
CEDRIC 04/04/2009

Vertigo 1

April 1, 2009 Vertigo 1

Scalable Content-based Video 
Copy Detection

Michel Crucianu
(joint work with Sébastien Poullot and Olivier Buisson)

Conservatoire National des Arts et Métiers (Paris)
Vertigo research group

http://cedric.cnam.fr/vertigo/

April 1, 2009 Vertigo 2

Conservatoire National des Arts et 
Métiers

“Omnes docet ubique”
� Created on October 10, 1794, by the Convention
� Today
� Lifelong education for about 88,000 students
� Paris + 150 regional centers in France and other 40 countries

� 4 departments
� Computer science, mathematics and electronics
� Industrial sciences and techniques
� Economics and management
� Humanities and social sciences
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Computer Science Lab (CEDRIC)
http://cedric.cnam.fr/?lang=en
� 120 people (65% being PhD students and post-docs)
� 5 teams

� Certified design and programming
� Interactive media and mobility
� Information systems ⊃ Vertigo research group
� Combinatorial optimization
� Statistical methods for data-mining and learning

� Funding: mainly based on national projects
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Vertigo research group
� How to deal with data having little or no structure 
(multimedia, data on the Web)? 

→Scalable methods for
� structuring (making the relevant structure explicit)
� querying

� Research directions
� Large image and video databases
� Data and services on the Web

� Today: 4 permanent staff, 5 PhDs, 1 post-doc
� Ongoing: 3 national projects, 4 national and 3 
international collaborations
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Content-Based Video Copy 
Detection: Outline
� What is a video “copy”
� Requirements: robustness and scalability
� Robust copy detection and local description
� Video stream monitoring
� Video mining by content-based copy detection
� Conclusion and perspectives
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What is a Video “Copy”
� Copy = transformed version of an original video content
� What transformations are most frequently encountered
� Photometric: contrast, gamma, color to B&W, noise, blur
� Geometric: crop, change in scale or format
� Temporal: tempo change, addition or suppression of images
� Post-production: excerpt, compilation, logo or subtitle addition, video 

inlay, borders, re-encoding...
� Copies: Not copies:
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CBVCD: Motivation
� Video copy detection: what for
� Protect the rights of content owners: detect potentially illicit

transmission over video streams (Hertzian, satellite, cable TV, 
Internet) or in video databases (Web2.0, peer-to-peer)

� Control broadcast agreements and/or (semi-)automatic billing
� Video database mining using copy detection

1. Video copy detection by robust watermarking
� Only if the original video was watermarked before any dissemination
� Variable robustness to different types of “attacks”
� Many alternative proposals ⇒ practical difficulties

2. Content-Based Video Copy Detection (CBVCD): to have some 
interest for a viewer, a “copy” should preserve the main visual 
information that is present in the original
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CBVCD and retrieval by similarity
� “Keep the essential visual information” ⇒ similarity (and 
not just any type of similarity!) between the original and 
the “copy”
� Principle of Content-Based Video Copy Detection

The candidate video is a copy of the original if it is similar 
enough (with an adequate content representation and similarity 
measure) to the original
→The representation of the candidate video is used as a query by 
similarity in a database containing the representations of all the 
original videos
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CBVCD: what video description
� Global image description?
� Not robust to the expected 

transformations...

→ Local image description
� SIFT, PCA-SIFT, GLOH, SURF?

� Too invariant to changes in scale, 
viewpoint, etc.?

� Computationally expensive (extraction, 
similarity-based retrieval)

→ Improved Harris interest point detector, 
spatiotemporal differential description

� Robustness (within tight bounds) to 
changes in scale and 

� Comparatively “light” (dimension 20)
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CBVCD: General Processing Steps
1. Extraction of keyframes from the video:

2. Extraction of points of interest
in the keyframes:

3. Retrieval of candidates from the 
database:

4. Matching-based decision:

t →
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CBVCD: What About Scalability
� Every keyframe of the candidate video contains many points of 

interest, the signature of each point is a query in the database
� Size of the reference signature database:
� 60 000 hours → 3 433 853 921 signatures
� 280 000 hours → 16 354 748 143 signatures…

� CBVCD for video stream monitoring: our approach
� Batch processing: accumulate a large number of queries, successively 

load into main memory parts of the database, process the 
accumulated queries with respect to the loaded part

⇒ Optimize throughput, not latency!
⇒ The index structure mainly serves to diminish the number of distance 

computations!
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Stream Monitoring: Workflow
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Stream Monitoring: Index
� k-d-B-tree (or LSDh-tree): for 60 000 hours of 

video, 8 Gb needed for storing the tree!
� Z-grid (Z): can be seen as a simplified k-d-B-

tree, 2 bytes / level enough for storing the tree
� Partial balancing (ZN): adapted partitioning + 

most uniform dimensions partitioned first
� What type of retrieval
� ε-range? Clear-cut separation, but when the 

amplitude of a transformation increases, its 
probability diminishes

� kNN? In low-density regions kNNs can be too far
→Probabilistic (followed by ε-range + kNN…): 

retain cells such that their cumulated probability 
(following an appropriate density function) is 
above an application-defined threshold
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Stream Monitoring: Optimization
� Local models of signature 
distortions (ZNA)
� Why: amplitude of signature 
transformations depends on 
location in feature space; better 
model → improved query 
selectivity (→ both higher speed 
and better quality)

� How (hypothesis: independence 
between dimensions)
� Estimate the models based on 
artificially generated copies
� For each dimension: 1 model per 
abscissa value

+

B
C
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Stream Monitoring: Optimization
� Use of local signature density 
in description space (ZNAD)
� Why: highly expensive but 
rather useless queries in  
locally very dense areas

� How (hypothesis: 
independence between 
dimensions)
� Estimate the local density 
(based on one-dimensional 
projections)
� Modification of the cell 
selection thresholds
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Stream Monitoring: Robustness
→ Precision and recall on INA ground truth (about 30 hours)
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Stream Monitoring: Robustness
→ Precision and recall on CIVR 2007 ground truth (ST1, ST2)

→ Precision diminishes by < 5% at same recall when the CIVR 2007 
benchmark is inserted in the 280,000 hours database
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Stream Monitoring: Speed
→ Mean cost (in milliseconds) per query

-
-
-

17.1
HC

72.45
37.1
19.4
4.5
Z

38.6
18.4
11.6
2.7
ZN

0.31.810,000 hours

4.118.8280,000 hours
2.3511.8120,000 hours
1.37.860,000 hours

ZNADZNA
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Video Mining by CBVCD
� Motivation: INA context, Web2.0 context
� Nature of the problem and challenges
� Compact description of local signatures: Glocal
� Indexing for similarity self-join
� Reconstruction of video sequences
� Evaluation and illustrated results
� Conclusion and perspectives
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Video Mining: INA-like Context
� Goal: find, in a large video database, all the video 

sequences that occur several times (as more or less 
transformed versions)

� Applications
� Segment and label content (detecting titles and credits)
� Support librarians (extension of annotations)
� Broadcast programming analysis
� Media impact evaluation
� Visual navigation in the database
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Video Mining: Web2.0 context
� Current situation: large number 
of copies, scattered annotations 
of uneven quality
� Applications

� Video database cleanup (gains in 
storage capacity)

� Annotation cleanup and sharing
� Detection of specific types of 
videos (e.g. compilations)

� Cleanup the answers to the 
queries

� Visual navigation in the answers
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Mining by Copy Detection
� Direct application of stream monitoring? The signature of every 

point of every keyframe serves as a query by similarity in the 
database, the returned signatures serve to identify the keyframes
that occur several times
→ Very large volume of intermediate results (kNNs of the query 

signatures) that are
� distant in the description space (so also in the indexed database)
� useless most of the time because issued from very different keyframes
→ Inefficient parallel implementations
→ Decision (for every keyframe) based on expensive matching
→ Examples: 10,000 h → mining taking 22 days, 2 Tb of storage

300,000 h → mining taking 4 years, 60 Tb of storage
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Principle of the Proposed Solution
1. Higher-level description: 1 signature per image
⇒Reduction in the size of the database
⇒More direct identification of similar images, without intermediate 
results and expensive matching

⇒ search for copies relies on similarity self-join
2. Segmentation of the database, with redundant indexing 
(allowed by the reduction in size)
⇒Computation cost diminishes
⇒Simple and efficient parallel implementation made possible
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Compact Image Description

Keyframe
Description space

1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1
→ Glocal description +  VideoID  + TimeCode
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Compact Image Description (2)

Preserves well local 
information:

Similarity between Glocal:
(Dice coefficient)
Similarity self-join:
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Glocal Indexing
0 1 0 1 1 0 0 1

Signature a
1 0 1 0 0 1 0 1

Signature c

... ...... ......

0 1 0 0 1 1 0 1
Signature b

13  34  47  14  37  17 02  25  57  05  27  0714  45  57  15  47  17

SDice(a,b) = 0.75 SDice(a,b) = 0.75 SDice(b,c) = 0.5SDice(a,b) = 0.75

⇒ ⇒ ⇒⇒

Buckets

Bucket numbers

... ... ... ...
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Glocal Indexing (2)
→ Controllable reduction of computation cost:
� l = “sentence” length, M = nb. of bits set to 1
� p = partitioning depth

p
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Linking Video Sequences
� Links between keyframes → correspondences between 
video sequences

Video 1

Video 2
> Thl

< Thh

< Thd
Sequence 1

Sequence 2
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Video Mining: Post-processing
→ Distinguish different types of content links using link 
structure and characteristics of the sequences
� Identify broadcast design sequences (titles and other show-
specific sequences)

� Identify advertisements
� Find show or movie retransmissions
� Identify compilations of other video sequences
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Video Mining: Evaluation
� Quality of detection: measured on ground truths

� INA (30 h): recall 0.84 for precision 0.95 (θ = 0,55)
� CIVR2007 (80 h): recall 0.8 for precision 0.96 (θ = 0,55)

� Mining Web2.0 data (pre-computed video signatures)
� Example: 63 h (925 first videos in answer to a text query): 42 s

� Scalability

17 h 35 min7 h 15 min1 h 15 minLinking video sequences
55 h14 h 59 min5 h 40 minSimilarity self-join
7 h 00 min3 h 38 min2 h 35 minBuilding the database

28.7 × 10614.5 × 1065.8 × 106Number of keyframes
10,000 hours5,000 hours2,000 hoursSize of the database
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Video Mining: 1000 hours INA
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Video Mining: Madonna query



CEDRIC 04/04/2009

Vertigo 17

April 1, 2009 Vertigo 33

Video Mining: Zidane query
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General Conclusion
� Simple but optimized indexing for point of interest (PoI) signatures
� Impact of local models of signature distortions and signature density
→ Monitor in deferred real time, with 1 PC, 1 video stream against a 

database of 280,000 hours of video
� Compact keyframe signature (Glocal) from set of PoI signatures
� Direct evaluation of keyframe similarity
� Reduction in the volume of data to store and process
� Maintains good discriminating abilities (good precision)

� Similarity-based segmentation for similarity self-join
� Controllable reduction of computation cost
� Simple and efficient parallel processing made possible
→ Fast mining of the answers to online queries,     

realistic processing time for large databases



CEDRIC 04/04/2009

Vertigo 18

April 1, 2009 Vertigo 35

Perspectives
� Improve the indexing solution developed for mining
� Inexpensive solution for taking into account the spatial 
configuration of points of interest for mining, in order to 
further improve precision ← ongoing
� Application of the improved mining solution to video 
stream monitoring → potential for immediate replies
� Extension to more invariant (and higher-dimensional) 
descriptions in order to go beyond copy detection, to 
more general similarity measures ← ongoing
� Evaluation: how to measure detection quality (e.g. 
precision and recall) on very large databases?
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