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Abstract

In content-based image retrieval, relevance feedback
is a prominent method for reducing the “semantic
gap” between the low-level features describing the
content and the usually higher-level meaning of user’s
target. Recent relevance feedback methods are able
to identify complex target classes after relatively few
feedback iterations. However, since the computa-
tional complexity of such methods is linear in the size
of the database, retrieval can be quite slow on very
large databases. To address this scalability issue for
active learning-based relevance feedback, we put for-
ward a method that consists in the construction of an
index in the feature space associated to a kernel func-
tion and in performing approximate kNN hyperplane
queries with this feature space index. The experi-
mental evaluation performed on two image databases
show that a significant speedup can be achieved, at
the expense of a limited increase in the number of
feedback rounds.

Keywords:  content-based image retrieval, rel-
evance feedback, scalability, M-tree, approximate
search, hyperplane query.

1 Introduction

The query-by-example paradigm for content-based
retrieval suffers from the discrepancy—known as “se-
mantic gap”—between the low-level features that can
be readily extracted from documents and higher-level
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descriptions that are meaningful for the users. By in-
cluding the user in the retrieval loop, relevance feed-
back (RF) is in many cases able to bridge this se-
mantic gap. First introduced for the retrieval of text
documents (Rijsbergen, 1979), RF rapidly developed
for image retrieval ((Chang et al., 2003), (Crucianu
et al., 2004)), mainly because a user can be very fast
in evaluating the relevance of an image.

An RF session is divided into several consecutive
rounds (or iterations); at every round the user pro-
vides feedback regarding the retrieval results, e.g.
by qualifying items' returned as either “relevant” or
“irrelevant”; from this feedback, the search engine
learns the features describing the relevant items and
returns improved results to the user. An RF mech-
anism employs a learner and a selector. At every
feedback round, the user marks (part of) the items
returned by the search engine as “relevant” or “ir-
relevant”. The learner exploits this information to
reestimate the target of the user. Since the number
of examples is typically very low, this stage is very
fast with such learners as support vector machines
(SVM, (Schélkopf and Smola, 2002)) and cannot be
considered a scalability challenge. With the current
estimation of the target, the selector chooses other
items for which the user must provide feedback dur-
ing the next round.

Several recent RF methods rely on active learning
(Tong and Koller, 2000), (Tong and Chang, 2001):
the user is asked to provide feedback on those items
that can maximize the transfer of information from
the user to the system. This typically implies that
the selector must return, at every feedback round,
the most ambiguous items (if possible, with a com-
plementary condition of low redundancy, as in (Fer-
ecatu et al., 2004)), i.e. those items that are closest

IWhile our evaluations here only concern image databases,
RF in general and our method in particular are not specific
to such databases, so we prefer to speak about “items” rather
than images.



to the frontier of what the system considers (at the
current round) to be the target class. If the selector
has to evaluate the ambiguousness of all the items
in the database then this approach does not scale
to very large databases. Scalability requires an index
structure able to make the complexity of the selection
stage sublinear in the size of the database. Exist-
ing multidimensional indexes and associated search
methods (Samet, 2006) mostly concern similarity-
based retrieval with queries having the same nature
as the items stored in the database. Since a deci-
sion frontier is different in nature from the items in
the database, such proposals cannot be directly ap-
plied; new solutions must be developed for answering
frontier-based queries. The decision frontier can be
complex in the space where the items are described,
making the retrieval problem difficult to formulate
in this initial space. However, by the use of specific
kernel functions (Berg et al., 1984) the initial space
is mapped to a corresponding feature space, where
a hyperplane can be an appropriate decision frontier
(Scholkopf and Smola, 2002).

Our main contribution here is to put forward a
retrieval method that consists in performing approx-
imate kNN hyperplane queries with an index built in
this feature space. Since the index and the query pro-
cessing algorithms are defined in the feature space,
they do not depend on the input space. The method
can thus be directly applied to various types of data
as long as an appropriate kernel exists for the cor-
responding input space. Also, this method is not
limited to the RF context and can be employed
for active learning in general. The evaluation per-
formed on two image databases, one of which contains
110,250 images, shows that a significant speedup
can be achieved, at the expense of a limited loss
in retrieval precision. These results also point out
that approximate search methods can behave well in
very challenging conditions: high-dimensional spaces,
with queries expected to have a low selectivity.

The next section summarizes the background of
this work; after describing the SVM-based active RF
method we attempt to accelerate, we regard existing
proposals for the scalability of recent RF methods;
the section ends with a brief presentation of approx-
imate kNN retrieval with point queries in an M-tree
index, which is the starting point of the scalability
solution put forward here. The feature space M-tree
and the corresponding kNN retrieval algorithms for
hyperplane queries are then defined in Section 3. An
experimental evaluation of the proposed method on

two ground truth image databases is provided in Sec-
tion 4. Finally, several issues regarding approximate
retrieval and the properties of various kernel func-
tions are discussed in Section 5.

2 Background

2.1 Relevance feedback with support
vector machines

Part of the recent work on RF (e.g. (Tong and
Chang, 2001), (Peng and Heisterkamp, 2003), (Fer-
ecatu et al., 2004), (Tao et al., 2006), (Tao et al.,
2008)) is based on support vector machines (SVM)
because they avoid too restrictive assumptions re-
garding the data, are very flexible and allow fast
learning with a reasonably low number of examples.

Support vector machines belong to the family of
kernel methods (Scholkopf and Smola, 2002), who
first map the data from the original (input) space Z
to a higher-dimensional feature space H and then per-
form linear algorithms in H. The nonlinear mapping
¢ : T — 'H is implicitly defined by a kernel function
K : 7 x7I — R endowing H with a Hilbert space
structure if the kernel is positive definite (Berg et al.,
1984). The inner product (-,-) : H x H — R can
be expressed as (¢(x), d(y)) = K(x,y). This “kernel
trick” allows to reduce inner products in H to ordi-
nary kernel computations in Z and thus extend linear
algorithms relying on inner products in ‘H to nonlin-
ear algorithms based on more ordinary computations
in Z. For all the experiments presented in Section 4,
7 = R?, but the method put forward here is not re-
stricted to this case. The input space Z does not
even need to be a vector space, as long as a positive
definite kernel can be defined (Berg et al., 1984).

The class of kernels for which SVM algorithms hold
can actually be enlarged to the so-called condition-
ally positive definite (cpd) kernels (Scholkopf, 2000).
While the main line of presentation of our retrieval
method is restricted to positive definite kernels, the
extension to a large family of c¢pd kernels is given in
the appendix.

One-class SVM were put forward as a means to
describe the domain of a data distribution having
a potentially complex description in an input space
Z. The data is first mapped to the feature space
H. Then, in the first formulation, given in (Tax and
Duin, 1999), the smallest sphere in H that contains
the images of the data items is taken as the feature
space representation of the domain of the distribution



Figure 1: Domain description with 1-class SVM. ¢
maps input space (left) to feature space (right).

Figure 2: Discrimination with 2-class SVM. ¢ maps
input space (left) to feature space (right).

(Fig. 1). This sphere is defined by a center and a ra-
dius; the center is a linear combination of the images
of (part of) the data items. Another formulation for
1-class SVM, where the domain of the distribution
is defined by a hyperplane in feature space, was put
forward in (Scholkopf et al., 2001). One-class SVM
were used for RF in (Peng and Heisterkamp, 2003) to
model the distribution of the positive examples (items
marked as “relevant”) and return the unmarked items
whose images in feature space are the nearest to the
center of the sphere (i.e. the items considered by the
learner as potentially the most “relevant”). In this
case, the information provided by the negative exam-
ples (items marked as “irrelevant”) is ignored.

A 2-class SVM aims to identify a frontier between
two classes, based on a set of learning (labeled) ex-
amples. The 2-class SVM (Fig. 2) chooses as discrim-
ination frontier the hyperplane in feature space that
maximizes the margin to the examples from each of
the 2 classes. This hyperplane is the feature space
image of a usually nonlinear frontier in input space
(depending on the kernel employed). The hyperplane
is defined by an orthogonal vector and a position
threshold. Since the orthogonal vector is in the sub-
space spanned by the n vectors ¢(x;) (x; being the
original data points), it is expressed as a linear com-

bination of the “support vectors”, i.e. of those vec-
tors who are within the margin. Learning consists
in identifying the support vectors and computing the
linear coefficients, which is done by a fast procedure
for constrained quadratic optimization.

When used for RF, the 2-class SVM learns at ev-
ery feedback round to discriminate the target class (of
the “relevant” items) from the rest of the database.
The SVM learner is trained using all the available
examples, both positive (items marked as “relevant”
by the user) and negative (items marked as “irrele-
vant”). Then, the selector must choose yet unmarked
items for which the user should provide feedback dur-
ing the next round.

The first advances in SVM-based relevance feed-
back focused on the selector. It was found in (Tong
and Chang, 2001) that active learning could lead to a
faster improvement in retrieval precision during con-
secutive iterations: the user can provide more infor-
mation if presented with the most “ambiguous” items
(the closest to the discrimination frontier) than with
the most “positive” ones (the farthest from the fron-
tier, on the “relevant” side). A further criterion aim-
ing to minimize the redundancy between the selected
items was added in (Ferecatu et al., 2004). In (Fere-
catu et al., 2004) this joint criterion was named MAO,
from “most ambiguous and orthogonal”, since for
positive definite kernels the items are non-redundant
if their feature space representations are orthogonal.
MAO was also successfully employed in (Ferecatu
et al., 2008) for performing RF with combined visual
and conceptual image features.

Significant improvements were then brought to the
learner component of the RF mechanism. Several is-
sues were addressed, including the small sample size
problem that is severe for RF during the first itera-
tions and the differentiated treatment of the “irrel-
evant” examples. Generalization can be very poor
when only a small amount of high-dimensional la-
beled data is available; this difficulty can be allevi-
ated by finding appropriate solutions for dimension
reduction or for increasing the number of labeled ex-
amples. In (Tao et al., 2006), the random subspace
method for feature selection was combined with en-
semble learning (asymmetric bagging) to improve the
stability of SVM learning in the early RF iterations
and to balance “relevant” and “irrelevant” examples.
Co-training, a semi-supervised learning method ex-
ploiting the complementarity of several learners for
enhancing the training data, was jointly employed
with the random subspace selection in (Li et al.,



2006). Note that the use of lower-dimensional fea-
tures can also diminish the cost of kernel computa-
tions and the number of support vectors, thus con-
tributing to a reduction in the cost of the selection
stage (which nevertheless increases linearly with the
size of the database). Motivated by the early analy-
sis in (Zhou and Huang, 2001) highlighting the differ-
ent nature of “relevant” and “irrelevant” feedback, a
differentiated treatment of the items marked as “ir-
relevant” was proposed in (Tao et al., 2007) based
on the kernel biased marginal convex machine. An
alternative solution, introducing orthogonal comple-
ment component analysis, is suggested in (Tao et al.,
2008). For both proposals, learning is performed in
a reduced space, which brings in the corresponding
advantages.

We address here the scalability of RF by attempt-
ing to make the complexity of the selection stage in-
crease sublinearly with the size of the database. This
relies on an index structure that is computed prior
to any feedback rounds, so it cannot consider many
alternative sets of features, as would be required by
approaches that select different sets of features dur-
ing the iterations of an RF session. This explains why
we consider in the following the SVM-based active RF
method using the MAO selection criterion.

To implement MAO, a larger set of ambiguous un-
marked items is selected first. Then, the low redun-
dancy (MAO) selection is built from this set by it-
eratively choosing as a new example the item repre-
sented by the vector x; that minimizes the highest
of the values taken by K(x;,x;) for all the x; exam-
ples already included in the current MAO selection:
X; = argmin, g max; K(x,x;), where S is the set of
items not yet included in the current MAO selection
and x;, ¢ = 1,...,n are the already chosen candi-
dates. Note that the items that are most likely to be
“relevant” are those that are farthest from the cur-
rent discrimination frontier, on the “relevant” side.

In the following we call “frontier” queries (FQ)
those selecting the items whose feature space repre-
sentations, ¢(x), are closest to the hyperplane (on
either side), and “maximum” queries (MQ) those se-
lecting items whose feature space representations are
farthest from the hyperplane, on the “relevant” side.

2.2 Index structures for relevance

feedback

Before describing the new method, we shortly present
here existing proposals addressing the scalability of

RF. In (Peng and Heisterkamp, 2003) RF is per-
formed with 1-class SVM. The support of the distri-
bution of “relevant” examples is described in feature
space by the smallest sphere containing the repre-
sentations of these examples. The selector does not
follow an active learning approach: it must simply re-
turn the unmarked items whose representations are
the closest to this sphere. To do this, the authors
suggest to build an M-tree in the feature space and
to perform standard ENN retrieval using the center
of the sphere as a query, which allows to speed up
the selection stage by a factor of 2 to 3. Better re-
sults are obtained by the method proposed in (Heis-
terkamp and Peng, 2003), where a vector approxi-
mation file (VA-file) is defined in the feature space
of a kernel (KVA-file) and employed with the same
type of point-based queries. The VA-file method com-
bines a sequential scan of the quantified data with a
full search in the pre-selected data. Since the fea-
ture space induced by the kernel function can be
infinite-dimensional, to build a VA-file the authors
select a reduced set of orthogonal basis vectors in
this space. Both solutions provide a speedup of the
selection stage of every RF round. But since they
do not exploit the information provided by the neg-
ative examples, 1-class SVM do not perform as well
as 2-class SVM with active learning in identifying the
target of the user.

A solution was proposed in (Panda and Chang,
2005), (Panda et al., 2006) for 2-class SVM with ac-
tive learning. The selection stage for active learning
appears to rely on the use of clustering in feature
space and on the selection of the clusters that are
nearest to the hyperplane corresponding to the dis-
crimination frontier in order to answer FQs. A new
index structure, KDX, is introduced for processing
MQs: since for most of the kernels employed for RF
one has K(x,x) = « for some fixed «, the feature
space representations of all the items in the database
are on a hypersphere of radius a. These representa-
tions are then uniformly distributed in rings around a
central vector, and these rings are indexed according
to the angle to the central vector. A second index is
used within each ring. For a given MQ query, KDX
performs intra and inter-ring pruning. KDX performs
well for MQs, but the principle appears difficult to
extend to FQs that are our main focus here.

Finally, in (Panda and Chang, 2006) the authors
suggest to remain instead in the input space (space of
the item descriptors) and to use an R-tree or a similar
index structure to answer range queries correspond-



ing to the hyper-rectangles where either positive or
negative examples were already found. However, the
input space can also be high-dimensional (e.g., the
dimension of typical image descriptors is between 20
and a few hundreds), so an R-tree can hardly be ex-
pected to perform well.

Section 3 presents the scalability solution we put
forward for FQs, relying on a feature space M-tree
and kNN retrieval algorithms for hyperplane queries.
But first, we briefly remind in the following what an
M-tree index is and how exact and approximate kNN
retrieval is performed with such an index for point
queries.

2.3 M-tree for exact and approximate
search

The M-tree index structure was introduced in (Zezula
et al., 1996), (Ciaccia et al., 1997) to address cases
where the representation space is not a vector space,
but is only endowed with a metric structure. The
M-tree and the associated retrieval methods rely on
the properties of a metric, the triangular inequality
being especially important. We only provide here a
very brief description of kNN retrieval, the reader
should refer to (Zezula et al., 1996), (Ciaccia et al.,
1997) for further details.

Let @ be the query object (only point queries are
handled), O, the parent object of the current node N,
O, a rooting object belonging to node N, r(O,.) the
covering radius of O, and T(0O,) the sub-tree having
O, asroot. Retrieval is based on the following results:

1. If d(Oy, Q) > r(Q) + r(O,), then it is safe to
prune T'(O,) since d(O;, Q) > r(Q) for each ob-
ject O; in T'(O,.).

2. I |d(O,, Q) — d(Oy, Op)| > r(Q) +7(O,), then it
is not even necessary to compute d(O,, Q) since
d(O,,Q) > (0, Q)—d(O,,0p)|, s0 d(O,, Q) >
r(Q) + r(0;).

To answer kNN (or “top-k”) queries, the method in
(Ciaccia et al., 1997), (Zezula et al., 1996) makes use
of a priority queue, PR, of pointers to active sub-trees
(where objects satisfying the query can potentially
be found) and of a k-elements array, NN, for stor-
ing neighbors by increasing order of their distance to
the query. Below, dumin(T(0;)) = max{d(O,,Q) —
r(0,),0} is the lower bound for the distance be-
tween any object in T(0,) and Q, dmax(T(0,)) =
d(Oy, Q) +r(0,) is the upper bound for the distance
between any object in T(0,) and @, and dj, is the

largest distance in NN. The value of di can be seen
here as a dynamic search radius. Nodes in PR are
sorted by increasing order of their d,;, values.

The algorithm for answering kNN queries begins
with an empty NN array, with PR containing the root
node and with an infinite value for the dynamic search
range di. When a node in the PR list is processed it
is removed from PR and all its non-leaf children are
added to PR. Objects (leaves in the M-tree) are pro-
gressively found and, if their distance to the query
is lower than the current value of dj, are introduced
in the NN array (an object already in the array may
have to be removed) and dj, is updated. Search stops
when the di, of the first entry in PR (the entry with
the lowest dmin) is higher than the distance to the
query of the k-th entry in NN (the entry having high-
est distance to the query): none of the remaining
nodes in PR can contain a neighbor that is closer to
the query than one of the k neighbors already in NN.
The use of the dynamic range d; and of the trian-
gular inequality, supporting the second result in the
previous enumeration, makes kNN retrieval with an
M-tree more efficient than the method put forward in
(Hjaltason and Samet, 1995).

To achieve yet faster retrieval with the M-tree, ap-
proximate search methods were developed. The Ap-
proximately Correct Nearest Neighbor (AC-NN) al-
gorithm introduced in (Arya et al., 1998) was applied
to the M-tree in (Ciaccia and Patella, 2000). By ac-
cepting as approximate NN for a query an object that
is within a distance lower than (1+ €)dj, to the query,
where dj, is the distance to the true NN and ¢ > 0,
search can be stopped earlier, which produces a rela-
tive improvement in retrieval speed.

In (Ciaccia and Patella, 2000) the authors notice
that kNN retrieval using the dynamic radius algo-
rithm presented above can be described as having two
stages: during the first stage, exact (or approximate)
nearest neighbors are found; during the second stage,
further nodes are retrieved from the priority queue
PR in order to check whether the neighbors already
found are the nearest indeed. Difficult retrieval cases
are then considered, where the distribution of the dis-
tances between the items in the database is concen-
trated (but not to the point where NN queries become
meaningless) and produces significant overlap in the
M-tree, with the important consequence of reducing
the selectivity in processing queries. In such diffi-
cult cases, the second stage can become much longer
than the first because, given the significant node over-
lap, the priority queue still contains many candidate



nodes when the nearest neighbors are found; however,
below a certain search radius, the probability of find-
ing better neighbors in the remaining nodes becomes
negligible. In brief, many candidate nodes intersect
the search range but the intersections are empty.

The Probably Approximately Correct (PAC-NN)
algorithm put forward in (Ciaccia and Patella, 2000)
attempts to provide a solution to this problem by
shortening the second stage of the retrieval process.
Besides the use of the accuracy parameter e defining
the quality of approximation (as for AC-NN), a confi-
dence parameter § is introduced. The PAC-NN algo-
rithm attempts to guarantee with probability at least
1—¢ that the “relative error” e will not be exceeded by
the approximate nearest neighbor returned. For this,
search is stopped when the dynamic search radius be-
comes lower than the bound (1 + €)ry 5, where rg 5 is
such that P(3o, d(g,0) < rgs) < 6 and has to be
estimated from the data, prior to processing queries.
PAC-NN generalizes both the AC-NN retrieval, ob-
tained when § = 0, and the Correct Nearest Neighbor
(C-NN) retrieval (e = 0 and § = 0). PAC-NN avoids
searching “too close” to the query object and uses the
distance distribution to the query object to derive a
stopping criterion.

3 Hyperplane queries in an M-
tree

3.1 Principle of the method

Relevance feedback is performed here using 2-class
SVM and active learning. To speed up the selection
stage of every feedback round, we adapt the M-tree
to hyperplane queries in the feature space and make
use of the kernel trick for reducing distance computa-
tions in the feature space to kernel computations in
the input space. More specifically, an M-tree is built
in the feature space (FSM-tree in the following) asso-
ciated to the kernel and the kNN of the hyperplane
that is the frontier given by the SVM (see Fig. 3) are
retrieved. We speak of hyperplane queries (or, more
generally, FQs).

Building the index structure in the feature space
rather than in the input space has two potential ben-
efits. First, the query has a simpler expression in
the feature space: a hyperplane in the feature space
usually corresponds to a complex nonlinear surface in
input space. Second, the input space does not need
to be a vector space: as long as a positive definite
kernel can be defined (or specific conditionally pos-

itive definite kernels, see the appendix), a distance-
based index like the M-tree can be used in feature
space. Many such kernels were put forward for sets,
sequences, graphs, etc. With all these kernels, index
construction and index-based retrieval algorithms re-
main unchanged.

+ -
o .--7 +
o _ .- N
R e
[P RN

Figure 3: The frontier in input space (left) of the
class of “relevant” images, as estimated by the SVM,
is mapped to a hyperplane that is used as a query in
the FSM-tree (right).

However, feature spaces are usually of much higher
dimension than the input space. But since the di-
mension of the input space is already very high, the
impact of this difference may not be very important.
In fact, for several of the kernels employed in the fol-
lowing, the feature space is infinite dimensional; but
the distribution of distances computed in the feature
space is not very different from the distribution of dis-
tances in the input space, so metric indexing should
be nearly as effective in feature space as in input
space. It is important to note that, given the high
dimension of both spaces, component-based indexing
methods (SR-tree, VA-file, etc.) cannot be expected
to perform well.

The use of hyperplanes as queries also raises sev-
eral difficulties. First, dimension reduction methods
cannot be employed: hyperplanes are not necessarily
orthogonal to the reduced space, so items can be close
to the query in original space and far from it in the
reduced space; filtering in the reduced space can thus
produce false negatives. The same difficulties occur
if one attempts to use index structures that rely on
various types of low-dimensional projections.

Second, a hyperplane query can be expected to be
much less selective than a point. As will be seen
later, approximate kNN retrieval does provide a prac-
tical solution to this problem. Third, for many index
structures the computations involved can be complex;



the M-tree offers simple computations of the minimal
or maximal distance between a node (defining a sub-
tree) and a hyperplane

As an alternative, the kNN retrieval proposal in
(Hjaltason and Samet, 1995), which also applies to
queries having a spatial extension, could be consid-
ered and adapted for feature space indexing. Our
choice of extending to hyperplane queries in a fea-
ture space the kNN retrieval with an M-tree (orig-
inally designed for point queries) was motivated by
the comparatively higher efficiency of the kNN algo-
rithm of the M-tree.

The first step of our method is the construction
of an M-tree in the feature space (FSM-tree) associ-
ated to the kernel employed for the SVM. This re-
quires the computation of Euclidean distances be-
tween items after their mapping, by ¢, to the fea-
ture space. Since for most usual kernels the fea-
ture space has infinite dimension, the computation
of the distance cannot be directly performed in the
feature space. Fortunately, the kernel trick allows to
reduce this to a computation in input space. Indeed,
if the kernel K is positive definite then K (x1,x2) =<
#(x1)), p(x1)) >, where x; and x5 are two items in
the input space. The distance between their images in
e spuce (905, 60) = L) o) =
V< (6 d(x2)), (p(x1) — d(x2)) >.  After ex-
panswn and substitution using K, the following sim-
ple expression is obtained:

d(p(x1), 6(x2)) =
= \/K(Xl,X1) + K(XQ,XQ) — 2K(X1,X2)

(1)

Now, consider the hyperplane H in feature space
associated to the discrimination frontier of an SVM.
It is defined by (see (Scholkopf and Smola, 2002))

Zaz Y K

where x; are the support vectors, y; the associated
labels (+1 or —1), a; the corresponding coefficients
and b the offset. Then, for some point p in the orig-
inal space, the distance in feature space between its
image ¢(p) and the hyperplane H, d(p,H), can be
written as

) + b|=0 (2)

(P, xi)

| iy K(p,x;) + b
\/Z” @i aj y; yj K (xi, %)
where the denominator is the norm of the vector

defining the hyperplane in feature space and x;, x;
are support vectors.

d(p,H) = 3)

r(H) ‘

Figure 4: A sub-tree can be safely pruned if it does
not intersect the query range, d(O,,H) > r(H) +
r(Oy).
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(07“’0 ) > d(OINH)
(OT, H) are always true,
») does not necessarily

Figure 5: While d(O,, H) +
and d(Op, H)+d(O,,0,) >
d(O,, H) +d(0y, H) > d(Oy, 0
hold.

Consider now an FQ of range r(H), i.e. attempt-
ing to retrieve the items whose image in feature space
is within a distance range of r(H) to H. If p cor-
responds to a routing node in the M-tree, then the
sub-tree under the node of center p and radius r can
be further ignored (pruned) if d(p,H) > r(H) +r
(Fig. 4). With the same notations as for the M-tree,
it is easy to show that:

1. If d(O,,H) > r(H) + r(O,) then the sub-tree
T(O,) can be safely pruned since, for each object
0, in T(0,), d(O;,H) > r(H).

2. Unfortunately, d(O,,H) > |d(Op, H) —
d(0,,0,)| is false (Fig. 5) and only
d(0,,H) > d(0,,H) — d(O,,0,) holds, so
it is actually necessary to compute d(O,, H)
when d(O,, H) — d(O,,0,) < 0 (i.e. in more
cases than for classical point queries).

3.2 Search algorithms
plane queries

with hyper-

The algorithms for answering exact kNN frontier
queries can now be written. Since the FSM-tree is
used to select, at every feedback round, new (un-
marked) images, a mechanism is needed for excluding
the images that were marked at previous rounds; it
will be considered that the test predicate isUnmarked



only returns true for unmarked images. With the
notations from the previous section and following the
presentation of the original ANN search in (Zezula
et al., 1996), (Ciaccia et al., 1997), the method for
answering kNN frontier queries is given by Algo-
rithms 1, 2 and 3.

Algorithm 1 KNNFS (T: rootNode, H: query, k:

nbNeighbors)

I: PR = [T, _]

2: NNJ[i] = random set of k items

3: while PR not empty and NN[k].d

> din(head(PR)) do
4:  NextNode = KNNChooseNode (PR)
5:  KNNFSNodeSearch (NextNode, H, k)
6: end while

Here, NN[k] .d is the distance field of the last entry
in NN (i.e. the leaf entry having highest distance to
the query among the entries already examined) and
dmin (head (PR)) is the dy;y field of the first entry in
the PR list (i.e. the non-leaf entry having lowest din
among the entries not yet examined).

Algorithm 2 KNNSChooseNode
tyQueue): node
1: dmin(T(0})) = min{dmin (T(0,))} over all entries
in PR
2: remove entry [T(OF), dmin(T(0}))] from PR
3: return T(O})

(PR: priori-

To obtain the corresponding approximate kNN
retrieval versions (see Section 2.3), the following
changes should be performed:

e For AC-NN search, in Algorithm 1, line 3,
NN[k].d is replaced with NN[k].d/(1 + €) and
in Algorithm 3, lines 3 and 6, dy, is replaced with
di/(1+¢€).

e For PAC-NN, in addition to the changes corre-
sponding to AC-NN, search should be immedi-
ately stopped in Algorithm 3 if the dj value re-
turned at line 16 satisfies di < (14 €)rgs.

Based on the same principles, we also developed
similar algorithms for “maximum” queries. Our im-
plementations rely on the M-tree package (Patella
et al., 2000).

Algorithm 3 KNNFSNodeSearch (N:
query, k: nbNeighbors)

node, H:

1: if N is not a leaf then
2:  for all O, € N do
if d(Op, H) —d(O,0,) < di, +1(0,) then
Compute d(O,., H)
Compute dmin(T(0,))
if dmin(T(0,)) < di, then
Add [T(O,),dmin(T(0,))] to PR
end if
end if
10: end for
11: else
12:  for all O; € N do
13: if isUnmarked(O;) A d(Op, H)—d(0O;,0,) <

d;, then
14: Compute d(O;, H)
15: if d(O;, H) < dj, then
16: dr = NNUpdate ([Oj, d(O],H)D
17: end if
18: end if
19: end for
20: end if

4 Experimental evaluation

To evaluate the method put forward above, experi-
mental comparisons were performed with exhaustive
search on two ground-truth image databases, contain-
ing respectively 3,744 and 110,000 images. The use
of a ground truth is required because the user is em-
ulated during the RF sessions: the membership of
images to the classes of the ground truth must be
known by the emulated user if she is to provide reli-
able feedback.

The efficiency of our method was evaluated against
exhaustive (sequential) search. The existing propos-
als dealing with the retrieval of the nearest points to a
class frontier are (Panda et al., 2006) and (Panda and
Chang, 2006); the very brief description of the clus-
tering method in (Panda et al., 2006) does not enable
reimplementation and the data structures suggested
in (Panda and Chang, 2006) for indexing in the input
space, such as the R*-tree, are known to be ineffec-
tive for high-dimensional input spaces (as the image
description space we employ).

4.1 Experimental setup

To enable future comparisons, the databases em-
ployed are publicly available and have a non-



controversial ground truth. Since RF algorithms
must contribute to a reduction of the semantic gap,
it is necessary to avoid having too many “trivial”
classes, for which simple low-level visual similarity is
sufficient for correct classification. For an evaluation
of RF it should nevertheless be possible to identify
the target class relatively well with a limited num-
ber of positive and negative examples. With these
criteria in mind, the two databases retained are:

e GT72 (3744 images), composed of the 52 most
difficult classes—in terms of internal diver-
sity within classes and of separability between
classes—from the well-known Columbia color
database (COIL 100), where each class contains
72 images.

e Amsterdam Library of Object Images (ALOI,
110,250 images, (Geusebroek et al., 2005)), a
color image collection of 1,000 objects of various
complexities where the viewing angle, illumina-
tion angle and illumination color for each object
were systematically varied in order to produce
about 110 images for each object. Similarity-
based retrieval is more difficult for ALOI than
for GT72 because there is more diversity within
each class and there are many more classes.

The following generic descriptors are employed
for the visual content of the images: a Laplacian
weighted color histogram (Boujemaa et al., 2001),
a probability weighted color histogram (Boujemaa
et al., 2001), a classic HSV color histogram, a texture
histogram (Ferecatu, 2005) relying on the Fourier
transform and a shape feature (Ferecatu, 2005) in-
spired by the Hough transform. Weighted color his-
tograms are a low-cost solution for taking into ac-
count local color uniformity. The texture histogram
is based on the application of the Fourier transform to
an image and describes the presence of different fre-
quencies along various angles. To obtain the shape
feature for a color image, the gray-level image is first
computed, then the direction of the gradient is found
for every pixel and a reference point is considered; for
every pixel, the angle of the gradient and the length of
the projection of the reference point along the tangent
line going through the pixel position are counted in
a joint histogram that is the shape feature. Previous
evaluations (Ferecatu et al., 2004), (Ferecatu, 2005)
have shown that the joint use of these descriptors
helps avoiding the numerical gap for generalist im-
age databases like the ones we employ here, i.e. suf-
ficient information allowing to discriminate between

images is provided by these descriptors. Linear PCA
is applied to the descriptors in order to reduce the
dimension of the joint descriptor from more than 600
to about 150.

The first kernel we consider is the Gaussian one (or
Radial Basis Function, RBF in the following figures),
K(x;,x;) = exp (— 7||x; — x;|?). This classical ker-
nel, often employed by default, is highly sensitive to
the scale parameter v (the inverse of the variance of
the Gaussian). Preliminary experiments performed
with exact retrieval in order to select the optimal ~y
parameter for the RBF kernel produced v = 0.1 for
the GT72 database and v = 0.5 for ALOI.

The angular kernel (ANG in the figures),
K(x;,x;) = —|x; — x|, introduced for SVM
in (Scholkopf, 2000), is a conditionally positive
definite kernel (Berg et al., 1984). As shown
in (Scholkopf, 2000), the convergence of SVM re-
mains guaranteed with this kernel and distance-based
methods in feature space can still be applied. Since
K(x,x) = 0, Vx € Z, the angular kernel can be em-
ployed in our setting, as explained in the appendix.

The use of the Laplace kernel (LAPL in the
figures), K(x;,x;) = exp( — yllx; — xjH), was
advocated for histogram-based image descriptors
(Chapelle et al., 1999). The scale parameter is ~y
again and was fixed, following (Ferecatu et al., 2004),
to 0.001; with such a small value for v the “angular”
part of the Laplace kernel entirely covers the domain
of the input data, so this kernel is expected to behave
very similarly to the angular kernel.

In (Ferecatu et al., 2004), the angular and Laplace
kernels were shown to provide consistently better re-
sults than the RBF kernel for image retrieval with
relevance feedback. It was nevertheless decided to
compare them again here in order to study the rela-
tion between kernel properties and the speedup ob-
tained. Note that for the three kernels the feature
space has infinite dimension. The L1 norm was used
in all cases.

An FSM-tree was built for every database and ker-
nel, then all the experiments were performed. Fol-
lowing (Ciaccia et al., 1997), (Ciaccia and Patella,
2000), the parameters employed for the construction
of the M-tree in feature space are: (i) number of can-
didates for sampling: 10% of the number of items (im-
ages); (ii) minimum node utilization: 0.4; (iii) promo-
tion method: confirmed; (iv) root promotion method:
minimal radius; (v) confirmed promotion method:
minimal maximal radius (mM_RAD); (vi) mM_RAD
promotion method: average; (vii) split method: hy-



perplane. On a standard PC running Linux, the con-
struction of an FSM-tree takes about 10 seconds for
the GT72 database and 2 minutes for the large ALOI
database.

At every feedback round the selector must return
s = 9 images that the emulated user should mark as
“relevant” or “irrelevant”. To implement the MAO
selection criterion, for both databases the system
must first return the £ = 20 most ambiguous images
(nearest to the query hyperplane) and then choose
among them the s = 9 least redundant ones. Every
search session is initialized by considering one “rele-
vant” image (belonging to the target class) and s — 1
randomly selected “irrelevant” images. The final goal
of every search session is to rank the “relevant” im-
ages before the “irrelevant” ones. To evaluate the
speed of improvement of this ranking, a precision
measure is computed as follows: let n be the num-
ber of images in the target class; at every RF round,
count the number of images from the target class that
are found in the n images considered as most posi-
tive by the current decision function of the SVM; this
number is then divided by n. The “mean precision”
reported is obtained by averaging the precision mea-
sure defined above over all the RF sessions.

4.2 Evaluation results

For both databases, the exact retrieval with the FSM-
tree for kNN hyperplane queries produced an insignif-
icant speedup with respect to the evaluation of all
the items in a database. This result was expected,
given the challenging conditions: relatively concen-
trated distribution of distances (implying low selec-
tivity for the FSM-tree), with hyperplane queries also
having a lower selectivity than point queries.

The approximate retrieval methods, AC-kNN and
PAC-kNN, were evaluated next. If the returned im-
ages are only approximate kNN of the query hyper-
plane, then these images are suboptimal in conveying
information regarding the target class from the user
to the system, so a loss in precision can be expected.
The gain in retrieval speed during the selection stage
of every feedback round was measured using the ra-
tio of distance computations with the FSM-tree to
distance computations with exhaustive search: the
lower the ratio, the higher the gain in retrieval speed.
The corresponding loss in precision was evaluated by
depicting, for each kernel, both the evolution of the
mean precision with the exact kNN retrieval and with
PAC-kNN retrieval. Every couple of values for the €
and § parameters define a specific trade-off between
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the gain in retrieval speed and the loss in precision.

With AC-ENN, a significant speedup was only ob-
tained for high values of ¢, with a strong negative im-
pact on the precision measure defined above. There
was no valuable trade-off between speedup and pre-
cision loss, so these results are not reported. The
values of the € and 0 parameters defining the PAC-
kNN approximation were then explored. The gain
in retrieval speed with ¢ = 0.1 and § = 0.15 is sig-
nificant, as shown in Fig. 6 for GT72 and Fig. 7 for
ALOI. Since both databases hold into main mem-
ory, the speedup evaluated only concerns the number
of distance computations and directly translates into
gains in computation time. Notably, with PAC-kKNN
the system provided answers in real-time even on the
large ALOI database.
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Figure 6: For the GT72 database and the 3 kernels
(ANGular, LAPLace and RBF), the ratio of distance
computations with the FSM-tree and PAC-ENN to
distance computations with full evaluation (sequen-
tial scan) as a function of feedback rounds.

The loss in precision for these values of € and § is
limited, as shown in Fig. 8 for GT72 and in Fig. 9 for
ALOI, so the trade-off between speedup and loss of
precision can be considered interesting.

The Laplace and angular kernels behave similarly,
as expected for v = 0.001. Note that for the angu-
lar kernel d(¢(x;), #(x;)) = +/||%x; — x;|, which links
the distribution of distances computed in the feature
space to the distribution of distances in the input
space.
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distance computations with full evaluation (sequen-
tial scan) as a function of feedback rounds.
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Figure 8: For the GT72 database, evolution of the
mean precision obtained with exact search (empty
marks) and PAC search (filled marks).

5 Discussion

The RBF kernel has a specific behavior, as seen from
Fig. 6 to Fig. 9: the speedup is much higher than with
the other two kernels, but the precision remains low
and hardly improves after more feedback rounds. The
RBF kernel has a fast decrease, so it is significantly
different from 0 only at a distance lower than about
three times its standard deviation %; to make class
discrimination possible, the standard deviation must
remain small. Therefore, the resulting SVM decision
function is different from b only in the vicinity of the
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Figure 9: For the ALOI database, evolution of the
mean precision obtained with exact search (empty
marks) and PAC search (filled marks).

positive or negative examples, as shown in Fig. 10.
For small b, approximate kNN retrieval quickly finds
k neighbors of the hyperplane query, but these se-
lected items can come from almost anywhere since
the decision function has a very small value for most
of the unexplored input space. The selection is thus
almost random and does not allow to improve preci-
sion with more feedback rounds.

R

Figure 10: For very local kernels, the decision func-
tion of the SVM can be close to 0 (light color in this
picture) for a large part of the input space, so very
many items can be mapped to the vicinity of the dis-
crimination hyperplane in feature space.

The contribution of the approximation (PAC-kNN)
is significant in speeding up retrieval, while maintain-



ing the quality of retrieval, in the very challenging
conditions found here. As shown in Fig. 11, even if
many spheres intersect the lower bound for the dy-
namic search range r, s, the improvement expected
by pursuing the search under this bound can be very
limited.

Figure 11: Even if many spheres intersect the query
range, the improvement with respect to the approxi-
mate k nearest neighbors can be very limited. This is
the typical case when the selectivity of the FSM-tree
is low.

6 Conclusion

We address the scalability of active learning based
on 2-class SVM and applied to content-based image
retrieval with relevance feedback. We put forward
a search method that consists in performing approxi-
mate kNN hyperplane queries with an FSM-tree built
in the feature space associated to the kernel of the
SVM. The index and the query processing algorithms
being defined in the feature space, the method can
be directly applied to various types of data as long as
an appropriate positive definite or conditionally posi-
tive definite kernel exists for the corresponding input
space.

The evaluations performed show that search is sig-
nificantly faster with this index, allowing real-time
selection of the items returned to the user from a
database of 110,250 images. These results also point
out that approximate search can behave well in the
challenging conditions of high (or infinite) dimen-
sional spaces and less selective hyperplane queries.
This method for the fast identification of ambiguous
unlabeled examples is not limited to the RF context
but can be employed for active learning in general.
We are currently studying whether the low redun-
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dancy condition could be used during the search pro-
cess rather than a posteriori. Also, it is important
to identify kernels that can provide a better trade-off
between the speedup obtained and the loss in preci-
sion.
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Appendix: Extension to a class
of conditionally positive definite
kernels

To extend the proposed approach from positive defi-
nite kernels to a class of conditionally positive definite
(cpd) kernels, it is sufficient to show how to compute
the distance in feature space between two items (1)
and between an item and a hyperplane (3) for that
class of cpd kernels.

All cpd kernels can be used with SVM, as
(Scholkopf, 2000) shows. If K is cpd and K(x,x) =
0, K(x,y) # 0,Vx,y € Z,x # y, then the asso-
ciated kernel K (x1,%;) = K(x1,%2) — K(x1,%¢) —
K(x2,%0) + K(x0,%0) for some xo € H is positive
definite, as shown in (Berg et al., 1984).

Let &; and b be the parameters estimated for the
SVM when K is substituted to K. As shown in
(Boughorbel et al., 2005), a; = «;, i.e. the sup-
port vectors and the associated weights are the same.
It can be shown that b = b + Yo i K (x4, x0).
These two properties prove that when using ei-
ther (K,a;,b) or (K,d;b) in (2) the same deci-
sion function is obtained. Since the associated ker-
nel K is positive definite, it can be used as previ-
ously in (1) to derive the distance d(¢(x1), ¢(x2)) =

\/IN((Xl7 Xl) + R(Xg, Xg) — 2R(X1, Xg). After substi-

tution of K and simplification, we obtain the simple
expression d(¢(x1), p(x2)) = /—2K(x1,%x2). Cpd
kernels for which K(x,x) =0, K(x,y) # 0, Vx,y €
Z,x # y can thus be interpreted as being directly
related to the Euclidean distance associated to the
inner product K(x,y) = (¢(x), 4(y)).

This also implies than (K, d;, lN)) and (K, ay,b) are
equivalent in defining the distance between an item
and an hyperplane following (3).

To summarize, the two key distances that are suf-
ficient for the proper definition of our approach can
be computed equally well for those conditionally posi-
tive definite kernels for which K (x,x) = 0, K(x,y) #
0, Vx,y e, x#Yy.
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