies between the
candidates.

Suppose now that z; and x; are the input space repre-
sentations of two candidate examples and consider kernels
K such that K(z;,z;) monotonously decreases with an in-
crease of the distance d(z;,z;) (this is the case for most
common nonlinear kernels). For such kernels, we propose
here to require a low value for K(x;,x;) as an additional
condition of low redundancy. This obviously encour-
ages the selection of unlabeled examples that are far from
each other in input space, allowing us to better explore the
current frontier between “relevant” and “irrelevant” images.

If the kernel K is further inducing a Hilbert structure on
the feature space and if all the ¢(x) (the images in feature
space of the vectors x in input space) have constant norm,
then the additional condition stated above corresponds to
a requirement of (quasi-)orthogonality between ¢(x;) and
¢(x;), since K(zs,z;) = (d(x:),d(x;)). In this case, our
condition of low redundancy can also be justified by ref-
erence to the version space account suggested in [17]: re-
dundancy is minimized when the hyperplanes associated to
the individual examples are orthogonal and are thus com-
plementary to each other in halving the version space. This
is why we shall call this criterion the selection of the “most
ambiguous and orthogonal” (MAO) candidates even if, as
we shall see in section 4, this name is not appropriate for
certain kernels.

The low redundancy condition stated above can be mod-
ified for kernels that don’t satisfy our hypotheses (that is,
K (z;, z;) monotonously decreases with an increase of d(x;, x;)
and, if defined, ||¢(z)|| = constant, Vz). As an example,
for positive definite kernels that don’t satisfy the condition
l¢(x)|| = constant, Vz, one should require a low value for
K(zi,35)//K(xi,2:) K(xj,2;) rather than for K(z;,x;).
In a standard classification context, a similar “diversity”
condition for the selected examples was put forward in [3]
and evaluated on several benchmark classification problems
from the UCI database.

To implement our MAO criterion, we first perform an MA
selection of a larger set of unlabeled examples. Then, for
kernels who satisfy our hypotheses (see above), we build the
MAO selection by iteratively choosing as a new example the
vector z; that minimizes the highest of the values taken by
K (xi,x;) for all the z; examples already included in the
current MAQO selection. This can be expressed as

xj = argmingcg max; K(z,z;) (1)

where S is the set of images not yet included in the current
MAO selection and z;, i = 1,...,n are the already chosen
candidates.

The size of the set of unlabeled examples pre-selected with
MA should be proportional to the number ws (window size)
of images for which the user is asked to provide feedback
at the next round. The low redundancy condition is sim-
ply ignored if this size is too small and the ambiguousness
condition is ignored if it is too large. In our experiments we
found that a value of 2 - ws was a good compromise for the

different databases and classes, so we used it for obtaining
the results presented in the following.

It is easy to see that the MAO criterion can be extended to
reduce redundancies between the examples selected during
subsequent RF rounds, by regarding all these examples as
already chosen candidates when computing (1). This addi-
tional constraint may be important in situations where the
number of labeled examples is much lower than the dimen-
sion of the input space and the classes are restricted in most
directions. However, in the experiments presented below we
did not attempt to reduce redundancies between subsequent
rounds of RF.

We note that the MA criterion in [17], [16] is the same
as the one put forward in [4] for the late stages of learn-
ing. This clarifies the fact that the MA criterion relies on
two important further assumptions: first, the prior on the
version space is rather uniform; second, the solution found
by the SVM is close to the center of gravity of the ver-
sion space. The second assumption can be relieved by using
Bayes Point Machines [12] instead of SVMs or one of the
more sophisticated criteria put forward in [17], albeit at a
higher computational cost.

However, in the early stages of an RF session the frontier
will usually be very unreliable and, depending on the initial-
ization of the search and the characteristics of the classes,
may be much larger than the target class (there are much
fewer examples than dimensions in the description space).
It follows that the first assumption may not hold in the
early stages of learning. In such cases, selecting those unla-
beled examples that are currently considered by the learner
as (potentially) the most relevant can sometimes produce a
faster convergence during the first few rounds of RF. For this
reason, we added to our comparisons the following criteria:
select the “most positive” unlabeled examples according to
the current decision function of the SVM (denoted as MP)
and select the “most positive and orthogonal” unlabeled ex-
amples (denoted as MPO). The MPO criterion adds to MP
the condition of low redundancy previously described.

When comparing the MP criterion to the suggestion in [4]
for the early stages of learning, we see that we only focus
on the examples for which the values taken by the decision
function of the SVM are maximal and completely ignore the
examples for which these values are minimal; this is because
of the asymmetry of the retrieval context: in general, the
number of relevant items is expected to be much lower than
the number of irrelevant items.

We performed comparisons between the four selection cri-
teria on the ground-truth databases we retained. For the
GT72, GT100 and GT30 databases, at every feedback round
the (emulated) user must label as “relevant” or “irrelevant”
all the images in a window of size ws = 9. The window size
is reduced to 4 for the GT9 database.

A search session is initialized by considering one “rele-
vant” example and ws — 1 “irrelevant” examples. Every
image in every class serves as the initial “relevant” exam-
ple for a different RF session, while the associated initial
ws — 1 “irrelevant” examples are randomly selected. For
reasons that will become apparent in section 4, we use for
the comparisons presented here the triangular kernel (also
introduced in section 4).

We began by evaluating the different selection criteria on
the first type of problem mentioned in the introduction:
finding items in a specific target set, by focusing on ranking
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Figure 1: Evolution of the mean precision obtained
with the different selection criteria on the GT72
database.
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Figure 2: Evolution of the mean precision obtained
with the different selection criteria on the GT100
database.

most of the “relevant” images before the “irrelevant” ones
rather than on finding a frontier between the class of interest
and the other images. Since the only information available
concerns class membership (crisp value), we do not consider
important here the precise ranking of the “relevant” or of
the “irrelevant” images.

In order to evaluate the speed of improvement of this rank-
ing, we must use a measure that does not give a prior advan-
tage to one selection criterion. For example, by taking into
account already labeled images plus those selected for be-
ing labeled during the current round, we should obviously
favor the MP and MPO criteria over MA and MAO. We
decided to use instead the following precision measure: at
every RF round, we count the number of truly “relevant”
images found in the N images considered as most positive
by the current decision function of the SVM (N being the
number of images in each class, fixed for each of the ground-
truth databases we studied).

The evolution of the mean precision during successive RF
iterations (rounds) on the GT72 and GT100 databases are
presented in Fig. 1 and 2. The “mean precision” value shown
is obtained as the mean value over all feedback rounds (each
image in the database is used to initiate a new feedback
round as described above).

Clearly, the reduction of the redundancy between the im-
ages selected for labeling improves the results, both for MAO
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Figure 3: Evolution of the classification error ob-
tained with the different selection criteria on the
GT72 database.

35 —
@ MAO ——
N 3t
§ e MA
S 257 . MPO -t
~ , MP 777777
g 2t b
= . s
O v", O
= R
§ 1 */ e PN
7] &

0.5 ‘ ‘ ‘ ‘ ‘ ‘

2 4 6 8 10 12 14

Iteration

Figure 4: Evolution of the ratio between the images
considered by the SVM as “relevant” and the num-
ber of images in a class for the different selection
criteria on the GT72 database.

with respect to MA and for MPO with respect to MP. Also,
in these cases the MA and MAO selection criteria compare
favorably to the MP and MPO criteria.

The second type of problem mentioned in the intro-
duction consists in finding a frontier between “relevant” and
“irrelevant” images, which can be important for extending
a textual annotation of some images in the “relevant” class
to the others. In this case, we have to evaluate the speed of
improvement of the classification.

The classification error is defined here as n/N + (N —
p)/N, where N is the class size, n is the number of false
positives and N — p is the number of false negatives. In
Fig. 3 we can see the evolution of the classification error for
the different selection criteria on the GT72 database. As
expected, the convergence is fastest for the MAO selection
criterion, followed by the MA criterion.

To better understand the behavior of the different selec-
tion criteria, we also studied the evolution of the ratio be-
tween the images considered by the SVM as “relevant” and
the number of images in the class (this ratio should be 1
when SVM has found the entire class).

The results obtained on the GT72 database are shown in
Fig. 4. The convergence is significantly faster for the MAO
and MA criteria, which can be explained by the fact that
MP and MPO do not focus on the frontier.
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Figure 5: Sensitivity of the SVM to a scale parame-
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Figure 6: Sensitivity of the SVM to a scale parame-
ter for the different kernels on the GT100 database.

The results we obtained on all the other databases we
considered are similar to those in Fig. 3 and 4. These results
suggest that the MAO selection criterion should be strongly
preferred whenever RF is used for finding a reliable frontier
between “relevant” and “irrelevant” images (or interactively
learning new “visual concepts”).

4. INVARIANCE TO SCALE

During the study of several ground-truth databases we
found that the spatial size of the various classes (in the
space of low-level visual descriptors) often covers an impor-
tant range of different scales (1 to 7 for the GT72 database,
1 to 8 for the GT100 database). We expect yet more sig-
nificant changes in spatial scale to occur from one database
to another, from one user-defined class to another within a
large real-world image database and even between parts of
the frontier of some classes. A too strong sensitivity of the
learner to the scale of the data could then strongly limit its
applicability in an RF context.

For SVM classifiers, sensitivity to scale has two sources:
the scale parameter of the kernel and the C bound on the
coefficients. We focus here on the first source of sensitivity,
the second one being usually less constraining (the C' bound
can be set in our retrieval context to some high value without
significantly affecting performance).

The first kernel we consider is the Gaussian (or Radial
Basis Function) one, K (i, ;) = exp (—||zi — z;||*). This
classical nonlinear kernel, often employed by default, is highly
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Figure 7: Comparison of the different kernels on the
GT72 database, with the MP selection criterion.
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Figure 8: Comparison of the different kernels on the
GT100 database, with the MP selection criterion.

sensitive to the scale parameter 7 (the inverse of the variance
of the Gaussian).

The use of the Laplace (or exponential) kernel, K (z;,z;) =
exp (—~|[wi—z;||), was advocated in [6] for histogram-based
image descriptors. In [13], this kernel was found to work
better than the Gaussian kernel for CBIR with RF.

The hyperbolic kernel, K (zi, ;) = 1/ (e+~[lzi—=;]|), can
be computed fast and we have already used it for RF with
good results. The scale parameter is v again; € translates
into a multiplicative constant plus a change in v and is only
used to avoid numerical problems (we set it to 0.001).

All the three kernels we mentioned are positive definite
kernels and satisfy the condition ||¢(x)|| = constant, V.
The triangular kernel, K(z;,z;) = —||z; — x;||, was intro-
duced in [1] as a conditionally positive definite kernel, but
the convergence of SVMs remains guaranteed with this ker-
nel [14]. In [10] the triangular kernel was shown to have
a very interesting property: it makes the frontier found by
SVMs invariant to the scale of the data (within the limits
set by the value of the C' bound, but even these limits are
less strong for the triangular kernel than for the Gaussian
kernel).

Since the triangular kernel is not positive definite but only
conditionally positive definite, the account provided in [17],
[3] for the MA selection criterion does not hold for this ker-
nel. For the same reason, the triangular kernel does not
induce a Hilbert structure on the feature space, so in this
case one should not speak of the “orthogonality” of vectors



in the feature space. However, since the value of K(z;,z;)
decreases with an increase of the distance d(xs,x;), our ex-
planation for the MAO criterion holds, as well as the jus-
tification of the MA criterion in [4]; we also continue to
(abusively) use MAO as the name of the selection criterion.

For all the kernels we used the L1 norm because experi-
mentally we found it to provide better results than L2. A
few other dissimilarity measures (some of which don’t have
the properties of a metric) were used in the literature in-
stead of ||z; — z;||, mainly with the Gaussian kernel and
sometimes for variable-length representations of the images.
Some of these measures don’t guarantee the convergence of
the SVM and we preferred not to use them here.

The sensitivity of these kernels to the « parameter with
the MP criterion is shown in Fig. 5 for the GT72 database
and in Fig. 6 for the GT100 database (the base of the log-
arithm is 10). In these two figures, the “mean precision”
value shown is obtained as the mean over all the images
in the database and over the first 15 feedback iterations.
Also, comparisons between these kernels using the MP se-
lection criterion are shown in Fig. 7 and 8; for the Gaussian,
Laplace and hyperbolic kernels, the scale parameters were
set to their optimal values for the database.

We only show comparisons employing the MP criterion
because it is prevailing so far. Sensitivity to scale with the
Gaussian, Laplace and hyperbolic kernels increases when the
MAO criterion is used (see Fig. 5 for the effect of MAO on
the hyperbolic kernel).

From Fig. 5 and 6 one can see that the Gaussian kernel
is the one who produces the highest sensitivity to scale for
the SVM. Since the classes present in a database often have
significantly different spatial scales, any value for the scale
parameter will be inadequate for many classes, so the results
obtained with this kernel cannot be very good.

Comparatively, the use of the Laplace kernel reduces the
sensitivity of the SVM to scale. With the Laplace kernel and
the MP selection criterion, an increase of v beyond 1 has a
strong negative impact on the results, while a reduction of
does not have significant consequences. This is explained by
the fact that for small v the Laplace kernel becomes similar
to the triangular kernel.

With the MP selection criterion, the hyperbolic kernel
produces a scale-invariance of the SVM within a large range
of values for v. However, as shown by the “Hyperbolic
MAOQO?” line in Fig. 5, this invariance is lost to some extent
when the MAO selection criterion is employed.

We also compared the classification performance obtained
with the different kernels. As shown in Fig. 9, with the
triangular kernel the classification error converges to zero
relatively fast (even with the MP criterion), while with the
RBF kernel it continues to increase even after 20 feedback
rounds. We didn’t display the lines corresponding to the
hyperbolic and Laplace kernels in Fig. 9 because convergence
is almost as fast with these kernels as with the triangular
kernel. Similar behaviors were found during the experiments
on the other databases.

For real-world applications, the spatial scales of the user-
defined classes cannot be known a prior: and the scale pa-
rameter of a kernel cannot be easily adjusted online, so im-
portant variations between classes can be expected for the
performance of RF-based retrieval if kernels such as the RBF
one are employed. The scale-invariance obtained by the use
of the triangular kernel (or, to a lesser extent, of the hyper-
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Figure 9: Comparison of the classification error for
the RBF and the triangular kernels on the GT100
database.

bolic kernel) becomes then a highly desirable feature and,
according to the experimental evidence we presented here,
makes this kernel a very good alternative.

5. CONCLUSION

In content-based image retrieval with relevance feedback,
the criterion employed by the search engine for selecting the
images presented to the user at every feedback round is very
important for the transfer of information between the user
and the system. Using SVMs as learners, we put forward
an improved active learning selection criterion, based on a
reduction of the redundancy between the images selected
at every feedback round. By comparing this criterion to
alternative criteria on several ground-truth databases, we
have shown that it performs better in ranking most of the
“relevant” images before the others.

We also took a fresh look at active learning for relevance
feedback as a tool for learning complex concepts (in order
to extend textual annotations or for other uses) and we pre-
sented experimental evidence that it speeds up both the con-
vergence of the classification error to zero and the conver-
gence of the frontier around the class of interest.

By studying several ground-truth databases, we found in
the space of low-level visual descriptors significant changes
in spatial scale between the various classes. Yet greater
changes in scale are expected to occur for user-defined classes
in real-world applications. We have shown that a high sen-
sitivity of the learner to changes in the scale of the data
strongly degrades its performance and limits its applicabil-
ity in a relevance feedback context. For SVMs, we proposed
to use specific kernel functions, such as the triangular kernel,
that allow to obtain insensitivity to changes in scale and, as
experiments on different databases show, keep performance
at a very good level.

As an example of retrieval, in Fig. 10 we present the third
screen of results returned by our system IKONA [2], us-
ing the methods presented in this paper, from a generalist
database of 3670 images. In this case the user is looking for
a rather difficult class: portraits that are paintings at the
same time. With 4 positive and 10 negative examples, the
images returned by the system are all portraits, but nev-
ertheless they have very different characteristics: different
backgrounds, different cloth colors, different overall texture.



Figure 10: Searching for portraits in a generalist
database.
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