
1

Rapport Interne n° 236, Laboratoire d’ Informatique, Université de Tours, octobre 2000.

A web-based approach to adaptive information structuring

M. Crucianu, E. Martin, G. Verley
Laboratoire Informatique, Université de Tours

Ecole d'Ingénieurs en Informatique pour l'Industrie
64, avenue Jean Portalis, 37200 Tours, FRANCE

{ crucianu, verley} @univ-tours.fr
http://www.rfai.li .univ-tours.fr/

Abstract: We focus here on a single aspect of adaptive hypermedia, namely the adaptive
structuring of information, and get into details regarding the characteristics of the system we
developed and the experiments we performed. We end by discussing possible extensions of
our system, and outline existing and new directions in the development of adaptive
hypermedia.

Keywords: adaptive hypermedia, information structuring, knowledge management.

1 Introduction

Multimedia systems allow users to consult and manipulate different types of media, such as
text, sound, video, computer graphics and animation. When several multimedia documents
also contain explicit li nks to each other, one can speak of hypermedia. The increasing
popularity of the World Wide Web highlights the growing importance of hypermedia systems
for every domain of human activity. While originally developed as tools for user-driven and
interactive access to information, hypermedia systems proved to be the enabling technology of
a fast and pervasive evolution. However, by giving general access to a huge mass of
information, this technology also reinforces and generalizes the diff iculties related to the
informational overload. The paradoxical but commonly recognized consequence of such an
overload is the underuse of information.

Such diff iculties can only be alleviated by the development of eff icient information
management systems, able to provide the appropriate information at the right moment and in a
suitable shape. Adaptation is one of the mechanisms which should allow hypermedia systems
to meet the abovementioned challenge.

Work on adaptive hypermedia systems began in the early days of the WWW (see
[Brusilovsky, 1996] for a comprehensive review of this early work) and was mainly motivated
by the development of adaptive online training environments (see e.g. [De Bra and Calvi,
1998]).

Our purpose here is to put forward an approach to the development of specific
adaptive hypermedia systems. We then outline several promising research directions in this
domain. A more comprehensive discussion of recent developments is left for a later account.

2 Adaptive information structuring and knowledge management

The work presented in this report is part of an on-going project seeking to provide computer
assistance for the construction and management of complex knowledge bases. Here, we are
attempting to automatically adapt the structure of the knowledge base to changes in its content
and to evolutions in its usage. The knowledge base is implemented as a fine-grained database
which interacts with the users through an HTTP server. Such bases are usually employed for

2

the sharing of distributed knowledge across an entire organization, for distance learning and,
increasingly, for common interest groups on the Web.

2.1 General ideas

The diff iculties encountered by the managers and the users of large knowledge bases
implemented as (static or dynamic) Web sites highlight the need for such adaptive behaviour.
Indeed, for most bases, there are significant differences between their original design and their
usage. These differences usually increase with changes in the contents of the base and the
evolution of its use. The structure of the knowledge base becomes quickly outdated. The users
have trouble finding and putting together the information they need. The manager of the
knowledge base can no longer make sense of the paths followed by the users. Even when good
mining tools are available, manually changing the structure of the base in accordance with the
results produced by these tools can be very time consuming.

As shown by various experiments, global searches are not the solution, mainly because
it is very diff icult to control the accuracy and the relevance of the results. But global search
mechanisms also evolve and, interestingly, tend to become adaptive. Note also that exhaustive
search must sometimes be present as a guarantee for completeness.

Our approach here is to assemble a knowledge base out of f ine-grained information
bricks (we shall call them k-bits and consider they contain no internal li nk structure), and let
its usage adaptively build up and modify a structure, starting from an initial design. A
software changes the structure of the knowledge base, structure which is implemented by the
interface between the database and the HTTP server. These changes are performed
periodically and are based upon the information collected by the server (the logfiles of the
HTTP server in the current implementation). We are not concerned here with the adaptation of
the base to individual users, but we focus instead on global changes from which every (or
most) user(s) can benefit.

Note that the decision to make changes only to the interface between the database and
the Web server is limiti ng in general, but this effect is very low if the database contains only
collections of k-bits, as the k-bits lack internal li nk structure.

Among the many structural changes one can think of, we decided to focus on the
following ones:

1° Creating short cuts: the purpose is to selectively diminish the length of the paths the
users must follow in order to get the information they need. The decision to create
short cuts is based on the time interval between two successive queries and also
depends on the local structure of the graph of queries.

2° Aggregating fine-grained information bricks: the purpose is to provide at once all (or
at least a big chunk of) the information a user would otherwise retrieve in several
queries. By using a fine-grained database one avoids finding overwhelming, loosely
related details in the answer to a query. Also, fine grains can be readily reused or
discarded. However, aggregating these fine grains can be very time-consuming, and
having a software assistance here really helps. The decision to aggregate is based on
the presence of strong correlations between queries and makes also use of the time
stamps.

3° Adding links for frequent searches: the purpose is to make frequent queries explicit.
When the user doesn't see an explicit li nk to the information of interest, he will make
use of the keyword-based search mechanism provided by the site. However, there are
usually several diff iculties associated to the search (keywords, relevance and accuracy
of the results). Corresponding to the most frequent searches, we are simply adding a

3

query which brings only a selection of the results. This selection is based on a measure
of popularity of the answers returned by the search mechanism. When a frequent
search gives no result (or very few, according to some measure to be defined), the
system can trigger specific requests to content providers/developers.

These changes are well adapted to our use of a fine-grained database, complement each other
and achieve a good level of completeness with regard to our purpose.

All the previous work concerning the off line global improvement of a Web site, as
opposed to dynamic (within a session or between sessions) adaptation to individual users, is
related to our work. We can mention here the WebWatcher in [Armstrong et al., 1995], the
work on adaptive web sites in [Perkowitz and Etzioni, 1998] or the "footprints" in [Wexelblat
and Maes, 1997]. However, in our work the site is dynamic (based on a database) instead of
being just a collection of static pages. Then, our choice of the changes to be applied is new,
and coherent with the declared purpose of adaptively evolving a knowledge base out of a fine-
grained database. Also, the outcome of the changes we retained here is more than just
providing navigation assistance, as these changes concern the very way the available
information is structured.

Note that the structure of the knowledge base continuously evolves, trying to follow
changes in the contents of the base and the evolution in the ways it is used. This adaptation
process obviously has a moving target.

2.2 Implementation issues

Here, we are attempting to automatically adapt the structure of a knowledge base to changes in
its content and to evolutions in its usage. The knowledge base is implemented as a fine-
grained database which interacts with the environment through an HTTP server.

In our current implementation, the adaptive changes performed by the software to the
structure of the knowledge base do not affect the database itself, but are instead limited to the
interface between the database and the HTTP server.

For the current implementation we decided to let the software act directly instead of
just making suggestions to the manager of the base. To avoid important disruptions of the
existing structure during the test period, the software is simply not allowed to make deletions.
For the final implementation, however, the best choice would probably be a combination of
automatic actions and assistance to the manager of the base.

Our current (toy) implementation makes use of the Internet Database Connector, an IIE
server, ODBC and Access on a Windows NT platform. We made these choices simply
because the testbeds we employed were based on these tools. A migration to PHP, MySQL
and Apache on a Linux platform is under study.

The first implementation was applied to a site developed for the comparison of
learning algorithms (called “Validation” in the following) and to an educational site
concerning computer peripherals (“Webring” in the following). Please note that this report
presents work in progress, so the specifications of the algorithms described here may change
in the latest implementation.

Here is the sequence of operations performed for the creation of short cuts and
aggregates: build a graph representation for the entire site, select the relevant lines in the
logfiles of the HTTP server, identify the user sessions, build the trees corresponding to these
sessions and associate time intervals to individual pages, perform some statistical
computation, select the short cuts and the aggregates, modify the required files of the original
site. Details are given in the following sections.

4

2.2.1 Rules for the creation of short cuts and aggregates

Before presenting the details of the operations taking place, let us remind the principle of short
cuts and aggregates and figure out what kind of information we need.

2.2.1.1 Short cuts

Short cuts have to selectively diminish the length of the paths the users must follow in order to
get the information they need. If the users spend some time reading a page (hereafter called
“ target”) this arguably means they find useful information there but very littl e on some
previous pages (hereafter called “cut”), then a direct link to the page of interest should be
added to the starting page (hereafter called “host”). As an example, if the chain
…[page 1] → 1t [page 2] → 2t [page 3] → 3t [page 4] → 4t [page 5]… appears very often
and if the time spent on [page 1] and [page 4] (t1, t4) is usually high, while the time spent on
[page 2] and [page 3] (t2, t3) is very low, then a link to [page 4] (the target) is added to
[page 1] (the host), right before the link to [page 2] (cut, together with [page 3]). The label and
the content of this new link is the same as the one of the link [page 3]→[page 4]. All of the
pages mentioned here can be either static or dynamic.

li ttle time spent
longer time spent

(a)

(b)

Figure 1: An example of the creation of short cuts. The original architecture of the site is shown in (a), together
with an indication of the time spent on the pages which are frequently retrieved. In (b) several short cuts were

created by the addition of bypass links.

The short cuts are then based on two important assumptions:
1° The longer the time spent by the users reading a page, the more useful the page is.

There is, however, at least one important exception: while pivot pages (containing
almost exclusively links, such as the front page of a portal) are usually useful, frequent
users spend only a few seconds looking for the link they are interested in. But we
believe that short cuts can also be interesting in such cases and, anyway, in the current
approach we only add new links and never remove existing ones, so all the pages we
“bypass” remain available.

2° By processing the logfiles we can find reliable estimates for the mean time spent by the
users on the pages they retrieve. As we shall see later, this is not always the case and

5

we may need some prior information concerning the web site in order to render such
estimates reliable.

The information required for taking the decision to create a short cut and, then, for really
creating it, consists of:

1° The (relative) frequency of the presence of every chain in the sessions of different
users.

2° The mean time spent by the users on every page.
3° The identity of the host page ([page 1] in the example) and the position of the first link

in the original chain ([page 1]→[page 2] in the example; the new link will be placed
right before this link).

4° The content and the label of the new link, both coming from the last of the pages
which were bypassed ([page 3] in the example).

Note that by taking into account only the mean values for the time spent by the users on every
page we may find ourselves in a situation where some of the variances on a chain are so huge
that the mean values become irrelevant. No short cuts should be created in such cases. Even
when the mean values are relevant, the changes we perform may be quite unsatisfying for a
few users, but the adaptation to specific users or groups of users is beyond the scope of this
work.

2.2.1.2 Aggregates

The purpose of aggregating fine-grained information bricks is to provide at once all (or at least
a big chunk of) the information a user would otherwise retrieve by several queries. Indeed, by
using a fine-grained database one avoids finding overwhelming, loosely related details in the
answer to a query. Also, fine grains can be readily reused or discarded.

(a)

(b)

Figure 2: An example of the creation of aggregates. The original architecture of the site is shown in (a), together
with an indication of the correlation between queries. In (b) several aggregates were created.

But putting together all the information a user needs can be fairly time consuming. If many
users accessed the same information bricks through queries launched from a given page, it
would probably be helpful for many other users to find all the information corresponding to
these bricks as an answer to a single query. While the database still contains fine-grained
bricks, an aggregate query is created and returns an aggregate answer. As an example, if when
on [page 1] many users retrieve [page 2] to [page 5], maybe not all of them in the same

6

sequence, it would probably prove helpful i f an aggregate query returning [page 2, page 3,
page 4, page 5] were added as a link on [page 1], right above the links to the individual pages
2 to 5.

The creation of aggregates relies then on the following important assumptions:
1° When building aggregates we can avoid overloading the user with poorly structured

information. This will probably be the case if the database contains fine-grained
information bricks and if we limit the number of bricks in an aggregate.

2° The frequency with which several pages having a common parent appear together in
user sessions is a good measure for the degree to which these pages complement each
other.

3° By processing the logfiles we can reliably reconstruct the user sessions and find the
frequency of retrieval of different pages having a common parent. As we shall see
later, this is not always the case and further prior information concerning the web site
may be required.

The information required for taking the decision to create an aggregate and, then, for really
creating it, consists of:

1° The joint frequency of the presence of pages having a common parent in the sessions
of different users.

2° The graph of the Web site.
3° The identity of the host page ([page 1] in the example) and the position of the link to

the first of the pages in the aggregate ([page 1]→[page 2] in the example; the new link
will be placed right before this link).

4° The content and the label of the new link, both obtained from the links to the pages
composing the aggregate ([page 2, page 3, page 4, page 5] in the example).

In the current approach we only build aggregates composed of two pages. The aggregates can
nevertheless be extended to more than two pages by several iterations of the algorithm.

2.2.2 Building a graph representation for the Web site

In order to be able to build the trees associated to user sessions, we need not only the logfiles
but also a graph representation of the web site. Such a representation is built every time we
want to process new logfiles, since short cuts and aggregates previously obtained modify the
structure of the site. This representation can be huge for dynamic sites and this is why we are
currently looking for alternative methods.

The nodes of the graph correspond to the (dynamically generated) pages and the
(directed) edges to the links between two pages. The structure associated to each node
contains the URL (or the entire query if the resource is generated dynamically, e.g.
/Webring/Consul.idc?Type=site&motcle=son&c ontenu=periph.htm), pointers to the
successors of the node and a set of f lags.

The directed graph is built recursively, by following all the available links within every
page. Obviously, no form is fill ed in, so we do not deal with interactive queries. When
building the graph we make sure that any URL (query) corresponds to a single node. Note that
this method can also be applied when some fields in the database contain source HTML files
which include links (this is the case for the Validation site). Also, note that the graph of a site
is usually not a tree.

7

2.2.3 Pre-processing the logfiles

An HTTP server stores all the queries served during a period of time in one or several logfiles,
where every line corresponds to a single query, as in the following example:

194.2.149.85, - , 14/12/99, 18:50:03,…, /validation/default.htm, - ,

194.2.149.85, - , 14/12/99, 18:50:05,…, /validation/accueil.htm, - ,

194.2.149.85, - , 14/12/99, 18:50:05,…, /validation/somfr.htm, - ,

194.2.149.85, - , 14/12/99, 18:50:08,…, /validation/ images /li.gif , - ,

194.2.149.85, - , 14/12/99, 18:50:08,…, /validation/ images/gtra.gif , - ,

194.2.149.85, - , 14/12/99, 18:50:09,…, /validation/ images/facc.gif , - ,

194.2.149.85, - , 14/12/99, 18:50:09,…, /validation/ images/falg.gif , - ,

194.2.149.85, - , 14/12/99, 18:5 0:10,…, /validation/ images/fpro.gif , - ,

194.2.149.85, - , 14/12/99, 18:50:25,…, /validation/requetes/alr1.idc, - ,

194.2.149.85, - , 14/12/99, 18:50:52,…, /validation/requetes/pbr1.idc, - ,

194.2.149.85, - , 14/12/99, 18:51:17,…, /validation/requetes/PbLien4.id c?PbTitre=sunspots,

We start by assembling all the logfiles corresponding to the period of time we are interested
in, and then we filter out all the queries for files other than .htm, .html and .idc. Also, if the
same HTTP server hosts several sites, we keep only the queries for resources of the site we
want to modify.

2.2.4 Finding an adequate representation for user sessions

In paragraphs 2.2.1.1 and 2.2.1.2 we pointed out that in order to take the decision of building
short cuts and aggregates we need to know the sequence of pages visited by each user,
together with the corresponding time stamps. We found very convenient to represent each
individual users session as a (set of) tree(s) – the chains of pages which are followed several
times during the session are duplicated in the tree – and associate the corresponding time
stamps to the nodes of the tree. In order to produce such representations we need the complete
graph of the web site and the logfiles.

For any reasonably busy site, the queries sent by different users are usually mixed up in
the logfiles. Since the decisions we make rely on the sequences of pages retrieved by
individual users, we must be able to distinguish between individual users sessions.

2.2.4.1 Defining user sessions

A user is usually identified by his IP address. The diff iculty comes from the fact that, over a
long enough period of time, different users can share a same address: they share the same
computer, or a DHCP server successively assigns the same address to their computers, or a
router successively associates their addresses (internal to the organization) to a same routable
IP address. We shall consider here that a session of one user is identified by an IP address,
under the constraint that the period of time between two successive queries sent by the user is
no longer than 30 minutes (1800 seconds). The value of this parameter (which is entered by
the administrator when he launches our software) should be significantly reduced for common
web sites.

Therefore, given the (pre-processed) logfiles, we start by grouping together the queries
according to their IP address; then, for every IP address, we split the list of queries into
individual sessions consistent with the time constraint mentioned above.

8

2.2.4.2 Building trees associated to user sessions

Having the list of queries corresponding to a users session and the graph of the web site
(allowing us to identify the predecessors and successors of any node), we can now build the
tree representation according to the following algorithm:

The current que ry is the first query in the list
The current tree is empty
As long as the list of remaining queries is not empty {

Create a new node in the tree and label it with the current
query, it becomes the current node
If the current node is a successor of the pre vious node in the
tree, link it to the previous node in the tree
Else, backtrack until a node in the tree is a predecessor of
the current node, and link it to the current node
If no node in the current tree is a predecessor of the current
node, create a ne w tree having the current node as its root
Set previous node ← current node
Set current query ← next query in the list

}

Note that, for every individual user session we can obtain several independent trees; indeed,
the user may own several direct pointers to the resources of the web site (obtained e.g. with
the help of a search engine).

Also, we lack precision when building the trees because of the presence of various
levels of caching (single user, multi -user) and the use of the “back” button. Indeed, if the user
is revisiting a page, the navigation tool may retrieve it from the cache instead of resending the
HTTP request. Also, when the “back” button is employed by the user before switching to a
new path, it may be diff icult to identify the node from which the new path was started from
several potential candidates; our choice here is to start the new branch as far from the root as
possible.

When building the tree representations, we must also include with every node an
estimate of the time spent by the user on the page corresponding to the node. These estimates
are obtained from the time stamps present in the logfiles. If page A has page B as a son in the
tree, then we can estimate the time spent by the user on page A by subtracting the time stamp
of the HTTP request corresponding to page A from the time stamp of the request for page B.
As an example, if the logfile contains

194.2.149.85, - , 14/12/99, 18:50:52,…, /pageA,

194.2.149.85, - , 14/12/99, 18:51:17,…, /pageB,

then we consider that the time spent by the user on page A is (18:51:17) – (18:50:52) = 25
seconds. Obviously, this time interval includes the delays introduced by the network, the
HTTP/database server(s) and the client. Unfortunately, all these delays can vary within rather
large bounds, depending on the location of the client with respect to the server and on the load
of the network and/or the server(s). We consider that if one reads even a few lines of text on
the page one receives, then the time really spent on the page is significantly higher than the
sum of the delays.

There are three special cases deserving further explanation. First, when a page is the
last one in a chain (that is, a leave in the tree), we decided not to take its occurrence into
account. If the page ends the session of the user, we simply cannot compute the time spent by
the user. If the page does not end the session, given the presence of (various levels of)
caching, it is very diff icult to know how much time did the user spend on this page and how
much time he spent clicking the “back” button.

Let us now consider a page having several (i.e. more than one) sons in the tree. We
decided to compute the time spent by the user on this page only once, using the time stamps

9

corresponding to the first branch. This obviously underestimates the time spent by the user on
this page, but we didn’ t find any better solutions. Indeed, such a case occurs when some form
of caching is involved (e.g. the user clicks on the “back” button, or he leaves this page on the
screen and opens one of the successors in a different window) and we cannot obtain reliable
estimates corresponding to the other branches.

As the last special case we consider pages which occur several times in a tree. The
time spent by the user is computed for every occurrence, according to the context (the
difference between the time stamp of the current successor and the time stamp of the page
itself).

Under certain circumstances, however, the individual estimates we compute for the
time spent by the user on a page can be entirely wrong: when the server is temporarily
unavailable (a TCP connection cannot be established, so the user must try several times before
the server can accept and answer to the HTTP request), or when the user sends several queries
before receiving any answer (multi -activity of the user, due to long delays). Since we only use
statistical measures based on these individual estimates (and never the individual estimates
directly), we consider that the results obtained from such estimates are reliable enough if the
logfiles contain many user sessions.

2.2.5 Statistical processing

Given the set of tree representations corresponding to the sessions of the users, some
processing is required in order to identify the short cuts and aggregates which should improve
navigation.

To evaluate the importance of individual pages for the users, we must compute the
average time spent by the users on every page occurring in the logfiles. A page can be
bypassed if it occurs frequently and the average time spent by the users on this page is very
small , with a low standard deviation. Since we need reliable estimates for the average time
spent, we only select as potential candidates the pages whose number of occurrences is
reasonably high and for which the standard deviation is low. Statistical tests allows us to
perform this selection: for candidates to getting bypassed, the average time spent is compared
to the average time interval required for a user to get an answer to an HTTP request (15
seconds in our experiments). This value is either estimated a priori (as in our experiments), or
by selecting the shortest time interval from each of the sessions and performing an average.
For candidates to becoming the target of a bypass link, we compare the average time spent to
the sum between the average time interval required for a user to get an answer to an HTTP
request and the average time required for a user to read a few (10 in our experiments) lines of
text. We are currently exploring alternative methods for making more reliable decisions. We
eventually mark in the set of trees all the pages which should be bypassed.

Then, we must compute the joint frequency of the presence of pages having a common
parent in the sessions of the users. We start by recording every pair of pages having a common
parent in the set of trees, then we count the number of occurrences of every such set of three
pages (parent plus two sons). The pairs whose frequency is beyond a threshold, set by the site
manager, serve for building the aggregates (the two are aggregated). These pages are then
checked for the “bypass” mark. Indeed, if one of the pages in a pair must be bypassed, then we
should rather use the target of the short cut when building the aggregate.

10

2.2.6 Creating short cuts

To better understand how a short cut is created, let us consider again a chain
…[page 1] → 1t [page 2] → 2t [page 3] → 3t [page 4] → 4t [page 5]… which appears very
often, the average time spent on [page 1] and [page 4] (t1, t4) being high, while the average
time spent on [page 2] and [page 3] (t2, t3) is very low. Then, if there is no direct link
[page 1]→[page 4], we add to [page 1] (the host) a link to [page 4] (the target), right before
the link to [page 2] (bypassed, together with [page 3]).

The label and the content of this new link is the same as the one of the link
[page 3]→[page 4]. [page 1] is the only one that must be modified. Note that if [page 3] is
dynamic, we cannot find the link to [page 4] directly (the link is usually not present in any of
the files page3.idc and page3.htx); we must first obtain the actual [page 3] by following the
chain from [page 1].

It is then rather easy to add a short cut if [page 1] is a static HTML page. Things get
more involved when dealing with dynamic pages. Let us consider that every page in the
previous chain is the result of an SQL query (present in a specific IDC file) formatted by a
specific HTX file. How can we then add the link to [page 4] (page4.idc) on [page 1]? Which
one of the files page1.idc and page1.htx do we modify? We can modify one of the queries
on page1.idc to explicitl y add the link to page4.idc to the text returned by the database (or
create a new, fake query returning the link). Alternatively, we can choose to modify the
template page1.htx and add the link to page4.idc at the right place there. We decided to
implement the second solution which is more natural and can be readily applied to sites
developed in PHP1 or ASP.

To find the location where the link to [page 4] must be inserted (right before link to
[page 2]), we must obtain the actual [page 1] by following the chain from the root of the tree
and compare it to the file page1.htx . Note that in some cases the link to [page 4] cannot be
inserted right before the original li nk to [page 2].

Let us now discuss the case where [page 1] is a frameset. A new link can only be
included in a frameset if a new frame is defined. Given the diff iculty of f inding an appropriate
layout for the new and existing frames in a general case, we decided to avoid adding new links
(short cuts) within a frameset. If several pages should be bypassed between the frameset
([page 1]) and the target of the short cut ([page 4]), then we can add a link to the target on the
first page in the chain which is not a frameset (e.g. [page 2]). This option was not
implemented yet.

After creating a short cut, we have to modify the graph of the site (addition of the new
link [page 1]→[page 4]), but also the trees representing user sessions. Indeed, the trees are
further employed for building the aggregates, and graph of the site both for the aggregates and
the addition of other short cuts after another data acquisition phase.

2.2.7 Creating aggregates

To better understand how an aggregate is created, let us consider that when on [page 1] many
users retrieve [page 2] and [page 3], both of them being directly linked to [page 1]. If the
frequency of occurrence of the pair <[page 2], [page 3]> is beyond the aggregation threshold,
then we build an aggregate, denoted here by [page 2,3]. This aggregate is composed of the
content of [page 2] followed by the content of [page 3]. A link to [page 2,3] is added on

1 The PHP (or ASP) pages we are interested in can be seen as being composed of an HTX template and some
code containing a request in SQL (as in an IDC file).

11

[page 1] right before the link to [page 2]. The label of this link is obtained by concatenating
the labels of the links from [page 1] to [page 2] and [page 3]. While all this is rather simple
from a conceptual point of view, we have to overcome several practical diff iculties such as
dealing with dynamic pages and/or with framesets, or building the link to the aggregate when
the links to the parts are images.

According to the type of pages we wish to aggregate, we have three possible cases:
1° [page 2] and [page 3] are static pages: page2.html and page3.html . To obtain the

aggregate (a new static file) we start by chaining the contents of the individual fields in
the <head> section (such as the keywords in the content field of the tag <meta
name="KeyWords" content="…">), including the <title>, then we chain the contents
of the two <body> sections. Also, the name of the new aggregate [page 2,3] is a
concatenation of the names of the two individual pages (page2&page3.html); the
aggregate can be stored with the same path as the two parts (if they have the same
path) or with a path which is specific for all the aggregates. The link to the aggregate is
obtained from this path and the name of the aggregate.

2° [page 2] and [page 3] are dynamic pages (for every page we have an .idc file and an

.htx file). With the current implementation, two dynamic pages can only be
aggregated if they make use of the same database (the same Datasource in the two
.htx files). This is a limitation of the IDC technology which can be avoided if the
implementation employs PHP or ASP.

We have two possibiliti es here: build an aggregate which is either static (.html
file) or dynamic (.idc file and .htx file). The first alternative is obviously the
simplest, but we decided to avoid transforming dynamic content into static content and
opted for the second alternative. We must then obtain a new .idc file and a new .htx
file. The new .htx file is built according to the same procedure as the new .html file
in the case of an aggregate composed of static pages. The aggregate .htx file is given
a new, conventional name. Note that if the two pages make use of the same .htx file,
then some of the information may be duplicated in the aggregate; a better solution in
this case would be to duplicate only the fields between <%BeginDetail%> and
<%EndDetail%> in the original .htx file in order to obtain the aggregate .htx file.

The new .idc file is obtained by keeping the Datasource field, entering the
name of the new .htx file in the Template field, and listing the SQLStatement s from
the .idc file corresponding to [page 2] followed by the SQLStatement s from the .idc
file corresponding to [page 3]. The total number of SQLStatement s must remain under
24 for the current implementation of IDC. A problem may occur if a same variable,
which is present in the calls to the original .idc files, takes different values for the two
calls. There are many possible solutions to this problem and they all impose various
limitations, so we retained one of the simplest solutions: the variable is removed from
the calls and its appropriate values are “hardwired” in the SQLStatement s concerned.
This aggregate .idc file is given a new, conventional name.

The link to the aggregate is obtained by chaining this path, the name of the new
.idc file and the list of arguments from each of the two original li nks to [page 2] and
[page 3] (with the conflicting variables removed).

The two new files (.idc and .htx) are stored under the same path, which is
dedicated to the aggregates.

3° One of the two pages is static (e.g. [page 2]: page2.html) and the other one is

dynamic ([page 3]: page3.idc, page3.htx). Again, we decided to avoid

12

transforming dynamic content into static content. We then have to build a new .idc
file and a new .htx file. The new .htx file is built by including the content of
page2.html into page3.htx and receives a new, conventional name. The new .idc
file is a copy of page3.idc , but with the name of the new .htx file as the Template ,
and it is also given a new, conventional name. The two new files (.idc and .htx) are
stored under the same path, which is dedicated to the aggregates. The link to the
aggregate is obtained by chaining this path, the name of the new .idc file and the list
of arguments copied from the original li nk to [page 3].

It is obviously very easy to add the link to an aggregate if [page 1] is a static page. When
[page 1] is a dynamic page, we adopt the same solution we employed for the short cuts: we
modify the template page1.htx and add the link to the aggregate .idc file at the right place
there. To find the location where the link to the aggregate .idc file must be inserted (right
before link to [page 2]), we must obtain the actual [page 1] by following the chain from the
root of the tree and compare it to the file page1.htx .

We may encounter further diff iculties in creating the link to the aggregate when the
links to [page 2] and [page 3] appear on [page 1] as images or parts of images (maybe parts of
a same image). The solution we retained is to create an anchor inside the aggregate at the
beginning of the content of [page 3], to replace the link to [page 2] by the link to the
(beginning of the) aggregate, and the link to [page 3] by a link to the anchor. It is possible to
set up anchors inside .htx files and a link to such an anchor has the form given in this
example: file.idc?arg1=val1&arg2=val2#anchor . However, if [page 1] is the result of an
.idc request and the links are not present the corresponding .htx file, then these links are
diff icult to modify (they come from the database or are composed of elements from the
database). In the current implementation we simply do not build the aggregate in such a case.

We do not aggregate [page 2] and [page 3] if any of [page 1], [page 2] or [page 3] is a
frameset, mainly because of the diff iculty of f inding an appropriate layout for the aggregate
and/or for [page 1].

After creating an aggregate, we have to modify the graph of the site by adding the
aggregate and the corresponding link. We do not update the trees representing user sessions
because the addition of an aggregate has no influence on the creation of new aggregates during
the same session.

One can notice that we do not modify the layout of the individual pages composing an
aggregate. Sometimes, this may the source of serious conflicts. However, we believe that there
is no general solution to this problem.

2.3 Experimental results

The adaptive methods we put forward in the previous sections should be tested on web sites
which respect the assumptions in § 2.1: they contain an important amount of fine-grained
information bricks, they have a complex (and deep) link structure, and they are accessed by a
large number of users. Since no such site was (entirely and locally) available, we only
conducted experiments on two small sites, developed locally. The first one, called Validation
site in the following, serves to perform comparisons between machine learning algorithms on
several problems and is currently employed by a rather small community. The second site,
called Webring in the following, puts together a number of presentations of computer
peripherals, presentations which were developed by students in a distributed manner. The link
structure of the two sites is rather simple and flat, but they both employ the IDC technology to

13

produce dynamic pages. The tests we performed on the two websites only allowed us to verify
the algorithms and imagine possible extensions.

2.3.1 Results for the Validation site

Starting from a set of 34 logfiles (corresponding to 34 days), a short cut and an aggregate were
created.

The short cut is set between the page corresponding to
/validation/requetes/pbr1.idc and the page /validation/formul/reframes.htm . The
first of these pages briefly presents the set of problems available on the site, while the last
page allows any user to report new results obtained for one of these problems by filli ng in a
form. The page which is bypassed here,
/validation/requetes/PbLien4.idc?PbTitre=sunspots , is a brief report of the results
obtained by various learning algorithm on the sunspot prediction problem. There are two
remarks we should make here. First, the short cut does not fit well to the layout of
/validation/requetes/pbr1.idc . Second, it is easy to see that the same short cut is useful
for all the problems listed on /validation/requetes/pbr1.idc and not only for the
sunspots problem; since the other problems are less well known, we do not find many enough
such paths in the logfiles.

The link to the single aggregate generated is also set in
/validation/requetes/pbr1.htx . This aggregate was obtained by assembling the pages
corresponding to /validation/requetes/pblien4.idc?PbTitre=Eau and

/v alidation/requetes/pblien4.idc?PbTitre=Fisher , which present in brief the results
obtained by various algorithms on the water consumption (Eau) dataset and Fisher river
dataset. The aggregate consists in two new files, newidc.idc and newhtx.htx .

2.3.2 Results for the Webring site

Starting from the set of logfiles obtained after two working sessions during which two groups
of students consulted the site. We have deliberately limited the number of short cuts and
aggregates to one.

The short cut is set between the pages /webring/periph.htm (a frame containing
several taxonomies of the content) and /webring/s27/accueil.htm (the homepage of a site
containing various information about digital cameras). The page corresponding to
/webring/consul.idc?type=site&motcle=image &contenu=periph was bypassed.

The link to the aggregate was set on /webring/s28/default.htm (the homepage of a
site presenting general information about computer networks). The aggregate was obtained by
assembling the page corresponding to /webring/s28/glo ssair.idc (a lexicon of
terminology related to computer networks) and the page /webring/s28/contacts.htm .
Since one of these pages is dynamic, the aggregate also consists in two new files, an .idc
file and an .htx file.

3 Directions in the development of adaptive hypermedia

We only explored here a particular case in a specific approach to adaptive hypermedia. There
are many other research directions and in several of these directions a significant amount of
work has already been done (see e.g. the Second Workshop on Adaptive Systems and User
Modelli ng on the World Wide Web, http://wwwis.win.tue.nl/asum99/, or the International
Conference on Adaptive Hypermedia and Adaptive Web-based Systems, http://ah2000.itc.it/).

14

Our approach here was to assemble a knowledge base out of f ine-grained information
bricks and let its global usage adaptively build up and modify a structure, starting from an
initial design. We then focused on offline global changes applied to a knowledge base,
changes from which every user (or most users) can benefit. But in many cases the adaptation
to individual users or groups of users may prove very useful.

Also, further efforts are required in order to find out how can various adaptive
mechanisms integrate smoothly with top-down or bottom-up methods for the development of
hypermedia.

3.1 Adaptation to individual users or groups of users

We can first distinguish between off line (or inter-session) and online (or intra-session)
adaptation. In off line adaptation, the input to the process of adaptation is the behaviour of the
user (or of members of a same group of users) during the previous sessions. In online
adaptation, the behaviour of a user during a given session has an influence on the continuation
of the session itself. Building and progressively modifying user profiles is an important
activity in both off line and online adaptation. The system acts according to rules which are
developed most of the time off line, based upon the behaviour of the previous users. But if in
off line adaptation the preconditions of the rules contain details about the identity of the user or
a recognized profile, in online adaptation these preconditions must also take into account the
perceived behaviour of the current user earlier in the session.

Obviously, a hybrid solution (off line plus online adaptation) can be employed.
A major diff iculty here is to identify the user, or the group he belongs to. This

identification can be explicit (the user identifies himself) or behaviour-based (recognition of a
profile).

3.2 Integration with a top-down approach

In a top-down approach one usually starts by designing the structure of the hypermedia
collection (e.g. knowledge base) to answer the specific needs identified. The content is
developed next.

The new technology of symbolic links (s-links, [Verley and Rousselle, 2000]) supports
a top-down approach, but can also help in the bottom-up development. S-links are typified
links which satisfy a conceptual need expressed by the author and/or the user of a document.
Also, while standard links are usually references to the location of a document, an s-link is a
query to a link database which returns the reference to the document. This indirect addressing,
together with a mechanism which automatically declares all the available links to the link
database (an s-link is automatically declared and “comes to li fe” when it is activated for the
first time), bring in most of the technical advantages s-links have over common links:

1° S-links support navigation by concept, i.e. navigation in a space which is different
from document space and where both the nodes and the links have rather clear
semantics. Implemented within a specific tool, navigation by concept should replace
classical navigation, but can also assist or complement it.

2° S-links make automatic linking possible. However, problems related to synonymy and
disambiguation have yet to be solved.

3° Even though an S-link is set as a link from a document A to a document B, it can also
be seen as a 2-way link: the reverse link comes to li fe via the conceptual navigation
tool, at the same time as the direct link (i.e. right after the direct link is activated for
the first time).

15

4° S-links greatly simpli fy the entirely distributed development of content, by minimizing
the exchange of information between developers. As a result of the definition of link
servers, every developer or user can select one or several preferred link servers; some
sort of certification method can also be employed. Again, some form of competition
among content providers can be implemented through link servers.

In the s-link framework, adaptive mechanisms can be used for various purposes. Adaptation
can act, to some extent, on the structure of the concept network to produce short cuts or
aggregates. In the tool for navigation by concept, the items listed, their arrangement or number
of items per level can adapt to the user or to groups of users. The choice of the document
behind an s-link (the level of detail , the terminology employed) or the choice of alternative
link server(s) can also be set to depend on the identity or the profile of the user. If link servers
implement the competition between content providers, adaptive mechanisms could be
employed for the selection of providers by a user or group.

3.3 Integration with a bottom-up approach

In a bottom-up approach, one attempts to build links between content elements out of more or
less structured collections of f lat multimedia documents, in a totally unsupervised manner or
with a shallow description of the user needs in mind. S-links can be very helpful in this
endeavour, both because of their conceptual advantages (typified links which satisfy
conceptual needs) and because of their technical advantages (automatic linking, distributed
development).

Learning and adaptation play a very important role here, and much of the existing work
goes along this line.

3.4 Extending the adaptive behaviour to deal with other media

It is obvious that the techniques we presented for the adaptive structuring of information keep
their attractiveness when extended to media other than text. However, the promise of adaptive
hypermedia goes far beyond such straightforward extensions, and thinking of possible
applications is probably the best way to evaluate these prospects. Here are a few suggestions:

Hypermedia global interfaces for the physically challenged, building upon the concept of
economical interactions. Indeed, for the physically challenged even common
interaction behaviours (many or most everyday behaviours belong to this class) may be
tedious or even painful. By using adaptive hypermedia interfaces here, such behaviours
need no longer be endlessly repeated.

Music explorer: multidimensional representation of music fragments, where the
dimensions are either objective ones (such as rhythm) or more subjective ones. The
choice and/or the construction of the subjective dimensions, as well as the selection of
dimensions for a given user or group of users, can be performed adaptively. Also, one
may be able to attain some form of mood control by defining trajectories in this
(hyper)space. The definition of such trajectories can also be performed adaptively.

Hyper-video or tagged video (such an application already exists): parts of an image within
a movie are links to other hypermedia and let a user get more related information, buy
the item displayed, etc. In this case, the identity of the image parts which contain links,
as well as the choice of the targets for these links, can adapt to the user or the context.

Adaptive video: in a synthetic movie or a videogame almost everything can be made
adaptive: the general script and the details, the fill ers for such variables as the
characters, the scenery items, the sound, the (implicit) advertising, etc.

16

Such suggestions are only a glimpse to the endless possibiliti es of adaptive hypermedia
(though, some of them broaden the scope of the concept).

References

Armstrong, R., Freitag, D., Joachims, T., Mitchell, T. (1995) WebWatcher: a Learning Apprentice for the
World Wide Web, AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed
Environments, March 1995.

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia, User Modeling and User Adapted
Interaction 6: 87-129.

De Bra, P., Calvi, L. (1998) AHA: a Generic Adaptive Hypermedia System, Proceedings of the 2nd Workshop
on Adaptive Hypertext and Hypermedia, Pittsburgh, USA, June 20-24, 1998.

Perkowitz, M., Etzioni, O. (1998) Adaptive web sites: automatically synthesizing web pages, Proceedings of
IJCAI’ 98.

Verley, G., Rousselle, J.-J. (2000) An evolved link-specification language for creating and sharing documents
on the web, Proceedings of CRIS 2000: Current Research Information Systems, Helsinki, Finland, May
25-27, 2000.

Wexelblatt, A., Maes, P. (1997) Visualizing histories for Web browsing, Proceedings of RIAO’97: Computer-
Assisted Information Retrieval on the Internet, Montréal, Québec, 1997.

