

A Constructive Restriction of

the λµ-calculus

Tristan Crolard∗

crolard@ufr-info-p7.jussieu.fr

April 25, 1999

Abstract

We define a very natural restriction of the λµ-calculus which is stable under reduction and
whose type system is a restriction of the Classical Natural Deduction to intuitionistic logic.
However, we show that this system is in some sense degenerated unless we provide a native
disjunction. We prove that the system with native disjunction is conservative over DIS-logic
and also that DIS-logic is constructive. From a computational standpoint, this restriction on
λµ-terms prevents a coroutine from accessing the local environment of another coroutine.

Keywords: type system, lambda-calculus, control operators, constructive logic.

Introduction

We define a restriction of the Classical Natural Deduction (CND), which is closed under reduction
(in propositionnal, first and second order frameworks). Our first attempt results in an intuitionistic
logical system which is degenerated in some sense. This defect is fixed when we supplement the
system with a native disjunction. However, the resulting system is no longer conservative over intu-
itionistic logic but over DIS-logic (see section 1). We also show that DIS-logic is still a constructive
logic.

This restriction is rephrased for the pure (i.e. untyped) λµ-calculus, in such a way that the
former restriction is exactly the latter when we consider typed terms. We give a computational
interpretation of the restriction on λµ-terms as “coroutines that do not access the local environment
of another coroutine”.

In section 2, we deal with the logical aspect of the restriction while in section 3 we consider the
computational aspect and how they are both related (thanks to the Curry-Howard isomorphism).

Interpretation

Let us first recall that the definition of a catch/throw mechanism is straightforward in the λµ-
calculus: just set catch α t ≡ µα[α]t and throw α t ≡ µδ[α]t where δ is a µ-variable which does
not occur in t (see [3] for a study of the sublanguage obtained when we restrict the λµ-terms to
these operators).

In λµ-calculus a µ-variable may be reified as the first-class continuation λx.throw α x. However,
the type of such a λµ-term is the excluded-middle " A;¬A. Thus, continuations are no longer
first-class objects in a constructive logic. This remark raises a natural question: what is the
computational interpretation of our restriction on λµ+-terms?

∗UFR d’Informatique, Université Paris 7, 2 Place Jussieu, 75251 Paris, France

1

To answer this question, let us recall that first-class continuations have been sucessfully used
to implement Simula-like cooperative coroutines in Scheme [28, 9]. This approach has been ex-
tended in the Standard ML of New Jersey (SML/NJ) to provide simple and elegant implemen-
tations of light-weight processes (or threads), where concurrency is obtained by having individual
threads volontarily suspend themselves [25, 21, 2] (providing time-sliced processes using pre-emptive
scheduling requires additional run-time system support [2, 24]).

The key point in these implementations is that control operators (such as the famous call/cc of
Scheme and its typed counterpart callcc and throw in SML/NJ) make it possible to switch between
coroutine contexts, where the context of a coroutine is just its continuation. In the restricted λµ+-
calculus, continuations are no longer first-class objects, but the ability of context-switching remains.
However, a context is now a pair environment + continuation (to avoid any confusion we will call
such a pair a µ-context). A µ-context is exactly what we expect as the context of a coroutine,
since a coroutine should not access the local environment (the part of the environment which is not
shared) of another coroutine.

Related work

The extension of the well-known formulas-as-types paradigm to classical logic has been widely
investigated by T. G. Griffin [10], C. R. Murthy [14], F. Barbanera and S. Berardi [1], N. J. Rehof
and M. H. Sørensen [23], P. De Groote [6], J.-L. Krivine [13], and M. Parigot [18, 19] . . .

H. Nakano, Y. Kameyama and M. Sato [16, 15, 17, 11, 12, 26] have proposed various logical
frameworks that are intended to provide a type system for a lexical variant of the catch/throw
mechanism used in functional languages such as Lisp. Moreover, H. Nakano has shown that it is
possible to restrict the catch/throw mechanism in order to stay in an intuitionistic (propositional)
framework. In this paper, we generalize H. Nakano’s result in several ways:

• We use M. Parigot’s λµ-calculus and its type system, the Classical Natural deduction (CND)
[18, 19], which is confluent and strongly normalizing in the second order framework [20].

• We deal with the first and second order frameworks.

• We consider a type system à la Curry, which allows us to rephrase the above restriction on
pure (i.e. untyped) λµ-terms, and not only on typed terms as in [17].

• We propose a computational interpretation of our restriction.

• On the other hand, we do not consider tag-abstraction in this paper. However, our restriction
is symmetrical and thus easily extends to duality. Our purpose is to type tag-abstraction
with the subtraction (the connector dual to implication). Note that subtractive logic is a
conservative extension of DIS-logic [22, 5, 4].

1 DIS-logic

DIS-logic is the first order (resp. second order) intuitionistic logic extended with the following
axiom schemas DIS (resp. DIS and DIS2) where x (resp. X) does not occur in B:

∀x(A ∨ B) " ∀xA ∨ B ∀X(A ∨ B) " ∀XA ∨ B

Remark. Though DIS is not valid in intuitionistic logic, if a formula ∀x(A∨B) is an intuitionistic
theorem then ∀xA ∨ B is also an intuitionistic theorem (by the Disjunction Property).

2

1.1 DIS-logic is constructive

Theorem 1.1.1

• (Disjunction Property) If a formula A∨B is valid in DIS-logic then either A or B is valid
in DIS-logic.

• (Existence Property) If a formula ∃xϕ is valid in DIS-logic then there exists a term t such
that ϕ(t) is valid in DIS-logic.

Proof. We only sketch a semantical proof of the Existence Property using Kripke models. Recall
that Kripke models with constant domains are sound and complete for DIS-logic (C. Rauszer [22]).
Let us first supplement the signature with an enumerable set of constants {ci/i ∈ N}. We know that
a formula ϕ with some free variables x1, . . . , xn is valid iff the closed formula ϕ[c1/x1, . . . , cn/xn]
is valid. We will thus consider (without restriction) some closed theorem ∃xϕ. We have to prove
that there exists a closed term t such that " ϕ(t).

Let us assume that for each closed term t, we have a Kripke model Mt such that Mt '! ϕ(t).
Let D(M) be the free algebra generated by the disjoint union D of the domains of all Mt’s. Let Mc

t

be a copy of Mt for each constant c that occurs in t. The domain of each Mc
t is extended to D(M)

in such a way that any new element is a copy of Mt(c). More specifically, let η : D → D(Mt)
be the mapping defined by η(e) = e if e ∈ D(Mt) and η(e) = Mt(c) otherwise. This mapping is
extended in the usual way to the free algebra D(M). Now, for each node α of Mc

t and each n-ary
predicate symbol P we define M(P) by:

(e1, . . . , en) ∈α M(P) iff (η(e1), . . . , η(en)) ∈α Mc
t(P)

We build the model M by taking the disjoint union of the Mc
t ’s and adding a bottom node α0.

Let e be an element of D(M), let us show that M '! ϕ(e). By definition, e has the form
t[d1/x1, . . . , dn/xn] where t is a term without parameter (but with some free variables x1, . . . , xn)
and d1, . . . , dn are elements of D (if e is a closed term then n = 0). Now, let c be a constant such
that for any 1 ≤ i ≤ n we have di /∈ D(Mt̄) where t̄ is the closed term t[c/x1, . . . , c/xn] (there are
infinitely many such constants). By construction, Mt̄ '! ϕ(t̄) and thus Mc

t̄ '! ϕ(e) since for each
for any 1 ≤ i ≤ n, di is a copy of c in Mc

t̄ . Consequently α0 '! ϕ(e). !

2 Constructive restrictions of Classical Natural Deduction (CND)

It is well-known that if we restrict the classical sequent calculus LK [27] to sequents with at most
one conclusion we obtain the intuitionistic sequent calculus LJ [27]. As for natural deduction, it
was originally presented for sequents having one conclusion and formalized intuitionistic logic. Its
extension to sequents with several conclusions is M. Parigot’s Classical Natural Deduction [18] and
leads to classical logic

When we consider a calculus with several conclusions, we would like the right comma to be a
disjunction. The following definition is thus natural:

Definition 2.0.2 We call native disjunction a disjunction for which the following rules are deriv-
able:

Γ " ∆, A,B

Γ " ∆, A ∨ B

Γ " ∆, A ∨ B

Γ " ∆, A,B

Dragalin [7] and Dikhoff [8] have suggested to restrict the sole introduction rule of implication
of LK to sequents with at most one conclusion. The properties of such calculus depend on the

3

particular rules for disjunction (and also for ∃ which we do not consider here). In case disjunction
is second-order defined as A ∨ B ≡ ∀O(A → O) → (B → O) → O the rules for ∨ are

Γ " ∆, A

Γ " ∆, A ∨ B

Γ " ∆, B

Γ " ∆, A ∨ B

Γ " ∆, A ∨ B Γ " ∆, (A ⇒ C) Γ " ∆, (B ⇒ C)

Γ " ∆, C

and the calculus is degenerated. This means that for each sequent derived in such a calculus at
least one conclusion is derivable under the same hypothesis.

Observe that the elimination ∨-rule which does not use implication (together with the introduc-
tion rules) derives and can be derived from the native rules for disjunction. Now the degeneracy
phenomenon does not hold with native disjunction since then A ∨ B " A,B is valid whereas
A ∨ B " A and A ∨ B " B are not.

Definition 2.0.3 We call CND1 the system CND (with no native disjunction) where the introduc-
tion rule of implication is restricted to sequents with at most one conclusion. We call CND1

∨ the
system CND1 supplemented with a native disjunction.

Surprisingly, we have:

Proposition 2.0.4 The system CND1
∨ is conservative over DIS-logic.

Proof. By induction on the derivation. Conversely, here is a proof of DIS in CND1
∨ (the proof of

DIS2 is similar):

∀x(A ∨ B) " ∀x(A ∨ B)

∀x(A ∨ B) " A ∨ B

∀x(A ∨ B) " A,B
∀x(A ∨ B) " ∀xA,B

∀x(A ∨ B) " ∀xA ∨ B

!

Remark. In the above proof, we used the introduction rule for the universal quantifier with-
out constraint. One can check that a native disjunction with constrained ∀-introduction rule is
conservative over intuitionistic logic.

However this restriction of the introduction rule of implication is not stable under substitution.
We will thus consider a weaker restriction of CND which is stable under reduction in the next
section.

2.1 A weaker restriction of CND

We use undirected links to make explicit all interdependencies between occurrences of hypothesis
and occurrences of conclusions in any derived sequent. A link between some occurrence of an
hypothesis Γi and some occurrence of a conclusion ∆j may be represented as follows:

Γ1, . . . Γi, . . . Γn " ∆1, . . . ∆j , . . . ∆m

In order to annotate sequents with such links, we name any occurrence of hypothesis (x, y, z, . . .)
and any occurrence of conclusions (α,β, γ, . . .) in a sequent. We assume that the name of an hy-
pothesis (resp. a conclusion) never occurs twice in a sequent. The links annotating some sequent
Γx1

1 , . . . ,Γxn
n " ∆α1

1 , . . . ,∆αm
m provide a subset of {x1, . . . , xn} × {α1, . . . ,αm} which can be rep-

resented by annotating either each conclusion by a set of hypothesis or each hypothesis by a set of
conclusions.

4

Example. The sequent Ax, By, Cz " Dα, Eβ , F γ , Gδ together with the interdependencies
{(x,β), (x, δ), (z,α), (z, β), (z, δ)} can be represented in both forms:

Ax, By, Cz " {z} : D, {x, z} : E, {} : F, {x, z} : G
{β, δ}:A, {} : B, {α,β, δ} : C " Dα, Eβ, F γ , Gδ

The system CND: explicit interdependencies

We will use here the former representation (i.e. each conclusion is annotated by a set of hypothesis).
The annotations of a sequent derived in CND are defined by induction on the derivation (we omit
the annotations that are not modified by the rule).

Notation. We will need the following abbreviation:

U [V/x] ≡

{

U\{x} ∪ V if x ∈ U
U otherwise

Axioms

Ax " {x} : A

Weakening rule

Γ " ∆

Γ, Ax " ∆

Γ " ∆

Γ " ∆, {} : A

Contraction rule

Γ, Ax, Ay " S1 : ∆1, . . . , Sn : ∆n

Γ, Az " S1[z/x, z/y] : ∆1, . . . , Sn[z/x, z/y] : ∆n

Γ " ∆, U : A, V : A

Γ " ∆, U ∪ V : A

Introduction rule for ⇒

Γ, Ax " S1 : ∆1, . . . , Sn : ∆n, V : B

Γ " S1 \ {x} : ∆1, . . . , Sn \ {x} : ∆n, V \ {x} : (A ⇒ B)

Elimination rule for ⇒

Γ " ∆, U : (A ⇒ B) Γ′ " ∆′, V : A

Γ,Γ′ " ∆,∆′, U ∪ V : B

Remark. If an hypothesis (resp. a conclusion) occurs with the same name in Γ and Γ′ (resp. in
∆ and ∆′) then these occurrences are implicitly contracted using the left (resp. right) contraction
rule. Thus the name of an hypothesis (resp. a conclusion) never occurs twice in a sequent. To allow
multiplicatives rules we should consider a new kind of weakening rules, which add a link between
an hypothesis and a conclusion as follows:

Γ1, . . . , Γxi

i , . . . ,Γn " ∆1, . . . , Sj : ∆j, . . . ,∆p

Γ1, . . . , Γxi

i , . . . ,Γn " ∆1, . . . , Sj ∪ {xi} : ∆j, . . . ,∆p

5

Cut rule

Γ " S1 : ∆1, . . . , Sn : ∆n, S : A Γ′, Ax " S′
1 : ∆′

1, . . . , S′
p : ∆′

p

Γ,Γ′ " S1 : ∆1, . . . , Sn : ∆n, S′
1[S/x] : ∆′

1, . . . , S′
p[S/x] : ∆′

p

Remark. If we consider the rules for which a left/right symmetry holds (contraction and weak-
ening) we notice that annotations are also symmetrical to one another. For instance, the left
contraction rule might have been annotated as follows (where this time hyphotesis are annoted):

Γ, U : A, V : A " ∆

Γ, U ∪ V : A " ∆

Intro. rule (if x does not occur in Γ,∆) and elim. rule for ∀

(idem for ∀2)

Γ " ∆, S : A

Γ " ∆, S : ∀xA

Γ " ∆, S : ∀xA

Γ " ∆, S : A[t/x]

Intro. rule (if x does not occur in Γ,∆) and elim rule for ∀2

Γ " ∆, S : A

Γ " ∆, S : ∀XA

Γ " ∆, S : ∀XA

Γ " ∆, S : A[T/X]

Notation. We denote CND the system CND where interdependencies are explicit.

Remark. Any proof of CND is a proof of CND, it suffices to annotate the proof.

Definition 2.1.1 In CND, an instance of the introduction rule of implication is constructive iff
x does not occur in any Si. The rule becomes then:

Γ, Ax " S1 : ∆1, . . . , Sn : ∆n, V : B

Γ " S1 : ∆1, . . . , Sn : ∆n, V \ {x} : (A ⇒ B)
where x /∈ S1 ∪ . . . ∪ Sn

In other words, to stay in a constructive framework, an hypothesis may be discharged over some
conclusion if and only if no other conclusion depends on it. This constraint extends to proofs:

Definition 2.1.2 A proof of CND is said to be constructive if any occurrence of the introduction
rule of implication is constructive. We call CNDr the restriction of CND to constructive proofs.

Remark. Any proof of CND1 is obviously a proof of CNDr.

The following theorem say that CNDr (and thus also CND1) is degenerated in some way.

Theorem 2.1.3 For any sequent Γ " ∆ derived in CNDr, then Σ " ∆j is valid in intuitionistic
logic for at least one ∆j. More specifically, if Σ is the subset of hypothesis of Γ which are linked to
∆j in the sequent Γ " ∆, then Σ " ∆j is valid in intuitionistic logic.

Proof. Let us show than any conclusion ∆j which does not come, directly or indirectly, from an
occurence of the weakening rule satisfies the property stated in the theorem. In order to emphasize
these conclusions which come from an occurence of the weakening rule, we will add a new kind of
annotation for conclusions: the symbol ∞. The right-hand weakening and contraction rules thus
become:

Γ " ∆

Γ " ∆, ∞ : B

Γ " ∆, U : B, V : B

Γ " ∆, W : B

where W is defined as follows:

6

• W = ∞ if U = ∞ and V = ∞

• W = V if U = ∞ and V '= ∞

• W = U if U '= ∞ and V = ∞

• W = V or W = U if U '= ∞ and V '= ∞

In the last case, two annotations are possible: this process of extraction is thus intrinsically
non deterministic.

We now extend the set-theroretic operations used to define the previous annotations to this
new symbol in the following way:

• U ∪∞ = ∞∪ U = ∞

• ∞\{x} = ∞

• ∞[U/x] = ∞

• U [∞/x] = ∞, if x occurs in U and U [∞/x] = U otherwise

If Γ is the set of hypothesis Γx1, . . . ,Γxn and S is a subset of {x1, . . . , xn}, we denote ΓS the
subset of hypothesis of Γ whose name occur in S. We check then by recurrence on the proof that,
for any derived sequent Γ " ∆ , on the one hand, there exists at least one conclusion which is
not annotated by ∞, and on the other hand, for any conclusion ∆j annotated by some (possibly
empty) set S of hypothesis names, ΓS "NJ ∆j .

The only tricky case is the implication’s introduction rule. By definition, an occurrence of this
rule:

Γ, Ax " V : B, S1 : ∆1, . . . , Sn : ∆n

Γ " V \ {x} : (A ⇒ B), S1 \ {x} : ∆1, . . . , Sn \ {x} : ∆N

is intuitionistic if, for any conclusion ∆j annotated by Sj we have either Sj = ∞ or Sj is a set of
hypothesis names such as x /∈ Sj. In the latter case, by recurrence hypothesis, we have ΓSj "NJ ∆j

and consequently, ΓSj\{x} "NJ ∆j since Sj\{x} = Sj. Now, if V '= ∞ then by recurrence hypothesis,
ΓV "NJ B hence ΓV \{x} "NJ A ⇒ B. If V = ∞ then there exists at least one conclusion ∆j which
is not annotated by ∞ and such as ΓSj "NJ ∆j. !

Remark. If we define A ∧ B as the second order formula A ∧ B ≡ ∀O(A → B → O) → O, it is
easy to derive the following annotated rules for ∧:

Γ " ∆, U : A Γ " ∆, V : B

Γ " ∆, U ∪ V : A ∧ B

Γ " ∆, S : A ∧ B

Γ " ∆, S : A

Γ " ∆, S : A ∧ B

Γ " ∆, S : B

2.2 Native disjunction

The usual definition of A ∨ B as the second order formula ≡ ∀O(A → O) → (B → O) → O allow
us to derive the following annotated rules for ∨:

Γ " ∆, S : A

Γ " ∆, S : A ∨ B

Γ " ∆, S : B

Γ " ∆, S : A ∨ B

Γ " ∆, U : A ∨ B Γ " ∆, V : (A ⇒ C) Γ " ∆,W : (B ⇒ C)

Γ " ∆, U ∪ V ∪ W : C

7

Yet, with these rules defining the disjunction, by the theorem 2.1.3, we are not able to derive the
sequent A ∨ B " A,B since clearly neither the sequent A ∨ B " A nor the sequent A ∨ B " B is
valid in intuitionistic logic.

It is easy to derive the annotated rules of a native disjunction by symmetry. The left introduction
rule of ∨ which is dual to the right introduction rule of ∧ (where hypothesis are annotated):

Γ, U : A " ∆ Γ, V : B " ∆

Γ, U ∪ V : A ∨ B " ∆

Let us annotate this rule on the right-hand side:

Γ, Ax " S1 : ∆1, . . . , Sn : ∆n, Γ′, By " S′
1 : ∆′

1, . . . , S′
p : ∆′

p

Γ,Γ′, A ∨ Bz " S1[z/x] : ∆1, . . . , Sn[z/x] : ∆n, S′
1[z/x] : ∆′

1, . . . , S′
p[z/x] : ∆′

p

Using the cut rule, we eventually obtain the right-hand annotations for the usual (in natural
deduction style) elimination rule of disjunction. The introduction rules are easier to derive. We
sum up these rules in the following definition:

Definition 2.2.1 We call CNDr
∨ the calculus CNDr supplemented by a native disjunction, de-

noted ∨, and defined by the following rules:

Γ " ∆;S : A

Γ " ∆;S : A ∨ B

Γ " ∆;S : B

Γ " ∆;S : A ∨ B

Γ " ∆, S : A ∨ B Γ, Ax " S1 : ∆1, . . . , Sn : ∆n Γ′, By " S′
1 : ∆′

1, . . . , S′
p : ∆′

p

Γ,Γ′,Γ′′ " ∆, S1[S/x] : ∆1, . . . , Sn[S/x] : ∆n, S′
1[S/y] : ∆′

1, . . . , S′
p[S/y] : ∆′

p

Theorem 2.2.2 A sequent is derivable in CNDr
∨ iff it is valid in DIS-logic (in the first and second

order frameworks).

Proof. (sketch) First an easy induction on derivations shows that any sequent derivable in CND∨

from sequents valid in DIS-logic without the introduction rule of implication is also valid in DIS-
logic. Another induction shows that a proof of a sequent in CNDr

∨ can be turned into a proof of
the same sequent using axioms valid in DIS-logic but whithout any occurrence of the constructive
introduction rule of implication (the details of the proof are given in appendix A.1). Whence this
sequent is valid in DIS-logic. !

3 The typed λµ+-calculus

Parigot [18] introduced the λµ+-calculus which allows for a Curry-Howard correspondance with the
Classical Natural Deduction. Here we consider the λµ-calculus, with injections inl and inr, cases
and let instructions which we call λµ+-calculus. We recall the syntax of this calculus and give the
definition of a λµ+-term safe with respect to µ-contexts (µ-safe for short): this is a formal definition
of a λµ-term in which a coroutine does not access any local variable of another coroutine. We show
that this restriction is stable under the reduction rules of the λµ+-calculus. By construction, µ-safe
λµ+-terms and proofs of CNDr

∨ are related by the following statement: given the derivation of
a type judgement of a λµ+-term t by some sequent in CND∨, if t is µ-safe then this derivation
belongs to CNDr

∨ (and the sequent is valid in DIS-logic).

8

3.1 The λµ+-calculus

As usual, we denote λ-variables x, y, z . . . and µ-variables α,β, γ . . .

Definition 3.1.1 If t, u, v are λµ+-terms then

x, (u v), λx.t, µα[β]t, inl t, inr t, cases t of (inl x) /→ u | (inr y) /→ v, let x = t in u

are also λµ+-terms.

Reduction rules of the λµ+-calculus

1. (λx.u v) " u{v/x}

2. (µαu v) " µαu{[α](t v)/[α]t}

3. [β]µαt " t{β/α}

4. µα[α]t " t if α does not occur free in t.

5. let x = u in t " t{u/x}

6. cases (inl t) of (inl x) /→ u | (inr y) /→ v " u{t/x}

7. cases (inr t) of (inl x) /→ u | (inr y) /→ v " v{t/y}

8. cases µαw of (inl x) /→ u | (inr y) /→ v " µαw{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}

The notation u{v/x} stands for the usual substitution of the λ-variable x by v in u. The
notation u{[α]v/[α]t} means “replace in the term u term any occurrence of any subterm of the
form [α]t by [α]v”.

Remark. The λµ-calculus is strongly normalizing in the second order framework. This result can
be easily extended to the λµ+-calculus using the definition of the disjunction as a second order
formula and cases, inl, inr, let as macros:

• let x = u in t ≡ (λx.t u)

• inl t ≡ λfλg(f t)

• inr t ≡ λfλg(g t)

• cases t of (inl x) /→ u | (inr y) /→ v ≡ (t λx.u λy.v)

If we denote Φ the previous translation from the λµ+-calculus into the λµ-calculus, it is easy to
check the following properties:

1. Φ is a morphism for the reduction: if u "λµ+ v then Φ(u) "
n
λµ Φ(v) (with n > 0)

2. Φ preserves normal forms: if u is a normal λµ+-term then Φ(u) is a normal λµ-term.

From the first property, we can derive the strong normalization of the second order λµ+-calculus,
and from the second property, the uniqueness of the normal form (but not the Church-Rosser
property). We also know that we have enough rules to obtain “good normal forms” (since they are
the same as in the λµ-calculus).

9

3.2 Typing rules

Axiom

x : Ax " A

Rules of →

t : Γ, Ax " ∆;B

λx.t : Γ " ∆;A → B

u : Γ " ∆;A → B v : Γ " ∆;A

(u v) : Γ " ∆;B

Rules of ∀

u : Γ " ∆;A

u : Γ " ∆;∀xA

u : Γ " ∆;∀xA

u : Γ " ∆;A{t/x}

Rules of ∀2

u : Γ " ∆;A

u : Γ " ∆;∀XA

u : Γ " ∆;∀XA

u : Γ " ∆;A{T/X}

Naming rules

t : Γ " ∆;A

[α]t : Γ " ∆, Aα;

t : Γ " ∆, Aα;

µα.t : Γ " ∆;A

Rules of ∨

t : Γ " ∆, A

inl t : Γ " ∆, A ∨ B

t : Γ " ∆, B

inr t : Γ " ∆, A ∨ B

t : Γ " ∆, A ∨ B u : Γ, Ax " ∆, C v : Γ, By " ∆, C

cases t of (inl x) /→ u | (inr y) /→ v : Γ " ∆, C

Cut rule

u : Γ " ∆;A t : Γ, Ax " ∆;B

let x = u in t : Γ " ∆;B

3.3 Scope of a µ-variable

In this section we introduce the concept of scope of a µ-variable with respect to λ-variables. This
leads to the formal definition of a λµ+-term in which a coroutine does not access any local variable
of another coroutine. We will say that such a λµ+-term is safe with respect to µ-contexts.

Definition 3.3.1 We define by induction on t the set S[](t) of the free λ-variables that occur out
of the scope of any µ-variable in t and the set Sδ(t) of the free λ-variables that occur in the scope
of a free µ-variable δ in t:

• S[](x) = {x}
Sδ(x) = ∅

10

• S[](λx.u) = S[](u)\{x}
Sδ(λx.u) = Sδ(u)\{x}

• S[](u v) = S[](u) ∪ S[](v)
Sδ(u v) = Sδ(u) ∪ Sδ(v)

• S[]([α]u) = ∅
Sδ([α]u) = Sδ(u) for any δ '= α and Sα([α]u) = Sα(u) ∪ S[](u)

• S[](µα.u) = Sα(u)
Sδ(µα.u) = Sδ(u)

• S[](inl u) = S[](u) and S[](inr u) = S[](u)
Sδ(inl u) = Sδ(u) and Sδ(inr u) = Sδ(u)

• S[](cases w of (inl x) /→ u | (inr y) /→ v) = S[](u)[S[](w)/x] ∪ S[](v)[S[](w)/y]
Sδ(cases w of (inl x) /→ u | (inr y) /→ v) = Sδ(u)[S[](w)/x] ∪ Sδ(v)[S[](w)/y] ∪ Sδ(w)

• S[](let x = v in u) = S[](u)[S[](v)/x]
Sδ(let x = v in u) = Sδ(u)[S[](v)/x] ∪ Sδ(v)

Remark. In the particular case of λµct-terms, the previous definition may be rephrased as follows:

• If the λµct-term is catch α u (i.e. µα[α]u) then:

S[](µα[α]u) = Sα([α]u) = S[](u) ∪ Sα(u)
Sδ(µα[α]u) = Sδ([α]u) = Sδ(u)

• If the λµct-term is throw α u (i.e. µβ[α]u where β does not occur in [α]u) then:

S[](µβ[α]u) = Sβ([α]u) = ∅
Sδ(µβ[α]u) = Sδ([α]u) = Sδ(u) for any δ '= α and Sα(µβ[α]u) = Sα([α]u) = Sα(u) ∪ S[](u)

Remark. Given a λµ+-term t, a λ-variable may occur out of the scope of any free µ-variable in
t and also in the scope of several free µ-variables in t. Such a λ-variable is shared between several
coroutines and the current routine.

Definition 3.3.2 A λµ+-term t is safe with respect to µ-contexts (µ-safe for short) iff for any
subterm of t which has the form λx.u, for any free µ-variable δ of u, x /∈ Sδ(u) .

Remark. In µ-safe λµ+-terms, the usual abbreviation (λx.t u) is no longer equivalent to let x =
u in t since in (λx.t u), the λ-variable x may not occur in the scope of some µ-variable in t: this
declaration of x is local to the current routine.

3.4 Closure under reduction

In this section, we prove that the subset of µ-safe λµ+-terms is closed under the reduction rules of
the λµ+-calculus.

Lemma 3.4.1 Sδ(t) = ∅ if δ does not occur in t.

Lemma 3.4.2 If u and v are λµ+-terms then:

S[](u{v/x}) ⊆ S[](u)[S[](v)/x]
Sδ(u{v/x}) ⊆ Sδ(u)[S[](v)/x] ∪ Sδ(v)

11

Lemma 3.4.3 If t is a λµ+-term then:

S[](t{β/α}) ⊆ S[](t)
Sβ(t{β/α}) ⊆ Sβ(t) ∪ Sα(t)
Sδ(t{β/α}) ⊆ Sδ(t) for any δ '= β

Lemma 3.4.4 If t and v are λµ+-terms such that α does not occur in v then:

S[](t{[α](u v)/[α]u}) ⊆ S[](t)
Sα(t{[α](u v)/[α]u}) ⊆ Sα(t) ∪ S[](v)
Sδ(t{[α](u v)/[α]u}) ⊆ Sδ(t) ∪ Sδ(v) for any δ '= α

Lemma 3.4.5 If u, v, w are λµ+-terms such that α does not occur in u, v then:

S[](w{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}) ⊆ S[](w)
Sα(w{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}) ⊆ S[](u)[Sα(w)/x] ∪ S[](v)[Sα(w)/y]
Sδ(w{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}) ⊆ Sδ(u)[Sα(w)/x] ∪ Sδ(v)[Sα(w)/y] ∪ Sδ(w)

for any δ '= α

Lemma 3.4.6 Given an instance r " s of a rule of the λµ+-calculus, if r is µ-safe then S[](s) ⊆
S[](r) and Sδ(s) ⊆ Sδ(r) for any a free µ-variable δ of s.

Proof. Let us consider each reduction rule of the λµ+-calculus. Let y be a free λ-variable of s
(and thus a free λ-variable of r) and let δ be a free µ-variable δ in s (and thus a free µ-variable δ
in r):

• r = (λx.u v) and s = u{v/x}. By lemma 3.4.2:

S[](u{v/x}) ⊆ S[](u)[S[](v)/x] ⊆ S[](u)\{x} ∪ S[](v) = S[](λx.u v)

Sδ(u{v/x}) ⊆ Sδ(u)[S[](v)/x]∪Sδ(v) ⊆ Sδ(u)\{x}∪Sδ(v) = Sδ(λx.u v) (since r is µ-safe and
thus x /∈ Sδ(u))

• r = (µα.t v) and s = µα.t{[α](u v)/[α]u}. By lemma 3.4.4:

S[](µα.t{[α](u v)/[α]u}) ⊆ Sα(t{[α](u v)/[α]u}) ∪ S[](t{[α](u v)/[α]u}) ⊆ Sα(t) ∪ Sα(v) ∪
S[](t) = Sα(µα.t v)

Sδ(µα.t{[α](u v)/[α]u}) ⊆ Sδ(t{[α](u v)/[α]u}) ⊆ Sδ(t) ∪ Sδ(v) = Sδ(µα.t v)

• r = [β]µα.t and s = t{β/α}. By lemma 3.4.3:

S[](t{β/α}) ⊆ S[](t) = ∅ = Sα([β]µα.t) (since t has the form [δ]v)

Sβ(t{β/α}) ⊆ Sβ(t) ∪ Sα(t) = Sβ(µα.t) ∪ S[](µα.t) = Sβ([β]µα.t)

Sδ(t{β/α}) ⊆ Sδ(t) = Sδ(µα.t) = Sδ([β]µα.t) for any δ '= β

• r = µα[α]u and s = u where α does not occur free in u.

S[](u) = S[](u) ∪ Sα(u) = Sα([α]u) = S[](µα[α]u) (since Sα(u) = ∅)

Sδ(u) = Sδ([α]u) = Sδ(µα[α]u)

• r = let x = u in t and s = t{u/x}. By lemma 3.4.2:

S[](t{u/x}) ⊆ S[](t)[S[](u)/x] = S[](let x = u in t)

Sδ(t{u/x}) ⊆ Sδ(t)[S[](u)/x] ∪ Sδ(v) = Sδ(let x = u in t)

12

• r = cases (inl t) of (inl x) /→ u | (inr y) /→ v and s = u{t/x}

S[](u{t/x}) ⊆ S[](u)[S[](t)/x] ⊆ S[](u)[S[](t)/x] ∪ S[](v)[S[](t)/y] = S[](r)

Sδ(u{t/x}) ⊆ Sδ(u)[S[](t)/x] ∪ Sδ(t) ⊆ Sδ(u)[S[](t)/x] ∪ Sδ(v)[S[](t)/y] ∪ Sδ(t) = S[](r)

• r = cases µαw of (inl x) /→ u | (inr y) /→ v

and s = µαw{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}, By lemma 3.4.5:

S[](µαw{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t})

= Sα(w{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t})

⊆ S[](u)[Sα(w)/x] ∪ S[](v)[Sα(w)/y]

= S[](u)[S[](µαw)/x] ∪ S[](v)[S[](µαw)/y] = S[](r)

Sδ(µαw{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t})

= Sδ(w{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t})

⊆ Sδ(u)[Sα(w)/x] ∪ Sδ(v)[Sα(w)/y] ∪ Sδ(w)

= Sδ(u)[S[](µαw)/x] ∪ Sδ(v)[S[](µαw)/y] ∪ Sδ(µαw) = Sδ(r)

!

Lemma 3.4.7 Given two λµ+-term t, u and a context (a term with a hole) C[•], if S[](u) ⊆ S[](t)
and Sδ(u) ⊆ Sδ(t) then S[](C[u]) ⊆ S[](C[t]) and Sδ(C[u]) ⊆ Sδ(C[t]) for any a free µ-variable δ of
C[t].

Proof. By induction on the context C[•]. !

Proposition 3.4.8 Given a λµ+-term t, if t is µ-safe and t " u then S[](u) ⊆ S[](t) and Sδ(u) ⊆
Sδ(t) for any a free µ-variable δ of t.

Proof. By lemma 3.4.6 and lemma 3.4.7. !

Lemma 3.4.9 Given two λµ+-terms u, v, if u and v are µ-safe then u{v/x} is µ-safe.

Proof. Let λy.t be a subterm of u{v/x}. Either λy.t is a subterm of v or y does not occur in v.
Consequently, y /∈ Sδ(t) since v is µ-safe in the former case and since u is µ-safe in the latter case.

!

Lemma 3.4.10 Given an instance r " s of a rule of the λµ+-calculus, if r is µ-safe then s is
µ-safe.

Proof. Again, we consider each rule of the λµ+-calculus:

• r = (λx.u v) and s = u{v/x}. Apply lemma 3.4.9.

• r = (µα.u v) and s = µα.u{[α](w v)/[α]w}. Let λy.t be a subterm of µα.u{[α](w v)/[α]w},
either λy.t is a subterm of v or y does not occur in v. Consequently, y /∈ Sδ(t) since v is
µ-safe in the former case and since u is µ-safe in the latter case.

• r = [β]µα.u and s = u{β/α}. Let λy.t be a subterm of u{β/α} and let λy.v be the subterm
of u such as λy.v = λy.t{β/α}. Then y /∈ Sδ(t) = Sδ(v) and y /∈ Sβ(t) = Sβ(v) ∪ Sα(v) since
u is µ-safe.

• r = µα[α]u and s = u where α does not occur free in u. Then s = u is µ-safe.

13

• r = let x = u in t and s = t{u/x}. Apply lemma 3.4.9.

• r = cases (inl t) of (inl x) /→ u | (inr y) /→ v and s = u{t/x}̇. Apply lemma 3.4.9.

• r = cases µαw of (inl x) /→ u | (inr y) /→ v

and s = µαw{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}. Let λy.t be a subterm of
µαw{[α]cases t of (inl x) /→ u | (inr y) /→ v)/[α]t}, either λy.t is a subterm of u or v or y
does not occur in u, v. Consequently, y /∈ Sδ(t) since u, v are µ-safe in the former case and
since w is µ-safe in the latter case.

!

Theorem 3.4.11 Given a λµ+-term t, if t is µ-safe and t " u then u is µ-safe.

Proof. Let r be the redex of t which is reduced in t " u and let r′ be the contractum. Now, let us
consider a subterm of u which has the form λy.s′ and where δ is free µ-variable of s′. We have to
prove that y /∈ Sδ(s′). Three cases may occur: either r′ and λy.s′ do not overlap, or r′ is a subterm
of s′, or λy.s′ is a subterm of r′. The first case is trivial since λy.s′ was already a subterm of t
(which is µ-safe). In the second case, since t is µ-safe then r is µ-safe and y /∈ Sδ(r), by proposition
3.4.8, Sδ(r′) ⊆ Sδ(r) and thus y /∈ Sδ(r′). In the last case, just apply lemma 3.4.10. !

3.4.1 Typing µ-safe λµ+-terms in CNDr
∨

By construction, constructive proofs of CND∨ and µ-safe λµ+-terms are related by the following
theorem (and its corollary):

Theorem 3.4.12 Given the derivation of a type judgement t : Γx1

1 , . . . ,Γxn
n " ∆α1

1 , . . . ,∆αm
m ;A in

CND∨, if xi ∈ Sαj
(t) then there is a link between Γxi

i and ∆
αj

j and if xi ∈ S[](t) then there is a link
between Γxi

i and A.

Proof. Rephrase the definition of CND in such a way that the name of the rightmost formula of
each sequent is always []. Then, check that we have two inductive definitions of the same relation.

!

Corollary 3.4.13 Given a derivation of the type judgement t : Γ " ∆ in CND∨, if t is µ-safe then
the derivation of t : Γ " ∆ belongs to CNDr

∨ (and Γ " ∆ is valid in DIS-logic). Conversely, given
a proof of Γ " ∆ in CNDr

∨ , the λµ+-term extracted from the proof is µ-safe.

Proof. Let us consider an occurrence of the introduction rule of implication and let λx.u be the
corresponding subterm of t, where u is typable of type Γx1

1 , . . . ,Γxn
n , Ax " ∆α1

1 , . . . ,∆αm
m ;B. Since

t is µ-safe, for any αj , x /∈ Sαj
(u) and then by the theorem, there is no link between Ax and any

∆
αj

j , thus this occurrence of the introduction rule of implication is constructive. !

4 Directions for extensions

We have defined a restriction of the λµ+-calculus, which is stable under reduction and whose type
system corresponds to DIS-logic. In this calculus, continuations are not first-class objects but the
ability of context-switching remains. We did not consider tag-abstraction (i.e. first-class µ-contexts)
in this paper. A forthcoming paper will be devoted to this issue: we need a new connector (i.e. a
new type constructor), called subtraction, which is dual to implication to type µ-contexts. We will
thus obtain a λ-calculus with first-class coroutines, whose type system corresponds to subtractive
logic (which a conservative extension of DIS-logic [22, 5, 4]).

14

We have proved that DIS-logic is constructive. We conjecture that is it possible to define a set
of reduction rules for the λµ+-calculus in which a normal form is canonical (a normal form does not
begin with a µα[α]), or in other words, the last rule of a normal proof of CNDr

∨ is an introduction
rule and not a right-hand contraction.

This conjecture raises a new question since subtractive logic is conservative over DIS-logic: can
we define a set of reduction rules for a calculus whose type system is subtractive logic and in which
a typed normal form is canonical if its type contains no subtraction?

A Appendix

A.1 Conservativity of CNDi
∨ over NJ+DIS

In this appendix, we show that CNDi
∨ is conservative over DIS-logic (in the propositional, the first

and the second order frameworks). Indeed, any derivation of a sequent in CNDi
∨ can be translated

into a derivation which does not contain any introduction rule of implication, but which uses axioms
valid in DIS-logic.

The tricky part of the proof consists in showing that the generalized introduction rule of impli-
cation commutes with any other rule. We will also show that the generalized introduction rule of
implication does not raise any problem when it is applied directly to a sequent valid in DIS-logic.

Theorem A.1.1 The system CNDi
∨ is conservative over DIS-logic .

Proof. We denote hyp(∆) the set of (occurrences of) hypothesis linked to at least one of (occur-
rences of) a conclusions of ∆ and let us consider the following generalization of the constructive
introduction rule of implication:

Γ " ∆

Γ\{H} " ∆\S,H ⇒ S∨
where H /∈ hyp(∆\S)

Notice that H does not need to occur in Γ, and each occurence of hypothesis of S does not need
to occur (and possibly none does) in ∆.

The tricky part of the proof consists in showing that the generaized introduction rule of im-
plication commutes with any other rule (see section A.3). We will also show that the generalized
introduction rule of implication does not raise any problem when it is applied directly to a sequent
valid in DIS-logic (see section A.2). !

A.2 Axioms

Proposition A.2.1 In CND+, the set of sequents that belong to one of the three following collec-
tions:

• Γ, A " ∆, B where A " B is valid in DIS-logic, and there is at most one link which annotates
this sequent, and this link binds A and B together.

• Γ, Y " ∆ where Y " ⊥ is valid in DIS-logic,

• Γ " ∆,X where 3 " X is valid in DIS-logic.

is closed under the generalized introduction rule of implication.

Proof. Let us consider the generalized introduction rule of implication for the three collections of
sequents:

15

1. The upper sequent has the form Γ, A " ∆, B where A " B is valid in DIS-logic, and the
unique link which annotates this sequent binds A and B together.

• First case, H '= A and B /∈ S.

Γ, A " ∆, B

Γ\{H}, A " ∆\S,B,H ⇒ S∨

the lower sequent is indeed of the first form.

• Second case, H '= A and H is discharged on S ∪ {B}

Γ, A " ∆, B

Γ\{H}, A " ∆\S,H ⇒ (S∨ ∨ B)

the lower sequent is indeed of the third form since if A " B is valid in DIS-logic and
B ∈ S then A " H ⇒ (S∨ ∨ B) is also valid.

• Third case, H = A and A is discharged on S ∪ {B}

Γ, A " ∆, B

Γ " ∆\S,A ⇒ (S∨ ∨ B)

the lower sequent is indeed of the third form since in NJ, if A " B is valid in DIS-logic
then 3 " A ⇒ (S∨ ∨ B) is also valid.

In the case H = A and B /∈ S, i.e. where A is discharged on another conclusion that B, the
constructive constraint does not hold. Consequently this case has not to be considered.

2. The upper sequent has the form Γ, Y " ∆ where Y " ⊥ is valid in DIS-logic.

• First case, H '= Y and H /∈ hyp(∆\S)

Γ, Y " ∆

Γ\{H}, Y " ∆\S,H ⇒ S∨

the lower sequent is still of the second form.

• Second case, H = Y and Y /∈ hyp(∆\S)

Γ, Y " ∆

Γ " ∆\S, Y ⇒ S∨

Since Y " ⊥ is valid in DIS-logic, we infer that Y " S∨ and thus 3 " Y ⇒ S∨ is also
valid in DIS-logic, and the lower sequent is thus of the third form.

3. The upper sequent has the form Γ " ∆,X where 3 " X is valid in DIS-logic.

• First case, X /∈ S

Γ " ∆,X

Γ\{H} " ∆\S,X,H ⇒ S∨

the lower sequent is still of the third form.

• Second case, H is discharged on S ∪ {X}

Γ " ∆,X

Γ\{H} " ∆\S,H ⇒ (S∨ ∨ X)

Since 3 " X is derivable in DIS-logic, we infer that H " S∨ ∨ X and thus 3 " H ⇒
(S∨∨X) are also valid in DIS-logic, and the lower sequent is thus still of the third form.

the closure under the rule that discharge a conclusion is obtained by duality. !

16

A.3 Rules

Left weakening rule

• First case, H '= A:

Γ "1 ∆

Γ, A "2 ∆
Γ\{H}, A "3 ∆\S,A ⇒ S∨

where H /∈ hyp2(∆\S) and thus H /∈ hyp1(∆\S)

Replace by:

Γ " ∆

Γ\{H} " ∆\S,A ⇒ S∨

Γ\{H}, A " ∆\S,A ⇒ S∨

• Second case, H = A:

Γ "1 ∆

Γ, A "2 ∆
Γ "3 ∆\S,A ⇒ S∨

where A /∈ hyp2(∆\S) and thus A /∈ hyp1(∆\S)

Replace by

Γ " ∆

Γ " ∆\S,A ⇒ S∨

Left contraction rule

• First case, H = Az:

Γ, Ax, Ay "1 ∆

Γ, Az "2 ∆
Γ "3 ∆\S,A ⇒ S∨

where Az /∈ hyp2(∆\S) and thus Ax /∈ hyp1(∆\S) and Ay /∈ hyp1(∆\{BS})

Replace by:

Γ, Ax, Ay " ∆

Γ, Az " ∆\S,A ⇒ S∨

Γ " ∆\S,A ⇒ (A ⇒ S∨)

and then cut with the sequent A ⇒ (A ⇒ S∨) " A ⇒ S∨ valid in intuitionistic logic.

• Second case, H '= Az:

Γ, Ax, Ay "1 ∆

Γ, Az "2 ∆
Γ\{H}, Az "3 ∆\S,H ⇒ S∨

where H /∈ hyp2(∆\S) and thus H /∈ hyp1(∆\S)

Replace by:

Γ, Ax, Ay,H " ∆

Γ\{H}, Ax, Ay " ∆\S,H ⇒ S∨

Γ\{H}, Az " ∆\S,H ⇒ S∨

17

Right contraction rule

• First case, B /∈ S:

Γ "1 ∆, Bα, Bβ

Γ "2 ∆, Bγ

Γ\{H} "3 ∆\S,H ⇒ S∨, Bγ

where H /∈ hyp2(∆\S,Bγ) and thus H /∈ hyp1(∆\S,Bα, Bβ)

Replace by:

Γ " ∆, B,B

Γ\{H} " ∆\S,H ⇒ S∨, B,B

Γ\{H} " ∆\S,H ⇒ S∨, B

• Second case, H is discharged on S ∪ {B}:

Γ "1 ∆, Bα, Bβ

Γ "2 ∆, Bγ

Γ\{H} "3 ∆\S,H ⇒ (S∨ ∨ B)

where H /∈ hyp2(∆\S,Bγ) and thus H /∈ hyp1(∆\S,Bα, Bβ)

Replace by:

Γ " ∆, B,B

Γ\{H} " ∆\S,H ⇒ (S∨ ∨ B ∨ B)

and then cut with the sequent H ⇒ (S∨ ∨ B ∨ B) " H ⇒ (S∨ ∨ B) valid in intuitionistic
logic.

Right weakening rule

• First case, B /∈ S:

Γ "1 ∆

Γ "2 ∆, B
Γ\{H} "3 ∆\S,H ⇒ S∨, B

where H /∈ hyp2(∆\S,B) and thus H /∈ hyp1(∆\S)

Replace by:

Γ " ∆

Γ\{H} " ∆\S,H ⇒ S∨

Γ\{H} " ∆\S,H ⇒ S∨, B

• Second case, H is discharged on S ∪ {B}:

Γ "1 ∆

Γ "2 ∆, Bα

Γ\{H} "3 ∆\S,H ⇒ (S∨ ∨ B)

where H /∈ hyp2(∆\S,Bα) and thus H /∈ hyp1(∆\S)

Replace by:

Γ " ∆

Γ\{H} " ∆\S,H ⇒ S∨

and then cut with the sequent H ⇒ S∨ " H ⇒ (S∨ ∨ B) valid in intuitionistic logic.

18

Right elimination rule for the implication

• First case, B /∈ S:

Γ′ "1 ∆′, A ⇒ B Γ′′ "4 ∆′′, A

Γ′,Γ′′ "2 ∆′,∆′′, B
(Γ′,Γ′′)\{H} "3 (∆′,∆′′)\S,B,H ⇒ S∨

where H /∈ hyp2(B, (∆′,∆′′)\S) and thus, by posing S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, we have
H /∈ hyp1(A ⇒ B,∆\S′) and H /∈ hyp4(A,∆\S′)

Replace by:

Γ′ " ∆′, A ⇒ B

Γ′\{H} " ∆′\S′,H ⇒ S′∨, A ⇒ B

Γ′′ " ∆′′, A

Γ′′\{H} " ∆′′\S′′,H ⇒ S′′∨, A

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S,H ⇒ S′∨,H ⇒ S′′∨, B

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S, (H ⇒ S′∨) ∨ (H ⇒ S′′∨), B

and then cut with the sequent (H ⇒ S′∨) ∨ (H ⇒ S′′∨) " H ⇒ (S′∨ ∨ S′′∨) valid in
intuitionistic logic.

• Second case, H is discharged on S ∪ {B}::

Γ′ "1 ∆′, A ⇒ B Γ′′ "4 ∆′′, A

Γ′,Γ′′ "2 ∆′,∆′′, B
(Γ′,Γ′′)\{H} "3 (∆′,∆′′)\S,H ⇒ (S∨ ∨ B)

where H /∈ hyp2((∆′,∆′′)\S) and thus, by posing S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, there is
H /∈ hyp1(∆\S′) and H /∈ hyp4(∆\S′).

Replace by:

Γ′ " ∆′, A ⇒ B

Γ′\{H} " ∆′\S′,H ⇒ (S′∨ ∨ (A ⇒ B))

Γ′′ " ∆′′, A

∆′′\S′,H ⇒ (S′′∨ ∨ A)
(Γ′,Γ′′)\{H} " (∆′,∆′′)\S, (H ⇒ (S′∨ ∨ (A ⇒ B))) ∧ (H ⇒ (S′′∨ ∨ A))

and then cut with the sequent (H ⇒ (S′∨ ∨ (A ⇒ B))) ∧ (H ⇒ (S′′∨ ∨ A)) " H ⇒ (S∨ ∨ B)
valid in intuitionistic logic.

Left introduction rule of disjunction

• First case, H '= A ∨ B:

Γ′, A "1 ∆′ Γ′′, B "4 ∆′′

Γ′,Γ′′, A ∨ B "2 ∆′,∆′′

(Γ′,Γ′′)\{H}, A ∨ B "3 (∆′,∆′′)\S,H ⇒ S∨

where H /∈ hyp2((∆′,∆′′)\S) and thus, by posing S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, we have
H /∈ hyp1(∆\S′) and H /∈ hyp4(∆\S′)

Replace by:

Γ′, A " ∆′

Γ′\{H}, A " ∆′\S′,H ⇒ S′∨

Γ′′, B " ∆′′

Γ′′\{H}, B " ∆′′,H ⇒ S′′∨

(Γ′,Γ′′)\{H}, A ∨ B " (∆′,∆′′)\S,H ⇒ S′∨,H ⇒ S′′∨

(Γ′,Γ′′)\{H}, A ∨ B " (∆′,∆′′)\S, (H ⇒ S′∨) ∨ (H ⇒ S′′∨)

and then cut with the sequent (H ⇒ S′∨) ∨ (H ⇒ S′′∨) " H ⇒ (S′∨ ∨ S′′∨) valid in
intuitionistic logic.

19

• Second case, H = A ∨ B:

Γ′, A "1 ∆′ Γ′′, B "4 ∆′′

Γ′,Γ′′, A ∨ B "2 ∆′,∆′′

Γ′,Γ′′ "3 (∆′,∆′′)\S,A ∨ B ⇒ S∨

where A ∨ B /∈ hyp2((∆′,∆′′)\S) and thus, by posing S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′, we have
A /∈ hyp1(∆\S′) and B /∈ hyp4(∆\S′).

Replace by:

Γ′, A " ∆′

Γ′\{H} " ∆′\S′, A ⇒ S′∨

Γ′′, B " ∆′′

∆′′\S′, B ⇒ S′′∨

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S, (A ⇒ S′∨) ∧ (B ⇒ S′′∨)

and then cut with the sequent (A ⇒ S′∨) ∧ (B ⇒ S′′∨) " (A ∨ B) ⇒ (S′∨ ∨ S′′∨) valid in
intuitionistic logic.

Left elimination rule of disjunction We consider only the case of the first injection, the second
may be treated in a similar way.

• First case, H '= A :

Γ, A ∨ B "1 ∆

Γ, A "2 ∆
Γ\{H}, A "3 ∆\S,H ⇒ S∨

where H /∈ hyp2(∆\S) and thus H /∈ hyp1(∆\S)

Replace by:

Γ, A ∨ B " ∆

Γ\{H}, A ∨ B " ∆\S,H ⇒ S∨

Γ\{H}, A " ∆\S,H ⇒ S∨

• Second case, H = A:

Γ, A ∨ B "1 ∆

Γ, A "2 ∆
Γ\{H} "3 ∆\S,A ⇒ S∨

where H /∈ hyp2(∆\S) and thus H /∈ hyp1(∆\S) and A /∈ hyp4(∆\S)

Replace by:

Γ, A ∨ B " ∆

Γ\{H} " ∆\S, (A ∨ B) ⇒ S∨

and then cut with the sequent (A ∨ B) ⇒ S∨ " A ⇒ S∨ valid in intuitionistic logic.

Cut rule

Γ′ "1 A,∆′ Γ′′, A "4 ∆′′

Γ′,Γ′′ "2 ∆′,∆′′

(Γ′,Γ′′)\{H} "3 (∆′,∆′′)\S,H ⇒ S∨

where H /∈ hyp2((∆′,∆′′)\S) and thus, by posing S′ = S ∩ Γ′ and S′′ = S ∩ Γ′′:

20

• First case, H /∈ Γ′

Replace by:

Γ′ " ∆′, A

Γ′ " ∆′\S′,H ⇒ S′∨, A

Γ′′, A " ∆′′

Γ′′\{H}, A " ∆′′\S′,H ⇒ S′′∨

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S,H ⇒ S′∨,H ⇒ S′′∨

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S, (H ⇒ S′∨) ∨ (H ⇒ S′′∨)

then cut with the sequent (H ⇒ S′∨) ∨ (H ⇒ S′′∨) " H ⇒ (S′∨ ∨ S′′∨) valid in intuitionistic
logic.

• Second case, H /∈ Γ′′ and H /∈ hyp1(A) since H /∈ hyp1(A,∆′\S′)

Replace by:

Γ′ " ∆′, A

Γ′\{H} " ∆′\S′,H ⇒ S′∨, A

Γ′′, A " ∆′′

Γ′′, A " ∆′′\S′,H ⇒ S′′∨

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S,H ⇒ S′∨,H ⇒ S′′∨

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S, (H ⇒ S′∨) ∨ (H ⇒ S′′∨)

then cut with the sequent (H ⇒ S′∨) ∨ (H ⇒ S′′∨) " H ⇒ (S′∨ ∨ S′′∨) valid in intuitionistic
logic.

• Third case, H ∈ Γ′ and H ∈ hyp1(A) and since H /∈ hyp1(∆′′\S′′) we have A /∈ hyp1(∆′′\S′).

Replace by:

Γ′ " ∆′, A

Γ′\{H} " ∆′\S′,H ⇒ (S′∨ ∨ A)

Γ′′, A " ∆′′

Γ′′ " ∆′\S′, A ⇒ S′′∨

(Γ′,Γ′′)\{H} " (∆′,∆′′)\S, (H ⇒ (S′∨ ∨ A)) ∧ (A ⇒ S′′∨)

then cut with the sequent (H ⇒ (S′∨ ∨ A)) ∧ (A ⇒ S′′∨) " H ⇒ (S′∨ ∨ S′′∨) valid in
intuitionistic logic.

A.4 Quantifiers

We only deal with the first order quantifier, the case of ∀2 is similar.

Right introduction rule for ∀ (where x does not occur in Γ,∆)

• First case, ∀xA /∈ S:

Γ "1 ∆, A

Γ "2 ∆,∀xA
Γ\{H} "3 ∆\S,H ⇒ S∨,∀xA

where H /∈ hyp2(∆\S,∀xA) and thus H /∈ hyp1(∆\S,A)

Replace by:

Γ "1 ∆, A

Γ\{H} "3 ∆\S,H ⇒ S∨, A
Γ\{H} "3 ∆\S,H ⇒ S∨,∀xA

21

• Second case, H is discharged on S ∪ {∀xA}:

Γ "1 ∆, A

Γ "2 ∆,∀xA
Γ\{H} "3 ∆\S,H ⇒ (S∨ ∨ ∀xA)

where H /∈ hyp2(∆\S) and thus H /∈ hyp1(∆\S) and A /∈ hyp4(∆\S)

Replace by:

Γ " ∆, A

Γ\{H} " ∆\S,H ⇒ (S∨ ∨ A)
Γ\{H} " ∆\S,∀x(H ⇒ (S∨ ∨ A))

and then cut with the sequent ∀x(H ⇒ (S∨ ∨A)) " H ⇒ (S∨ ∨∀xA) valid in DIS-logic since
x does not occur in H,S∨. Notice that DIS) is actually needed.

Right elimination rule for ∀

• First case, A /∈ S:

Γ "1 ∆,∀xA

Γ "2 ∆, A[t/x]

Γ\{H} "3 ∆\S,H ⇒ S∨, A

where H /∈ hyp2(A[t/x],∆\S) and thus H /∈ hyp1(∀xA,∆\S)

Replace by:

Γ "1 ∆,∀xA

Γ\{H} "3 ∆\S,H ⇒ S∨,∀xA
Γ\{H} "3 ∆\S,H ⇒ S∨, A[t/x]

• Second case, H is discharged on S ∪ {∀xA}:

Γ "1 ∆,∀xA

Γ "2 ∆, A[t/x]
Γ\{H} "3 ∆\S,H ⇒ (S∨ ∨ A[t/x])

where H /∈ hyp2(∆\S) and thus H /∈ hyp1(∆\S) and A /∈ hyp4(∆\S)

Replace by:

Γ " ∆,∀xA

Γ\{H} " ∆\S,H ⇒ (S∨ ∨ A)

then cut with the sequent H ⇒ (S∨ ∨ ∀xA) " H ⇒ (S∨ ∨ A[t/x]) derivable NJ.

References

[1] F. Barbanera and S. Berardi. Extracting constructive content from classical logic via control-
like reductions. volume 662 of LNCS, pages 47–59. Springer-Verlag, 1994.

[2] E. C. Cooper and J. G. Morrisett. Adding threads to standard ML. Report CMU-CS-90-186,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1990.

22

[3] T. Crolard. A confluent lambda-calculus with a catch/throw mechanism. Submitted to the
Journal of Functional Programming. (ftp://sweet-smoke.ufr-info-p7.jussieu.fr/crolard/jfp.ps).

[4] T. Crolard. From bicartesian closed categories with coexponents towards subtrac-
tive logic. Submitted to Theoretical Computer Science. (ftp://sweet-smoke.ufr-info-
p7.jussieu.fr/crolard/tcs.ps).

[5] T. Crolard. Extension de l’isomorphisme de Curry-Howard au traitement des exceptions (ap-
plication d’une étude de la dualité en logique intuitionniste). Thèse de Doctorat. Université
Paris 7, 1996. (ftp://sweet-smoke.ufr-info-p7.jussieu.fr/crolard/these.ps).

[6] P. de Groote. A simple calculus of exception handling. In Second International Conference on
Typed Lambda Calculi and Applications, LNCS, pages 201–215, Edinburgh, United Kingdom,
1995.

[7] A. G. Dragalin. Mathematical intuitionism–introduction to proof theory. In Translations of
Mathematical Monographs, volume 67 of American Matematical Society. Providence, Rhode
Island, 1988.

[8] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic
Logic, 57(3):795–807, 1992.

[9] D. P. Friedman, C. T. Haynes, and M. Wand. Continuations and coroutines: An exercise
in metaprogramming. In Proc. 1984 ACM Symposium on Lisp and Functional Programming,
pages 293–298, August 1984.

[10] T. G. Griffin. A formulæ-as-type notion of control. In Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming Langages, pages 47–58, 1990.

[11] Y. Kameyama. A new formulation of the catch/throw mechanism. In T. Ida, A. Ohori, and
M. Takeichi, editors, Second Fuji International Workshop on Functional and Logic Program-
ming, Word Scientific, pages 106–122, 1997.

[12] Y. Kameyama and M. Sato. A classical catch/throw calculus with tag abstraction and its strong
normalizability. In X. Lin, editor, Proc. the 4th Australasian Theory Symposium, volume 20-3
of Australian Computer Science Communications, pages 183–197. Springer-Verlag, 1998.

[13] J.-L. Krivine. Classical logic, storage operators and second order λ-calculus. Ann. of Pure and
Appl. Logic, 68:53–78, 1994.

[14] C. R. Murthy. Classical proofs as programs: How, when, and why. Technical Report 91-1215,
Cornell University, Department of Computer Science, 1991.

[15] H. Nakano. A constructive logic behind the catch and throw mechanism. Annals of Pure and
Applied Logic, 69(3):269–301, 1994.

[16] H. Nakano. The non-deterministic catch and throw mechanism and its subject reduction
property. In Logic, Language and Computation, volume 592 of LNCS, pages 61–72. Springer-
Verlag, 1994.

[17] H. Nakano. The Logical Structures of the Catch and Throw Mechanism. PhD thesis, The
University of Tokyo, 1995.

[18] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In Proc.
Logic Prog. and Autom. Reasoning, volume 624 of LNCS, pages 190–201, 1992.

23

[19] M. Parigot. Classical proofs as programs. In Computationnal logic and theory, volume 713 of
LNCS, pages 263–276. Springer-Verlag, 1993.

[20] M. Parigot. Strong normalisation for second order classical natural deduction. In Proceedings
of the eighth annual IEEE symposium on logic in computer science, 1993.

[21] N. Ramsey. Concurrent programming in ML. Technical Report CS-TR-262-90, Department
of Computer Science, Princeton University, Princeton, NJ, 1990.

[22] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic
logic. In Dissertationes Mathematicae, volume 167. Institut Mathématique de l’Académie
Polonaise des Sciences, 1980.

[23] N. J. Rehof and M. H. Sørensen. The λ∆-calculus. In Theoritical Aspects of Computer Software,
volume 542 of LNCS, pages 516–542. Springer-Verlag, 1994.

[24] J. H. Reppy. Asynchronous signals is standard ML. Technical Report TR90-1144, Cornell
University, Computer Science Department, August 1990.

[25] J. H. Reppy. First-class synchronous operations. Lecture Notes in Computer Science, 907:235–
252, 1995.

[26] M. Sato. Intuitionistic and classical natural deduction systems with the Catch and the Throw
rules. Theoretical Computer Science, 175(1):75–92, 1997.

[27] M. E. Szabo. Gentzen Collected work. North-Holland, Amsterdam, 1969.

[28] M. Wand. Continuation-based multiprocessing. In J. Allen, editor, Conference Record of the
1980 LISP Conference, pages 19–28, Palo Alto, CA, 1980. The Lisp Company. Republished
by ACM.

24

