
Tm2elf User Guide

by Tristan Crolard

October 12, 2011

Abstract

The Tm2elf is a translator which converts a TeXmacs source file into Twelf syntax. The
translator takes advantage of TeXmacs powerful macro system and XML-like native format
to provide a user-friendly interface to Twelf combined with a high-quality pretty-printer. The
tool, which is developed in Standard ML, is distributed as a .NET console application (the
source code is available on request).

Tm2elf is a translator which converts a TeXmacs source file into Twelf syntax. The source file
should obey some very specific rules: it should only contain macro invocations. These macros are
either provided by the twelf.ts style file (which are prefixed by meta- and reflect Twelf syntax)
or by another style file written by the user. The style files are of course needed by TeXmacs to
display the source file content but are ignored by the translator.
In this short guide, we explain how to write a TeXmacs source file containing grammars definitions,
rules definitions ans meta-theorems with their proofs.

1 Grammars

As a first example, let us consider the following grammar for the λ-calculus (using Twelf higher-
order syntax):

%datatype exp
%name exp E

E :6
| E1E2

| λx.E

%binding 1� 2 in λ⊔ .⊔

The above code may be obtained as follows:

〈meta-decl#0|〈expr〉|〈meta-type#2〉〉
〈meta-name|〈expr〉|E〉

〈meta-decl#1|〈e_app|〈expr#1〉|〈expr#2〉〉|〈expr#〉〉
〈meta-decl#2|〈e_lam|〈expr#x〉|〈expr#〉〉|〈expr〉〉

〈meta-bind|1|2|〈e_lam|〈meta-wildcard〉|〈meta-wildcard〉〉〉

The style file should contain the following macro-definitions:

〈assign|expr |〈macro|exp〉〉
〈assign|expr#|〈macro|E〉〉
〈assign|expr#1 |〈macro|E1〉〉
〈assign|expr#2 |〈macro|E2〉〉
〈assign|expr#x |〈macro|x〉〉

〈assign|e_app|〈macro|t |u|t u〉〉
〈assign|e_lam |〈macro|x |u|λx.u〉〉

Let us comment this example:

• A typing declaration may have several forms. For instance, let us consider the binary
application e_app. The standard Twelf form is obtained as follows (where the wildcard
symbol is required for each argument):

1

⊔ ⊔ : exp → exp → exp.

It is however also possible to declare:

exp exp : exp.

and the translator will generate the former definition.

• The %binding 1 � 2 in λ⊔ .⊔ specification instructs the converter to translate
occurences of the form (e_lam x t) into (e_lam [x]t). Binding specifications are also taken
into account when translating declarations and:

λexp.exp : exp.

will be converted, as expected, into the same Twelf code as this declaration:

λ⊔ .⊔ : (exp → exp) → exp.

Note that, since we edit directly the abstract syntax in TeXmacs, parentheses are never
required for the translator. However, it is possible to display parentheses (as above) using
meta-paren.

• A macro may have several variants. A variant is obtained by adding # and a suffix (a number
for instance) to its name. Variants are ignored by the translator (the suffix is removed) but
they are useful for instance to display typing declarations as a grammar (as above).

• Variables are uppercased by the translator when needed (by putting an underscore _ in
front) and thus rule names begining with _ are forbidden (_ is however allowed inside rule
names). Note also that mathematical subscript are also translated using _ and they are thus
subjected to the same rule.

• The Twelf code fragments should be enclosed within meta-begin and meta-end which are
displayed on screen only (as angles).

• Sections are allowed into Twelf code fragments and are turned into comments by the
translator. Remarks and padded paragraphs are also allowed and ignored. This feature
encourages a kind of literate Twelf programming by freely mixing text and code.

2 Rules

2.1 Judgments

Judgments should be declared using the %judgment variant of 〈\meta-type〉. Binding specifica-
tions are also allowed for judgments.

2.2 Defining rules

A rule definition should be enclosed inside (and are displayed centered):

〈meta-defn|
〉

Multiple hypotheses are obtained using 〈meta-hyps||〉 (possibly nested many times for more than
two hypotheses). For instance, here are the rules for evaluating λ-terms:

%judgment ⊢E1� E2

⊢λx.e[x]� λx.e[x]
[ev_lam]

⊢e1� λx.e1
′ [x] ⊢ e2� v2 ⊢ e1

′ [v2]� v

⊢e1 e2� v
[ev_app]

%mode ⊢+E1� −E2

%worlds () ⊢E1� E2

%unique ⊢+E1� −1E2

2

2.3 Using rules in derivations

The rules are used using the same syntax as for declarations, but without the enclosing meta-
definition. It is thus possible to copy a rule from its definition and paste it inside a derivation tree
(in a proof for instance).

3 Lemmas

Lemmas should be declared using the %lemma variant of 〈\meta-type〉. Binding specifications are
also allowed for lemmas. A lemma is conveniently displayed for instance as follows (where “name”
is the name of the lemma and formulas are separated by spaces, commas or conjunctions):

ϕ1 	 ϕn ⊢name ψ1 	 ψn

The consistant mode declaration for this lemma would then be:

%mode +ϕ1 	 + ϕn ⊢name − ψ1 	 − ψn

Typed variables are also allowed and the should be enclosed in braces. For instance:

%lemma ∀e : exp ⊢refl e= e

As in Twelf, braces correspond to universal quantification when the mode is + and existential quan-
tification when the mode is − (variants of 〈\meta-braces〉 for displaying quantifiers are available).
Note also that braces should not be inserted when applying the lemma (but they are sometimes
required for the statement of the lemma).
As an alternative, we could use a non-dependent existential quantifier (and make the mode decla-
ration easier to read):

%lemma ∀e : exp ⊢refl ∃D : e= e

%mode +e ⊢refl −D

3.1 Proofs

Let us consider the following algorithmic definition of equality (from [?]).

%judgment t1= t2

〈〉= 〈〉
[equ_u]

{x} x= x → t[x] = t′[x]

λx: τ .t[x] =λx: τ .t′[x]
[equ_l]

t1= e1 t2= e2
(t1 t2) = (e1 e2)

[equ_a]

Here is a proof (by induction on t) that equality is reflexive:

%lemma ∀t: term ⊢refl t= t

%mode +t ⊢refl −D

〈〉: term ⊢refl
〈〉= 〈〉

[equ_u]

[r_a]

{x} {U :x= x}

(

x: term ⊢refl
U

x= x

)

→

(

t[x]: term ⊢refl
D x U

t[x] = t[x]

)

λx: τ.t[x]: term ⊢refl

D
{x} x=x → t[x] = t[x]

λx: τ .t[x] =λx: τ .t[x]
[equ_l]

[r_l]

3

(

t1: term ⊢refl
D1

t1= t1

) (

t2: term ⊢refl
D2

t2= t2

)

(t1 t2): term ⊢refl

D1

t1= t1

D2

t2= t2

(t1 t2)= (t1 t2)
[equ_a]

[r_a]

%block l : block {x: term}{U :x= x}{rx: (x: term ⊢refl U :x= x)}
%worlds (l) t ⊢refl D
%terminates (t) t ⊢refl D
%total (t) t ⊢refl D

4 Technical remarks

• Variables are uppercased by the translator when needed (by putting an underscore _ in
front) and thus rule names begining with _ are forbidden (_ is however allowed inside rule
names). Note also that mathematical subscript are also translated using _ and they are thus
subjected to the same rule.

• Twelf code fragments should be enclosed within meta-begin and meta-end. These macros
are displayed on screen only (as angles). Otherwise the whole document is assumed to be
a single Twelf code fragment.

• Sections are allowed into Twelf code fragments and they are turned into comments by the
translator. Remarks and padded paragraphs are also allowed and they are ignored. This
feature encourages a kind of literate Twelf programming by freely mixing text and code.

More detailed informations are available in the twelf.ts style file (given in appendix) and the
provided examples.

Appendix A The default Twelf style file

Delimiting Twelf code.

〈assign|meta-begin|〈macro|〈specific|screen|<〉 〉〉
〈assign|meta-end |〈macro|〈specific|screen|>〉 〉〉

Hiding some Twelf code (on paper).

〈assign|meta-hide|〈macro|f |〈specific|screen|f〉〉〉

Required to define a new rule (centered).

〈assign|meta-defn|〈macro|f |〈equation*|f〉〉〉

Required to define a new rule (padded).

〈assign|meta-defn#0 |〈macro|f | f 〉〉
〈assign|meta-defn#padded |〈macro|f | f 〉〉

Required to specify a binder.

〈assign|meta-bind |〈macro|n|m |f |%binding n� m in f〉〉

An identifier encoded as a string in Twelf.

4

〈assign|meta-ident |〈macro|x |x〉〉

A number encoded in Twelf.

〈assign|meta-number |〈macro|x |x〉〉

Twelf commands.

〈assign|meta-name|〈macro|f |g |%name f g〉〉
〈assign|meta-trustme|〈macro|%trustme 〉〉
〈assign|meta-thaw |〈macro|f |%thaw f〉〉
〈assign|meta-mode|〈macro|f |%mode f〉〉
〈assign|meta-worlds |〈macro|f |%worlds f〉〉
〈assign|meta-total |〈macro|f |%total f〉〉
〈assign|meta-define|〈macro|f |g |%define f = g〉〉
〈assign|meta-solve|〈macro|f |%solve f〉〉
〈assign|meta-unique|〈macro|f |%unique f〉〉
〈assign|meta-terminates |〈macro|f |%terminates f〉〉
〈assign|meta-block-decl |〈macro|name|f |%block name : f〉〉
〈assign|meta-block-defn|〈macro|name|f |%block name = f〉〉
〈assign|meta-block |〈macro|f |block f〉〉
〈assign|meta-some|〈macro|f |some f〉〉
〈assign|meta-sum |〈macro|f |g|f | g〉〉
〈assign|meta-typed-var |〈macro|f |g |f :g〉〉

Twelf type.

〈assign|meta-type|〈macro|type〉〉

Twelf type synonyms.

〈assign|meta-type#0 |〈macro|%lemma〉〉
〈assign|meta-type#lemma|%lemma〉
〈assign|meta-type#1 |〈macro|%judgment〉〉
〈assign|meta-type#judgment |%judgment〉
〈assign|meta-type#2 |〈macro|%datatype〉〉
〈assign|meta-type#datatype|%datatype〉

A Twelf declaration.

〈assign|meta-decl |〈macro|f |g |f : g.〉〉

An alternative syntax, useful to display lemma ψ instead of ψ : type.

〈assign|meta-decl#0 |〈macro|f |g |g f〉〉
〈assign|meta-decl#rev |〈macro|f |g |g f〉〉

An alternative syntax, useful to display τ ::= t instead of t : τ .

〈assign|meta-decl#1 |〈macro|f |g |g :6
| f〉〉

An alternative syntax, useful to display | t instead of t : τ .

〈assign|meta-decl#2 |〈macro|f |g | | f〉〉

A Twelf constant definition.

〈assign|meta-constant |〈macro|f |g |f = g.〉〉

A Twelf abbreviation.

5

〈assign|meta-abbrev |〈macro|f |g |f = g.〉〉

A Twelf abbreviation (alternative syntax displaying %abbrev).

〈assign|meta-abbrev#0 |〈macro|f |g |%abbrev f = g.〉〉

Twelf parentheses.

〈assign|meta-paren|〈macro|f |(f)〉〉

Twelf braces.

〈assign|meta-braces |〈macro|f |{f}〉〉
〈assign|meta-braces#forall |〈macro|f |∀f〉〉
〈assign|meta-braces#exists |〈macro|f |∃f〉〉

Twelf brackets.

〈assign|meta-brackets |〈macro|f |[f]〉〉

The wildcard (for declarations, definitions and abbreviations)

〈assign|meta-wildcard |〈macro|⊔ 〉〉
〈assign|meta-wildcard#flat |〈macro|_〉〉

A rule.

〈assign|meta-rule|〈macro|up|down|name|
up

down
[name]〉〉

A rule without the line (for axioms).

〈assign|meta-rule#0 |〈macro|up|down |name| down [name] 〉〉

〈assign|meta-rule#axiom|〈macro|up|down |name| down [name] 〉〉

Several hypotheses of a rule should be enclosed inside (nested) meta-hyps.

〈assign|meta-hyps |〈macro|f |g|f g〉〉

〈assign|meta-hyps#0 |〈macro|f |g |
f

g
〉〉

〈assign|meta-hyps#above|〈macro|f |g |
f

g
〉〉

Twelf meta abstraction.

〈assign|meta-abs |〈macro|x |t |[x] t〉〉
〈assign|meta-abs#lam|〈macro|x |t |λx.t〉〉

Twelf meta application.

〈assign|meta-app|〈macro|t |u |t u〉〉

Twelf meta application (displayed as a meta substitution)

〈assign|meta-app#0 |〈macro|t |u|t[u]〉〉

Twelf meta implication.

〈assign|meta-imp|〈macro|f |g|f → g〉〉

Twelf meta universal quantifier.

〈assign|meta-all |〈macro|x |f |{x} f〉〉

6

〈assign|meta-all#pi |〈macro|x |f |Πx.f〉〉

Type ascription for proof terms (or hypotheses names)

〈assign|meta-term|〈macro|form|t |
t

form
〉〉

〈assign|meta-term#0 |〈macro|form |n|n:form〉〉

Theorem prover

〈assign|meta-forallG |〈macro|f |∀Γf〉〉
〈assign|meta-forall* |〈macro|f |∀∗f〉〉
〈assign|meta-forall |〈macro|f |∀ f〉〉
〈assign|meta-exists |〈macro|f |∃ f〉〉
〈assign|meta-pi |〈macro|f |pi f〉〉
〈assign|meta-theorem|〈macro|n |f |%theorem n : f〉〉
〈assign|meta-prove|〈macro|f |%prove f〉〉

7

\documentclass{article}
\usepackage{amsmath}
\usepackage{twelf}
\usepackage{doc}
\usepackage{header-generic}

%%%%%%%%%% Start TeXmacs macros
\newcommand{\tmem}[1]{{\em #1\/}}
\newcommand{\tmop}[1]{\ensuremath{\operatorname{#1}}}
\newcommand{\tmrsub}[1]{\ensuremath{_{\textrm{#1}}}}
\newcommand{\tmsamp}[1]{\textsf{#1}}
\newcommand{\tmtexttt}[1]{{\ttfamily{#1}}}
%%%%%%%%%% End TeXmacs macros

\newcommand{\eapp}[2]{\ensuremath{#1 #2}}

\begin{document}

\title{Tm2elf User Guide}\author{Tristan Crolard}\maketitle

\begin{abstract}
 The {\tmsamp{Tm2elf}} is a translator which converts a TeXmacs source file
 into Twelf syntax. The translator takes advantage of TeXmacs powerful macro
 system and XML-like native format to provide a user-friendly interface to
 Twelf combined with a high-quality pretty-printer. The tool, which is
 developed in Standard ML, is distributed as a .NET console application (the
 source code is available on request).
\end{abstract}

{\tmsamp{Tm2elf}} is a translator which converts a TeXmacs source file into
Twelf syntax. The source file should obey some very specific rules: it should
only contain macro invocations. These macros are either provided by the
\tmtexttt{twelf.ts} style file (which are prefixed by \tmtexttt{meta-} and
reflect Twelf syntax) or by another style file written by the user. The style
files are of course needed by TeXmacs to display the source file content but
are ignored by the translator.

In this short guide, we explain how to write a TeXmacs source file containing
grammars definitions, rules definitions ans meta-theorems with their proofs.

\subsection{Grammars}

As a first example, let us consider the following grammar for the
λ-calculus (using Twelf higher-order syntax):

{\metabegin}

{\metadeclzero{{\expr}}{{\metatypetwo}}}

{\metaname{{\expr}}{E}}

{\metadeclone{{\eapp{{\exprone}}{{\exprtwo}}}}{{\expr}}}

{\metadecltwo{{\elam{{\exprx}}{{\expr}}}}{{\expr}}}

{\metabind{1}{2}{{\elam{{\metawildcard}}{{\metawildcard}}}}}

{\metaend}\\
The above code may be obtained as follows:

{\padded{}}

The style file should contain the following macro-definitions:

{\padded{

}}

Let us comment this example:
\begin{itemize}
 \item A typing declaration may have several forms. For instance, let us
 consider the binary application {\tmsamp{e_app}}. The standard Twelf form
 is obtained as follows (where the wildcard symbol is required for each
 argument):

 {\padded{{\metadecl{{\eapp{{\metawildcard}}{{\metawildcard}}}}{{\metaimp{{\expr}}{{\metaimp{{\expr}}{{\expr}}}}}}}}}

 {\noindent}It is however also possible to declare:

 {\padded{{\metadecl{{\eapp{{\expr}}{{\expr}}}}{{\expr}}}}}

 {\noindent}and the translator will generate the former definition.

 \item The {\metabind{1}{2}{{\elam{{\metawildcard}}{{\metawildcard}}}}}
 specification instructs the converter to translate occurences of the form
 {\tmsamp{(e_lam x t)}} into {\tmsamp{(e_lam [x]t)}}. Binding
 specifications are also taken into account when translating declarations
 and:

 {\padded{{\metadecl{{\elam{{\expr}}{{\expr}}}}{{\expr}}}}}

 {\noindent}will be converted, as expected, into the same Twelf code as this
 declaration:

 {\padded{{\metadecl{{\elam{{\metawildcard}}{{\metawildcard}}}}{{\metaimp{{\metaparen{{\metaimp{{\expr}}{{\expr}}}}}}{{\expr}}}}}}}

 {\noindent}Note that, since we edit directly the abstract syntax in TeXmacs,
 parentheses are never required for the translator. However, it is possible
 to display parentheses (as above) using {\tmsamp{meta-paren}}.

 \item A macro may have several variants. A variant is obtained by adding
 \tmtexttt{\#} and a suffix (a number for instance) to its name. Variants are
 ignored by the translator (the suffix is removed) but they are useful for
 instance to display typing declarations as a grammar (as above).

 \item Variables are uppercased by the translator when needed (by putting an
 underscore \tmtexttt{_} in front) and thus rule names begining with
 \tmtexttt{_} are forbidden (\tmtexttt{_} is however allowed
 {\tmem{inside}} rule names). Note also that mathematical subscript are also
 translated using \tmtexttt{_} and they are thus subjected to the same rule.

 \item The Twelf code fragments should be enclosed within
 \tmtexttt{meta-begin} and \tmtexttt{meta-end} which are displayed on screen
 only (as angles).

 \item Sections are allowed into Twelf code fragments and are turned into
 comments by the translator. Remarks and padded paragraphs are also allowed
 and ignored. This feature encourages a kind of literate Twelf programming by
 freely mixing text and code.
\end{itemize}

\subsection{Rules}

\subsubsection{Judgments}

Judgments should be declared using the {\metatypeone} variant of . Binding
specifications are also allowed for judgments.

\subsubsection{Defining rules}

A rule definition should be enclosed inside (and are displayed centered):

Multiple hypotheses are obtained using (possibly nested many times for more
than two hypotheses). For instance, here are the rules for evaluating
λ-terms:

{\padded{{\metadeclzero{{\eeval{{\exprone}}{{\exprtwo}}}}{{\metatypeone}}}

{\metadefn{{\metarule{}{{\eeval{{\elam{x}{{\metaappzero{e}{x}}}}}{{\elam{x}{{\metaappzero{e}{x}}}}}}}{ev_lam}}}}

{\metadefn{{\metarule{{\metahyps{{\eeval{e\tmrsub{1}}{{\elam{x}{{\metaappzero{e\tmrsub{1}'}{x}}}}}}}{{\metahyps{{\eeval{e\tmrsub{2}}{v\tmrsub{2}}}}{{\eeval{{\metaappzero{e\tmrsub{1}'}{v\tmrsub{2}}}}{v}}}}}}}{{\eeval{{\eapp{e\tmrsub{1}}{e\tmrsub{2}}}}{v}}}{ev_app}}}}

{\metamode{{\eeval{+E\tmrsub{1}}{-E\tmrsub{2}}}}}

{\metaworlds{{\metaparen{}}{\hspace{1em}}{\eeval{E\tmrsub{1}}{E\tmrsub{2}}}}}

{\metaunique{{\eeval{+E\tmrsub{1}}{-1E\tmrsub{2}}}}}}}

\subsubsection{Using rules in derivations}

The rules are used using the same syntax as for declarations, but without the
enclosing meta-definition. It is thus possible to copy a rule from its
definition \ and paste it inside a derivation tree (in a proof for instance).

\subsection{Lemmas}

Lemmas should be declared using the {\metatypezero} variant of . Binding
specifications are also allowed for lemmas. A lemma is conveniently displayed
for instance as follows (where ``name'' is the name of the lemma and formulas
are separated by spaces, commas or conjunctions):
\[\varphi_1 \hspace{1em} \ldots \hspace{1em} \varphi_n \hspace{1em}
 \vdash_{\tmop{name}} \hspace{1em} \psi_1 \hspace{1em} \ldots \hspace{1em}
 \psi_n \]
The consistant mode declaration for this lemma would then be:

{\padded{{\metamode{+{\varphi}\tmrsub{1}{\hspace{1em}}{\ldots}{\hspace{1em}}+{\varphi}\tmrsub{n}{\hspace{1em}}{\vdash}\tmrsub{name}{\hspace{1em}}-{\psi}\tmrsub{1}{\hspace{1em}}{\ldots}{\hspace{1em}}-{\psi}\tmrsub{n}}}}}

Typed variables are also allowed and the should be enclosed in braces. For
instance:

{\padded{{\metadeclzero{{\metabracesforall{e
:exp}}{\hspace{1em}}{\vdash}\tmrsub{refl}{\hspace{1em}}e=e}{{\metatypezero}}}}}

As in Twelf, braces correspond to universal quantification when the mode is
$+$ and existential quantification when the mode is $-$ (variants of for
displaying quantifiers are available). Note also that braces should not be
inserted when applying the lemma (but they are sometimes required for the
statement of the lemma).

As an alternative, we could use a non-dependent existential quantifier (and
make the mode declaration easier to read):

{\padded{{\metadeclzero{{\metabracesforall{e
:exp}}{\hspace{1em}}{\vdash}\tmrsub{refl}{\hspace{1em}}{\metabracesexists{{\mathcal{D}}
:e=e}}}{{\metatypezero}}}

{\metamode{{\equalref{+e}{-{\mathcal{D}}}}}}}}

\subsubsection{Proofs}

Let us consider the following algorithmic definition of equality (from [?]).

{\metadeclzero{{\tmequal{{\tmone}}{{\tmtwo}}}}{{\metatypeone}}}

{\metadefn{{\metarule{}{{\tmequal{{\single}}{{\single}}}}{equ_u}}}}

{\metadefn{{\metarule{{\metaall{x}{{\metaimp{{\tmequal{x}{x}}}{{\tmequal{{\metaappzero{t}{x}}}{{\metaappzero{t'}{x}}}}}}}}}{{\tmequal{{\lam{x}{{\tau}}{{\metaappzero{t}{x}}}}}{{\lam{x}{{\tau}}{{\metaappzero{t'}{x}}}}}}}{equ_l}}}}

{\metadefn{{\metarule{{\metahyps{{\tmequal{t\tmrsub{1}}{e\tmrsub{1}}}}{{\tmequal{t\tmrsub{2}}{e\tmrsub{2}}}}}}{{\tmequal{{\metaparen{{\app{t\tmrsub{1}}{t\tmrsub{2}}}}}}{{\metaparen{{\app{e\tmrsub{1}}{e\tmrsub{2}}}}}}}}{equ_a}}}}

Here is a proof (by induction on t) that equality is reflexive:

{\metadeclzero{{\equalref{{\metabracesforall{{\metatypedvar{t}{{\tm}}}}}}{{\tmequal{t}{t}}}}}{{\metatypezero}}}

{\metamode{{\equalref{+t}{-{\mathcal{D}}}}}}

{\metadefn{{\metarule{}{{\equalref{{\metatermzero{{\tm}}{{\single}}}}{{\metarule{}{{\tmequal{{\single}}{{\single}}}}{equ_u}}}}}{r_a}}}}

{\metadefn{{\metarule{{\metaall{x}{{\metaall{{\metatypedvar{{\mathcal{U}}}{{\tmequal{x}{x}}}}}{{\metaimp{{\metaparen{{\equalref{{\metatermzero{{\tm}}{x}}}{{\metaterm{{\tmequal{x}{x}}}{{\mathcal{U}}}}}}}}}{{\metaparen{{\equalref{{\metatermzero{{\tm}}{{\metaappzero{t}{x}}}}}{{\metaterm{{\tmequal{{\metaappzero{t}{x}}}{{\metaappzero{t}{x}}}}}{{\metaapp{{\metaapp{{\mathcal{D}}}{x}}}{{\mathcal{U}}}}}}}}}}}}}}}}}{{\equalref{{\metatermzero{{\tm}}{{\lam{x}{{\tau}}{{\metaappzero{t}{x}}}}}}}{{\metarule{{\metaterm{{\metaall{x}{{\metaimp{{\tmequal{x}{x}}}{{\tmequal{{\metaappzero{t}{x}}}{{\metaappzero{t}{x}}}}}}}}}{{\mathcal{D}}}}}{{\tmequal{{\lam{x}{{\tau}}{{\metaappzero{t}{x}}}}}{{\lam{x}{{\tau}}{{\metaappzero{t}{x}}}}}}}{equ_l}}}}}{r_l}}}}

{\metadefn{{\metarule{{\metahyps{{\metaparen{{\equalref{{\metatermzero{{\tm}}{t\tmrsub{1}}}}{{\metaterm{{\tmequal{t\tmrsub{1}}{t\tmrsub{1}}}}{{\mathcal{D}}\tmrsub{1}}}}}}}}{{\metaparen{{\equalref{{\metatermzero{{\tm}}{t\tmrsub{2}}}}{{\metaterm{{\tmequal{t\tmrsub{2}}{t\tmrsub{2}}}}{{\mathcal{D}}\tmrsub{2}}}}}}}}}}{{\equalref{{\metatermzero{{\tm}}{{\metaparen{{\app{t\tmrsub{1}}{t\tmrsub{2}}}}}}}}{{\metarule{{\metahyps{{\metaterm{{\tmequal{t\tmrsub{1}}{t\tmrsub{1}}}}{{\mathcal{D}}\tmrsub{1}}}}{{\metaterm{{\tmequal{t\tmrsub{2}}{t\tmrsub{2}}}}{{\mathcal{D}}\tmrsub{2}}}}}}{{\tmequal{{\metaparen{{\app{t\tmrsub{1}}{t\tmrsub{2}}}}}}{{\metaparen{{\app{t\tmrsub{1}}{t\tmrsub{2}}}}}}}}{equ_a}}}}}{r_a}}}}

{\metablockdecl{l}{{\metablock{{\metabraces{{\metatypedvar{x}{{\tm}}}}}{\metabraces{{\metatypedvar{{\mathcal{U}}}{{\tmequal{x}{x}}}}}}{\metabraces{{\metatypedvar{r\tmrsub{x}}{{\metaparen{{\equalref{{\metatermzero{{\tm}}{x}}}{{\metatermzero{{\tmequal{x}{x}}}{{\mathcal{U}}}}}}}}}}}}}{}}}}

{\metaworlds{{\metaparen{l}}{\hspace{1em}}{\equalref{t}{{\mathcal{D}}}}}}

{\metaterminates{{\metaparen{t}}{\hspace{1em}}{\equalref{t}{{\mathcal{D}}}}}}

{\metatotal{{\metaparen{t}}{\hspace{1em}}{\equalref{t}{{\mathcal{D}}}}}}

\subsection{Technical remarks}

\begin{itemize}
 \item Variables are uppercased by the translator when needed (by putting an
 underscore \tmtexttt{_} in front) and thus rule names begining with
 \tmtexttt{_} are forbidden (\tmtexttt{_} is however allowed
 {\tmem{inside}} rule names). Note also that mathematical subscript are also
 translated using \tmtexttt{_} and they are thus subjected to the same rule.

 \item Twelf code fragments should be enclosed within \tmtexttt{meta-begin}
 and \tmtexttt{meta-end}. These macros are displayed on screen only (as
 angles). Otherwise the whole document is assumed to be a single Twelf code
 fragment.

 \item Sections are allowed into Twelf code fragments and they are turned
 into comments by the translator. Remarks and padded paragraphs are also
 allowed and they are ignored. This feature encourages a kind of literate
 Twelf programming by freely mixing text and code.
\end{itemize}
More detailed informations are available in the \tmtexttt{twelf.ts} style file
(given in appendix) and the provided examples.

\appendix\section{The default Twelf style file}

\end{document}

