

SALSAS: Sub-linear Active Learning Strategy with Approximate k-NN Search

David Gorisse¹ Matthieu Cord² Frédéric Precioso^{1,2}

(1) ETIS lab, ENSEA-UCP-CNRS, France

(2)LIP6-UPMC Paris 6, Sorbonnes Universités

3 Novembre 2010

Introduction : CBIR classification framework

Category search => a two-class problem :

- Relevant class : image set fitting to the user query concept
- Irrelevant class : all other images from the database

Introduction : similarity function – kernel

Kernel definition :

Let
$$k : \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}$$

 $\mathbf{x}, \mathbf{y} \longmapsto k(\mathbf{x}, \mathbf{y})$

- k is a Kernel *iif* : $\exists \phi | \forall (\mathbf{x}, \mathbf{y}), k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$
- with φ, an embedding function into a Hilbert space.

Advantage : Machine learning friendly (Artificial neural network, SVM, ...)

Relevance function (without b): f_A(**x**) =< **w**, Φ(**x**) >= Σ^{|A|}_{p=1} α_pk(**a**_p, **x**)

Kenels :

• RBF:
$$k(\mathbf{x}, \mathbf{y}) = e^{-\frac{d(\mathbf{x}, \mathbf{y})^2}{2\sigma^2}}$$

•
$$l_2$$
-RBF : with $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2$

$$d^2$$
-RBF : with $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{p} \frac{(\mathbf{x}_i - \mathbf{y}_i)^2}{(\mathbf{x}_i + \mathbf{y}_i)^2}}$

Introduction : interactive / active learning

Goal

To choose the best images for annotation to increase the training set thus optimally improving the search

Which ones?

- The most relevant ones : TOPN
- The most uncertain [Tong02] and the most diversified : Angle Diversity [Brinker03] (U unlabeled dataset) :

$$i^{\star} = \operatorname*{arg\,min}_{\mathbf{x}_{i} \in \mathcal{U}} (\lambda | f_{\mathcal{A}}(\mathbf{x}_{i})| + (1 - \lambda) \max_{\mathbf{x}_{j} \in \mathcal{A}} \frac{k(\mathbf{x}_{i}, \mathbf{x}_{j})}{\sqrt{k(\mathbf{x}_{i}, \mathbf{x}_{i})k(\mathbf{x}_{j}, \mathbf{x}_{j})}})$$

Scalable interactive learning

CBIR systems

- Time retrieval ok for several thousands image databases
- But is it scalable ? what is the search time complexity ?

Scalable interactive learning

CBIR systems

- Time retrieval ok for several thousands image databases
- But is it scalable ? what is the search time complexity ?

Fast online retrieval

- Nice fast similarity search schemes recently introduced [Datar04, Valle08, Chum, Perdoch09] based on indexing structures for database representation and knn search (trees KDTree, hashing LSH, clustering Inverted files...)
- Can we speed-up the interactive learning using similar strategies ?

Scalable interactive learning

CBIR systems

- Time retrieval ok for several thousands image databases
- But is it scalable ? what is the search time complexity ?

Fast online retrieval

- Nice fast similarity search schemes recently introduced [Datar04, Valle08, Chum, Perdoch09] based on indexing structures for database representation and knn search (trees KDTree, hashing LSH, clustering Inverted files...)
- Can we speed-up the interactive learning using similar strategies ?

- TOPN relevant images for intermediate results. Computation : $f_{\mathcal{A}}(\mathbf{x}) \forall \mathbf{x} \in \mathcal{U} + \text{Ranking}$
- \Rightarrow Complexity : O(Uln(U))

- Most uncertain images for annotation strategy Computation : Angle Diversity score ∀x ∈ U + Ranking
- \Rightarrow Complexity : O(Uln(U))

Training

Complexity $O(\mathcal{A}^2)$, with $\mathcal{A} \ll \mathcal{U}$

 \Rightarrow Complexity negligible

- Complexity at least linear regarding the size of the database
 - \Rightarrow impracticable for large databases

- Complexity at least linear regarding the size of the database
 - \Rightarrow impracticable for large databases
- Sublinear solution : only consider a relevant subset ${\cal S}$ instead of ${\cal U}$

How to decrease search complexity?

Idea : subsampling

- Only work (ranking with the relevant function *f*_A) on the pool S wrt N < |S| ≪ n = U
- How to find S? with images that have a high probability to be in the TOPN

Methods

- Subsampling of U ramdom selection?
- Hierarchical sampling based on clustering [Panda06] and focusing on "interesting" clusters
- Our strategy : sampling using knn search with an optimized LSH indexing structure over a f_A approximation

торN

Looking for TOPN images = maximize the relevance function :

$$f_{\mathcal{A}}(\mathbf{x}) = \sum_{\rho=1}^{|\mathcal{A}^+|} \alpha_{\rho} \mathcal{K}(\mathbf{a}_{\rho}^+, \mathbf{x}) - \sum_{n=1}^{|\mathcal{A}^-|} \alpha_n \mathcal{K}(\mathbf{a}_n^-, \mathbf{x}) = f_{\mathcal{A}^+}(\mathbf{x}) - f_{\mathcal{A}^-}(\mathbf{x})$$

with \mathcal{A}^+ training set of positively annotated images and \mathcal{A}^- training set of negatively annotated images

Selection : to build ${\mathcal S}$

- approximation of f_A by focusing on f_{A^+} .
- fast maximization of f_{A^+}

Pruning

- some images of S can have a low f_A score because of f_A-
- To compute exact f_A score for all images in S in order to filter lower score images.

Salsas

- Approximation of maximization of f_{A+}
- \Rightarrow by selecting images of ${\mathcal U}$ that are Nearest Neighbor of ${\mathcal A}^+$ images

Annotation Strategy

- Pool S quite larger than the TOPN
- As long as user not satisfied uncertain images in ${\cal S}$
- $\Rightarrow~$ Looking for the most uncertain and diversified images in ${\cal S}$:

$$i^{\star} = \underset{\mathbf{x}_{i} \in S}{\arg\min(\lambda | f_{\mathcal{A}}(\mathbf{x}_{i})| + (1 - \lambda) \max_{\mathbf{x}_{j} \in \mathcal{A}} \frac{k(\mathbf{x}_{i}, \mathbf{x}_{j})}{\sqrt{k(\mathbf{x}_{i}, \mathbf{x}_{i})k(\mathbf{x}_{j}, \mathbf{x}_{j})}}}$$

Pros

- Very fast : benefit of the previous stage
- Rebalance the problem : much more irrelevant images than relevant ones (amplified with database size growing)

Cons

- No more theoretical validity [Tong02]
- \Rightarrow But "valid in experiments"

$\ensuremath{\mathcal{S}}$ updating

 To be efficient, the k-nearest neighbor knn search must be very fast Sublinear ⇒ Index Structure : Locality Sensitive Hashing (LSH)

Locality Sensitive Hashing (LSH)

Definition

LSH is a space-partitioning data structure [Indyk98]

Principle

- Split database into buckets stored in a table
- Bucket accessible with a key
- Key provided by a hash function

Locality Sensitive goal

Hash function must be able to :

- Bring together similar images
- Sort out dissimilar images

E2-LSH : Hash function of Euclidean metric

Def

A hash function to perform fast search with l_2 distance and to approximate l_2 -RBF :

Hash function h_{a,b} based on random projection :

$$h_{\mathbf{a},b}(\mathbf{p}) = \lfloor \frac{\mathbf{a}.\mathbf{p}+b}{w} \rfloor$$

- **a** a random vector : each component is chosen independently from a Gaussian distribution,
- *b* a shift, *W* a bin width

Introduction	Scalability	SALSAS System	LSH indexing	Experiments
E2-LSH				

Def

- To increase the data partitioning : concatenation of *M* hash functions
- Lattice to approximate Euclidean partitioning

E2-LSH

Def

- To increase the data partitioning : concatenation of *M* hash functions
- Lattice to approximate Euclidean partitioning

 4500 feature vectors randomly selected from an image database

CHI2-LSH

CHI2-LSH def

A new hash function to perform fast search with χ^2 distance and to approximate $\chi^2\text{-RBF}$

- Same principle as E2-LSH
- But distances between two consecutive hyperplans constant *W* with χ² distance

$$h_{\mathbf{a},b}(\mathbf{p}) = \frac{\sqrt{\frac{8a.\mathbf{p}}{W^2} + 1} - 1}{2} + b$$

To increase data partitioning - > M hash functions, *L* hash tables

CHI2-LSH : splitting space differences with L2

4500 feature vectors randomly selected from an image database Space grids for feature components with respect to χ^2 (in red) and I_2 (in blue)

Introduction	Scalability	SALSAS System	LSH indexing	Experiments
Experim	nents			
Protocol				

- 5 datasets between 5K and 180K images from VOC 2006, 2007, 2008 + TrecVid 2007, 2008, 2009
- Feature Space 128-dimension vector (color and texture based)
- Parameters
 1 annotation by iteration, TOP200, 100-NN search

LIN_CHI2

SALSAS

SALSAS

LIN_CHI2
A AL CA TO TO AL AL

SALSAS

Evaluation (1) : exact vs fast search

- Accuracy and Efficiency comparison between exact and fast search
- Accuracy => MAP measurement
- Efficiency => Time speed-up measurement
- 5 datasets between 5K and 180K images

• Comparison of Acuracy and Efficiency between l_2 -RBF and χ^2 -RBF exact search

(a) MAP of TOP200 VS number of iter- (b) MAP of TOP200 at 50th iteration ations on VOC06 VS database size

Evaluation (3) : SALSAS vs E2LSH

(a) MAP of TOP200 at 50th itera- (b) Time at 50th iteration vs datation vs database size base size

FIG.: Evolution of the accuracy and the efficiency with the size of the database for 50 iterations with 1 label by iteration. V1 is *E2LSH* scheme combined with a l_2 -RBF kernel and V2 is *E2LSH* scheme combined with a χ^2 -RBF kernel.

Thanks for your attention ! Questions ?

Bibliography pieces

- SALSAS : Sub-linear Active Learning Strategy with Approximate k-NN Search, D. Gorisse, M. Cord, F. Precioso, Elsevier, Pattern Recognition, Special Issue on "Semi-Supervised Learning", to appear in 2011.
- Machine Learning Techniques for Multimedia Case Studies on Organization and Retrieval, Springer 2008, M. Cord, P. Cunningham (Eds.).
- Active learning methods for Interactive Image Retrieval, P.H. Gosselin, M. Cord, IEEE Transactions on Image Processing, 17(7), 1200 –1211, 2008.
- Fast Approximate Kernel-based Similarity Search for Image Retrieval Task, D. Gorisse, M. Cord, F. Precioso, S. Philipp-Foliguet, ICPR 2008.
- Combining visual dictionary, kernel-based similarity and learning strategy for image category retrieval, P.H. Gosselin, M. Cord, S. Philipp, CVIU, 2008

People

- David Gorisse (ETIS, ENSEA/UCP/CNRS PhD student)
- Matthieu Cord
 LIP6, Univ. UPMC-PARIS 6 matthieu.cord@lip6.fr
 http://webia.lip6.fr/~cord/
 Frédéric Precioso
 ETIS ENSEA/UCP/CNRS
 frederic.precioso@lip6.fr
 http://frederic.precioso.free.fr