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Introduction : CBIR classification framework

Content-based

Category Retrieval

Interactivity and
Learning

Category search => a two-class problem :

Relevant class : image set fitting to the user query concept

Irrelevant class : all other images from the database
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Introduction : similarity function – kernel

Kernel definition :

Let k : Rd × Rd → R
x, y 7−→ k(x, y)

k is a Kernel iif :
∃φ|∀(x, y), k(x, y) = 〈φ(x), φ(y)〉
with φ, an embedding function into a
Hilbert space.

Advantage : Machine learning friendly (Artificial neural network, SVM, . . .)

Relevance function (without b) : fA(x) =< w,Φ(x) >=
P|A|

p=1 αpk(ap, x)

Kenels :

RBF : k(x, y) = e−
d(x,y)2

2σ2

l2-RBF : with d(x, y) = ||x− y||2, χ2-RBF : with d(x, y) =

rPp
i

(xi−yi )
2

(xi +yi )
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Introduction : interactive / active learning

Goal
To choose the best images for annotation to increase the
training set thus optimally improving the search

Which ones ?
The most relevant ones : TOPN
The most uncertain [Tong02] and the most diversified :
Angle Diversity [Brinker03] (U unlabeled dataset) :

i? = arg min
xi∈U

(λ|fA(xi)|+ (1− λ) max
xj∈A

k(xi ,xj)√
k(xi ,xi)k(xj ,xj)

)
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Scalable interactive learning

CBIR systems
Time retrieval ok for several thousands image databases
But is it scalable ? what is the search time complexity ?

5/27



Introduction Scalability SALSAS System LSH indexing Experiments

Scalable interactive learning

CBIR systems
Time retrieval ok for several thousands image databases
But is it scalable ? what is the search time complexity ?

Fast online retrieval
Nice fast similarity search schemes recently introduced
[Datar04, Valle08, Chum, Perdoch09] based on indexing
structures for database representation and knn search
(trees KDTree, hashing LSH, clustering Inverted files...)
Can we speed-up the interactive learning using similar
strategies ?
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Scalability problems in interactive search

TOPN relevant images for intermediate results.

Computation : fA(x) ∀x ∈ U + Ranking

⇒ Complexity : O(U ln(U))
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Scalability problems in interactive search

Most uncertain images for annotation strategy

Computation : Angle Diversity score ∀x ∈ U + Ranking

⇒ Complexity : O(U ln(U))
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Scalability problems in interactive search

Training

Complexity O(A2), with A � U
⇒ Complexity negligible
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Scalability problems in interactive search

Complexity at least linear regarding the size of the database

⇒ impracticable for large databases

Sublinear solution : only consider a relevant subset S instead of U
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How to decrease search complexity ?

Idea : subsampling
Only work (ranking with the relevant function fA) on the
pool S wrt N < |S| � n = U
How to find S ? with images that have a high probability to
be in the TOPN

Methods
Subsampling of U – ramdom selection ?
Hierarchical sampling based on clustering [Panda06] and
focusing on ”interesting” clusters
Our strategy : sampling using knn search with an optimized
LSH indexing structure over a fA approximation
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Our Subsampling Strategy

TOPN

Looking for TOPN images = maximize the relevance function :

fA(x) =
P|A+|

p=1 αpK (a+
p , x)−

P|A−|
n=1 αnK (a−n , x) = fA+ (x)− fA− (x)

with A+ training set of positively annotated images
and A− training set of negatively annotated images

8/27



Introduction Scalability SALSAS System LSH indexing Experiments

Subsampling Strategy

Selection : to build S

approximation of fA by focusing on fA+ .

fast maximization of fA+
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Subsampling Strategy

Pruning

some images of S can have a low fA score because of fA−
To compute exact fA score for all images in S in order to filter lower score
images.
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Subsampling Strategy

Salsas

Approximation of maximization of fA+

⇒ by selecting images of U that are Nearest Neighbor of A+ images
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Subsampling Strategy

Annotation Strategy

Pool S quite larger than the TOPN

As long as user not satisfied uncertain images in S
⇒ Looking for the most uncertain and diversified images in S :

i? = arg min
xi∈S

(λ|fA(xi )|+ (1− λ) max
xj∈A

k(xi , xj )q
k(xi , xi )k(xj , xj )

)

Pros

Very fast : benefit of the previous stage

Rebalance the problem : much more irrelevant images than relevant ones
(amplified with database size growing)

Cons

No more theoretical validity [Tong02]

⇒ But “valid in experiments”
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Our interactive scheme
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Our interactive scheme

S updating

To be efficient, the k-nearest neighbor knn search must be very fast
Sublinear⇒ Index Structure : Locality Sensitive Hashing (LSH)
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Locality Sensitive Hashing (LSH)

Definition

LSH is a space-partitioning data structure [Indyk98]

Principle

Split database into buckets
stored in a table

Bucket accessible with a key

Key provided by a hash
function

Locality Sensitive goal

Hash function must be able to :

Bring together similar images

Sort out dissimilar images

14/27



Introduction Scalability SALSAS System LSH indexing Experiments

E2-LSH : Hash function of Euclidean metric

Def
A hash function to perform fast search with l2 distance and to
approximate l2-RBF :

Hash function ha,b based on random
projection :

ha,b(p) = b
a.p + b

w
c

a a random vector : each component is
chosen independently from a Gaussian
distribution,
b a shift, W a bin width
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E2-LSH

Def
To increase the data
partitioning : concatenation
of M hash functions

Lattice to approximate
Euclidean partitioning
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E2-LSH

Def
To increase the data
partitioning : concatenation
of M hash functions

Lattice to approximate
Euclidean partitioning

Limitation if data distribution not grid regular

4500 feature vectors randomly selected from
an image database
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CHI2-LSH

CHI2-LSH def

A new hash function to perform fast search with χ2 distance
and to approximate χ2-RBF

Same principle as E2-LSH
But distances between two
consecutive hyperplans
constant W with χ2

distance

ha,b(p) =

√
8a.p
W 2 + 1− 1

2
+ b

To increase data partitioning
− > M hash functions, L hash tables
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CHI2-LSH : splitting space differences with L2

4500 feature vectors randomly selected from an image
database
Space grids for feature components with respect to χ2 (in red)
and l2 (in blue)
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Experiments

Protocol

5 datasets
between 5K and 180K images from VOC 2006, 2007, 2008 + TrecVid 2007,
2008, 2009

Feature Space
128-dimension vector (color and texture based)

Parameters
1 annotation by iteration, TOP200, 100-NN search
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Examples

LIN CHI2 SALSAS
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Evaluation (1) : exact vs fast search

Accuracy and Efficiency comparison between exact and fast search
Accuracy => MAP measurement
Efficiency => Time speed-up measurement
5 datasets between 5K and 180K images

MAP of TOP200 at 50th iteration
10 class VOC06 – 5 databases Time after 50 iterations vs database size
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Evaluation (2) : χ2 vs l2-RBF

Comparison of Acuracy and Efficiency between l2-RBF and χ2-RBF exact search
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Evaluation (3) : SALSAS vs E2LSH

(a) MAP of TOP200 at 50th itera-
tion vs database size

(b) Time at 50th iteration vs data-
base size

FIG.: Evolution of the accuracy and the efficiency with the size of the database for 50
iterations with 1 label by iteration. V1 is E2LSH scheme combined with a l2-RBF kernel
and V2 is E2LSH scheme combined with a χ2-RBF kernel.
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Thanks for your attention ! Questions ?
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