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Abstract. The paper presents a verification of the IEEE Root Con-
tention Protocol as an illustration of a new and innovative approach for
the verification of real-time distributed systems. Systems are modeled
with basic Gurevich abstract state machines (ASMs), and requirements
are expressed in a first order timed logic (FOTL). FOTL is undecidable,
however the protocol we study is in a decidable class of practical
interest. Advantages of this framework are twofold: on the one hand, a
great expressive power which permits in particular an easy treatment
of parameters, on the other hand the modeling task is simplified by an
adequat choice of tools.
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1 Introduction

The IEEE 1394 serial bus protocol (also called“FireWire”) is a standard that
enables fast transfer of digital information between PCs and peripheral devices
such as video recorders, music systems, and so on. The IEEE Root Contention
Protocol (RCP), a part of the IEEE 1394 standard, has become a popular case
study for investigating the feasibility of formal specification and verification tech-
niques. Its purpose is to elect a leader among two processes, and its correctness
depends on the use of randomization and timing delays. The challenge is to syn-
thesize automatically necessary and sufficient conditions on timing parameters
for the protocol’s correctness.

We apply to this case study a new and innovative approach for the verifi-
cation of real-time distributed systems which offers some advantages compared
to existing frameworks. Our methodology consists in embedding of the whole
problem in a first order timed logic (FOTL) and in reducing the problem to the
validity of a closed formula in this logic. The process comprises three steps:
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– Step 1. the system under consideration is specified as a Gurevich Abstract
State Machine (ASM) and this machine is translated in an automatic way
in a formula ΦSyst of FOTL.

– Step 2. The requirements specification is written down as a FOTL formula
ΦSpec.

– Step 3. An automatic verification of the validity of ΦSyst → ΦSpec is applied.

Since validity is undecidable for FOTL, step 3 is not always realizable. In [BS02]
decidable classes of this logic with practical interest are described. The fun-
damental idea which prevails and sustains the philosophy hidden behind these
classes is the following observation: in “practical systems” the algorithm which
governs the behavior of the system and the requirements to verify are not very
complicated, in other words, if there is a counter-model to ΦSyst → ΦSpec, there
must exist a “simple” one, i.e. a counter-model of bounded complexity. Roughly
speaking, the complexity is given by the number of intervals of time where the
system has a “constant” behavior.

In [BS02] sufficient semantic conditions for ΦSyst and ΦSpec are given which
ensure that if ΦSyst → ΦSpec has a counter-model, then it has a counter-model
of a fixed known complexity. The cornerstone is that one can decide whether
a FOTL formula has a (counter-)model of a given complexity. The algorithm
consists of an elimination of abstract function symbols, which leads to a first
order formula of the decidable theory of real addition and multiplication, for
which we have to check the satisfiability. At this point, we use a quantifier
elimination algorithm implemented in the tool Reduce [Hea99].

In the case of the RCP, we prove (in a simple way) that all the runs of
the ASM modeling a cycle of the protocol have a complexity bounded by some
constant. So clearly, if the protocol does not satisfy the requirements, there is
a run with a bounded complexity which is a counter-model. Then the sufficient
conditions given in [BS02] do not need to be proved.

What are the advantages of our approach? A first one is that modeling the
system and the requirements does not need much effort and the models we get are
very close to the initial specification. As a result, there are less sources of errors in
the modeling process. A second advantage is the expressive power of the chosen
formalism. FOTL contains arithmetic operations over reals and is much more
expressive than classical temporal logics and classical timed automata. Moreover,
treatment of parameters is not a difficulty in this framework. Thirdly, for a large
class of practical verification problems, the sufficient conditions which lead to
a decidable class are satisfied and easy to prove. At last, in case of failure, an
efficient description of all the counter-models of a given complexity is provided,
which is very important for practical detection of errors.

What are the limits of this method? The limits are in the complexity of Step
3 in the verification process. The quantifier elimination algorithm has a rather
“high” practical complexity and the method can only be applied if the number of
quantifiers to eliminate is not too large. To overcome this obstacle we decompose
the ASM into smaller ones.
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The rest of this paper is organised as follows. Section 2 gives a short descrip-
tion of the Root Contention Protocol. Section 3 presents our logical framework
for verification of real-time systems: FOTL syntax and semantics are described
as well as basic Gurevich abstract state machines; the notion of finite complexity
of a model is introduced. Section 4 is devoted to our modeling of the RCP and to
the obtained verification results. In the last section, we compare our techniques
to the existing ones and we draw some conclusions.

2 The Root Contention Protocol

The IEEE 1394 standard specifies a high performance serial bus that enables fast
data transfer within networks of multimedia systems and devices. It is defined
as a multi-layered system using different protocols for different phases. Compo-
nents connected to the bus are referred to as nodes. Each node has ports for
bidirectional connection to some other nodes. The Root Contention Protocol is
a sub-protocol of the Initialization phase. The Initialization phase takes place
after bus resets. That may occur if a component was added or removed from
the network or an error was detected. This phase attemps to find a spanning
tree out of the network and then to elect a leader to act as a bus manager.
Informally, the leader election works as follows. At initial state, a node waits
for a “be my parent” request (parent notification, PN signal) from its neighbors
in the spanning tree. When it receives such a request from a neighbor node it
replies with a CN signal (Child Notification) as acknowledgement and adds this
node to its list of children. When a node has received from all of its ports except
one a PN signal, it sends to the remaining neighbor a PN signal. The leaf nodes
start to send a PN signal to their only neighbor at the initial state. The tree is
constructed bottom-up and at the end, either a leader is elected (the node which
has received PN signals from all its neighbors becomes the root), or two nodes
are in contention, i.e. each node wants the other one to be a root. Contention is
detected independently by each node when a PN request arrives while waiting
for a CN acknowledgement.

At this moment the Root Contention Protocol starts. The node sends an
Idle signal to its partner and picks a random bit. If the bit 1 comes up, then
the node waits for a short time (fast) in the interval [fast min, fast max]. If
the bit 0 comes up, then the node waits for a long time (slow) in the interval
[slow min, slow max]. Of course, 0 < fast min ≤ fast max < slow min ≤
slow max holds. When this time is over, the node looks for a message from the
contender node. If there is a PN signal, it sends a CN signal and becomes a leader.
If there is no message (Idle), it sends a PN signal and waits for acknowledgment.
In this case a root contention may reoccur.

The communication between two nodes has a delay with an upper bound
delay. The choice of timing parameters plays an important role. For the protocol
to work correctly constraints on the timing parameters are essential. Figure 1
gives two examples of scenario depending on parameters values.
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Fig. 1. Two among possible scenarios of the RCP

The aim of verification is to derive automatically necessary and sufficient con-
ditions on timing parameters for a correct protocol behavior, namely eventually,
the protocols ends with one and only one node elected as root.

3 First Order Timed Logic (FOTL)

In this section we briefly present the first order logic framework for real-time
verification from [BS97], [BS02] and the notion of basic Gurevich ASM [GH96].

3.1 Syntax and Semantics of FOTL

A First Order Timed Logic used in this framework is constructed in two steps.
Firstly, we choose a simple, if possible decidable theory to deal with concrete
mathematical objects (the underlying theory), like reals, and secondly, we extend
it in a ‘minimal’ way by abstract functions to deal with our specifications. Here
we take as the underlying theory the theory of real addition and multiplication,
and extend it by functions with at most one time argument and with other
arguments being of finite abstract sorts. More details are given below.

Syntax of FOTL

The vocabulary W of a FOTL consists of a finite set of sorts, a finite set of func-
tion symbols and a finite set of predicate symbols. To each sort there is attributed
a set of variables. Some sorts are predefined, i. e. have fixed interpretations. Here
the predefined sorts are the real numbers R, time T =df R≥0 treated as a subsort
of R and Bool = {True, False}. The other sorts are finite.

Some functions and predicates are also predefined. As predefined constants
we take all rational numbers. Addition and multiplication of reals are predefined
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functions of the vocabulary. The predicates =, ≤, < over reals are predefined
predicates of W . The vocabulary contains ′ =′ for all types of objects, and the
identity function id of the type T → T to represent current time.

Any abstract function (i. e. without any a priori fixed interpretation) is of
the type T × X → Z, and any abstract predicate is of the type T × X → Bool,
where X is a direct product of finite sorts and Z is an arbitrary sort. The
(sub)vocabulary of abstract functions and predicates will be denoted V .

A function symbol is dynamic if it has a time argument and static otherwise.

A vocabulary W being fixed, the notion of term and that of formula over W
are defined in a usual way.

Semantics of FOTL

A priori we impose no constraints on the admissible interpretations. Thus, the
notions of interpretation, model, satisfiability and validity are treated as in first
order predicate logic modulo the predefined part of the vocabulary.

3.2 Gurevich Basic Abstract State Machines (ASM)

To represent the algorithms we use Gurevich Abstract State Machine (ASM)
[Gur95]. This formalism is powerful, gives a clear vision of semantics of timed
algorithms and permits to change easily the level of abstraction. A basic ASM
is a program with one external loop consisting of simultaneously executed If-
Then-operators. In principle, Gurevich ASMs may serve as an intermediate
language between user’s languages for algorithm specification and a logic frame-
work. (This claim is supported by numerous applications of Gurevich ASM, see
http://www.eecs.umich.edu/gasm/.)

A basic ASM is a tuple of the form (W, Init, Prog), where W is a vocabulary,
Init is a closed formula describing the initial state and Prog is a program.

Sorts, variables and functions are like in subsection 3.1 except that time can-
not be an argument of functions. We classify the functions using the same terms
as in subsection 3.1, namely abstract or predefined on the one hand and static or
dynamic on the other hand. Dynamic functions are classified into external and
internal.

External functions are not changed by the ASM, internal functions, on the
contrary, are computed by the ASM and are obviously abstract and dynamic.
Predefined static functions have a fixed interpretation valid for every t ∈ T . The
interpretation of a predefined dynamic function, though changing with time,
does not depend on the functioning of the machine. We assume that any ASM
vocabulary contains a predefined external dynamic function CT of type → T
which gives the current time.

The program Prog has the following syntax:
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Repeat
ForAll ω ∈ Ω
InParallelDo
If G1(ω) Then A1(ω) EndIf
If G2(ω) Then A2(ω) EndIf
. . . . . . . . . . . .
If Gm(ω) Then Am(ω) EndIf

EndInParallelDo
EndForAll
EndRepeat

Ω is an abstract sort which permits
to parametrize the ASM. We will not
use it in the paper. Each Gi is a guard,
i. e. a formula over the vocabulary W ,
not having free variables except ω, and
each Ai is a list of assignments (called
updates) whose terms also do not have
free variables except ω. Each assign-
ment is of the form f(T ) := θ, where
f is an internal function, θ is a term
and T is a list of terms of the type
corresponding to the type of f .

Informally all guards are checked simultaneously and instantaneously, and all
the updates of rules with true guards are executed also simultaneously and in-
stantaneously. To save the space we will not write Repeat and InParallelDo .

Semantics of an ASM

Precise semantics is given in [BS02] and follows [GH96]. We give here just an
intuitive description. For a given interpretation of abstract sorts we define the
semantics of the program in terms of runs (executions). Informally, given an
input, that is an interpretation of external functions for each moment of time,
the machine computes a run which is an interpretation of internal functions
for each moment of time or at least, for an initial segment of T . Notice that
external functions which are classified as static have the same interpretation for
every moment of time.

The behavior of the machine is deterministic. All the If-Then-operators
are executed simultaneously in parallel and instantaneously as well as all the
assignments in any Then-part if the corresponding guard is true. Of course,
whenever the assignments are inconsistent, the execution is interrupted, and the
run of the algorithm becomes undefined thereafter. Notice that the effect of an
assignment executed at time t takes place after time t but not at time t.

We consider only total runs, i.e. those defined on whole T . Below “run” means
“total run”.

3.3 Translation of an ASM into a FOTL Formula

In order to reason about the behavior of an ASM we are to embed the functions
of the vocabulary of the machine into FOTL. And at this moment, time becomes
explicit to represent our vision of the functioning of the machine. To ‘time’ the
dynamic functions of an ASM we proceed as follows.

If f is a dynamic function of type X → Z in the vocabulary of an ASM,
the corresponding logical function is denoted by f◦ and is of type T × X → Z.
Thus the predefined dynamic function CT becomes CT ◦ in the logic, that is the
identity: CT ◦(t) = t.
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It turns out that one can characterize the set of total runs of a basic ASM by
an FOTL formula ([BS02]). We generate automatically this formula using the
translator that we developed for this purpose1.

3.4 Finite Complexity

Complexity of finite partial interpretations

A general definition of this notion is given in [BS02]. To treat our case study,
we need only abstract functions of type T → Z where Z is a predefined sort.
For this reason the definition we give below is limited to this case. The general
definition given in [BS02] needs more technical details.

A partial interpretation f∗ of an abstract function f over T ′ ⊂ T is a finite
partial interpretation (FPI) with complexity k if T ′ is a union of k disjoint
intervals and f∗ is constant on each interval.

A finite partial interpretation (FPI) of V with complexity k is a collection of
FPIs with complexity k, one for each abstract function.

Complexity of interpretations

An interpretation f∗ of f has complexity k if T is a union of k disjoint intervals
and f∗ is constant on each interval (intervals are arbitrary, in particular they
can be reduced to a single point).

An interpretation of V has complexity k if the interpretation of each abstract
function from V has complexity k.

3.5 Decision Procedure

In [BS02], the following result is proved and the corresponding algorithm is
described:

Theorem 1 Given an integer k > 0, one can decide whether a closed FOTL
formula has a (counter)-model with complexity k.

On the other hand, there exist some semantic sufficient conditions ([BS02]) on
formulas Φ and Ψ which ensure that if Φ → Ψ has a counter-model, it has a
counter-model of bounded complexity. Formula Φ must be “finitely satisfiable”,
and formula Ψ must be “finitely refutable”. As a matter of fact, it turns out
that these conditions are verified by a large class of verification problems. We
mention it to underline that our framework is general enough. But we do not
need to use these conditions here, because we prove directly that the runs of the
ASM modeling the protocol have a complexity equal to 3, so we have only to
apply the decision procedure of Theorem 1. This decision procedure works as
follows. Given a closed FOTL-formula G and an integer k, there exists a formula
G0 of the decidable theory of real addition and multiplication which is valid iff
G has a model of complexity k. The formula G0 is obtained by an elimination
1 Available at http://www.univ-paris12.fr/lacl/crolard.
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of abstract function symbols using the fact that models of complexity k can be
described by a finite set of real parameters. Notice that G0 depends on G and
k. In [BS02] the following result is proved:

Proposition 1 A closed FOTL formula G has a model of complexity k if and
only if G0 is valid (interpreted over R with its usual relations, addition and
multiplication).

Thus, starting with a FOTL formula G (of the form Φsyst → Φspec in our case),
we build the formula G0 of the theory of real addition and multiplication and
we check its validity using an algorithm of elimination of real quantifiers. We
use for this elimination the tool Reduce [Hea99]. If the formula G is not closed
and contains free parameters, the elimination procedure applied to G0 gives a
quantifier free formula to be satisfied by parameters in order that G is satisfied.

4 Modeling and Verification of RCP

This section falls in three parts. Firstly we present how we use ASMs to model
the behavior of the protocol. Secondly we express the requirements in FOTL.
Thirdly, we give a report on the results of our model checking experiment.

4.1 The RCP Model as an ASM

Our model describes the behavior of contented nodes during one RCP cycle.
First we give below an ASM A which corresponds to the behavior of a node
from the moment it enters a contention state. The arrival of signals is modeled
by an update of variables representing ports. The probabilistic choice is replaced
by a non deterministic one which is modeled by an external boolean function.

The vocabulary of the ASM A consists of

Predefined sorts:

- Signal = {PN, CN, Idle}.

There are three possible signals: Idle, PN which is a Parent Notification signal
and CN which is a Child Notification signal.

Static functions:

- delay is the (maximal) communication delay.
- fast min, fast max are minimal and maximal values of short waiting time.
- slow min, slow max are minimal and maximal values of long waiting time.
All these functions have type → T .

External dynamic functions:

- fast : → T and slow : → T are respectively fast and slow waiting times.
- Alea : → Bool is a random bit.
- Portrcpt : → Signal is the receipt port of the node, the node reads the signals
he receives on this port.
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Internal dynamic functions:

- WaitEnd : → T is the time when the waiting period of the node stops
- Portsnd : → Signal is used by the node to send signals to its contention
partner. If the node sends a signal at time t, it arrives to its contender node at
time t + delay. This event is modeled by an update of function Portsnd at time
t + delay.
- State : → Signal is the value of the last signal sent by the node.
- Root : → Bool is equal to True when the node knows it is root.

Static and external timed functions are subject to the following axiom:

Axiom:
delay > 0 ∧ (∀t ≥ 0
(0 < fast min ≤ fast◦(t) ≤ fast max < slow min ≤ slow◦(t) ≤ slow max)).

When a contention phase starts for a node, its state is Idle, and the content of
its Portsnd is PN (Initial Conditions). Then the behavior of the node in the
machine is as follows. It picks (here at time 0) a random bit, this is done by a
test on the value of the external function Alea. According to the value of the
random bit, the value of Wait is put equal to slow or to fast (rules (1) and (1’)).
The values slow and fast satisfy the constraints slow min ≤ slow ≤ slow max
and fast min ≤ fast ≤ fast max respectively. At the same time, the node
sends an Idle signal, which arrives at time delay (rule(2)). When the node
ends its waiting period, according to the value of the receipt port (Portrcpt), it
changes its state (rules (3), (3’)). Rules (4) and (4’) correspond to the arrival
of the signal sent at the end of the waiting period (PN or CN). Later a new
contention situation will be detected by the node if it is in a PN state (which
means that the last signal it sent is a PN signal), and it receives a PN signal
from its partner. Initial conditions of the machine A are:

Init:

State = Idle ∧ Portsnd = PN ∧ Portrcpt = PN ∧ Root = false.

(1) If Alea = true ∧ CT = 0 Then WaitEnd := CT + fast EndIf
(1′) If Alea = false ∧ CT = 0 Then WaitEnd := CT + slow EndIf
(2) If State = Idle ∧ CT = delay Then Portsnd := Idle EndIf
(3) If State = Idle ∧ Portrcpt = Idle ∧ CT = WaitEnd

Then State := PN EndIf
(3′) If State = Idle ∧ Portrcpt = PN ∧ CT = WaitEnd

Then State := CN;Root = true EndIf
(4) If State = PN ∧ CT = WaitEnd + delay Then Portsnd = PN EndIf
(4′) If State = CN ∧ CT = WaitEnd + delay Then Portsnd = CN EndIf

ASM A modeling one cycle of a node

The two nodes which are in contention phase are not synchronized, for this
reason they do not start contention at the same time (the difference between
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starting times is at most equal to delay). Machine A describes the behavior
of one node during a cycle which starts at time zero. To describe the process
the two contender nodes we need two processes which start asynchronously.
Let ni, i ∈ {1, 2} be the two contender nodes. For i ∈ {1, 2}, ī denotes the
value in {1, 2} different from i. Since the receipt port for one process is the
sending port for the other one, we denote by Porti,̄i the sending port of node
i and so Port̄i,i is its receipt one. Without loss of generality, we can skip step
(1-1’) and start at step (2) with initial conditions: for i ∈ {1, 2} Statei = Idle,
Port̄i,i = PN, Rooti = false and the waiting period waiti of node ni satisfies
fast min ≤ waiti ≤ fast max ∨ slow min ≤ waiti ≤ slow max. Machine B
describes the behavior of the two nodes during one cycle, where at time zero
node n1 starts its contention (delay start1 = 0) and node n2 is in contention
for a duration delay start2 where 0 ≤ delay start2 ≤ delay.
In this machine, waiti and delay starti are static functions of type → T . For
i ∈ {1, 2}, function delay starti satisfies 0 ≤ delay starti ≤ delay.

Init :

∀ i ∈ {1, 2}
Statei = Idle ∧ Port i,̄i = PN ∧ Rooti = false ∧ delay start1 = 0

ForAll i ∈ {1, 2}
(1) If Statei = Idle ∧ CT = delay − delay starti

Then Porti := Idle EndIf
(2) If Statei = Idle ∧ Port̄i,i = Idle ∧ CT = waiti − delay starti

Then Statei := PN EndIf
(2′) If Statei = Idle ∧ Port̄i,i = PN ∧ CT = waiti − delay starti

Then Statei := CN EndIf
(3) If Statei = PN ∧ CT = waiti − delay starti + delay

Then Porti = PN EndIf
(3′) If Statei = CN ∧ CT = waiti − delay starti + delay

Then Porti = CN;Rooti = true EndIf

ASM B modeling one cycle of the two contender nodes

4.2 The Requirements in FOTL

The aim is to synthesize necessary and sufficient conditions on values of param-
eters delay, fast min, fast max, slow min, slow max for which the following
statement S holds:

Eventually, the protocol ends up with one (and only one) node elected as root.
We will denote by P the list of parameters:

delay, fast min, fast max, slow min, slow max.
We consider three properties related to one cycle of the protocol.

Safety: No two roots are elected
Liveness: At least one root is elected
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Content: A new contention appears.
The translation of these properties in FOTL is as follows:

Safety: ¬ (∃t IsRoot1(t) ∧ ∃t IsRoot2(t))

where IsRooti(t) =def Root◦i (t) ∧ Port◦i,̄i(t) = CN ∧ State◦
ī (t) = PN.

Actually when a node i becomes root, the other one ī knows it only when he
receives the acknowledgment (the CN signal), moreover, to be sure that this
aknowledgment concerns its last PN request and not the previous one, ī must
be in state PN.

Liveness: ∃t (IsRoot1(t) ∨ IsRoot2(t)).
Content: ∃t Contention1(t) ∧ ∃t Contention2(t)

where Contentioni(t) =def State◦
i (t) = PN ∧ Port◦ī,i(t) = PN.

Actually, a node detects a new contention if it is in state PN and it receives
a signal PN.

The machine B is splitted into two cases according to whether random bits
have the same value or not.

Case 1 : the two random bits are different. We look for a necessary and
sufficient condition C1 on values of parameters from P that turn true Safety and
Liveness.

Case 2 : the two random bits are equal. We look for a necessary and sufficient
condition C2 on values of parameters from P that turn true Safety and (Liveness
or Content).

Notice that in Case 2, whatever are the values of parameters in P, there is a
chance of root contention at the end of the cycle.

Clearly C1 ∧ C2 is a necessary and sufficient condition on parameters P such
that whatever are values of waiti and delay starti for i = 1, 2, eventually the
protocol ends up with one (and only one) node elected as root. Actually if C1∧C2
is satisfied then while the random bits are equal, due to property Safety and
(Liveness or Content) either there is again contention or one and exactly one
node is root and the process stops. Moreover if it happens that the random bits
are different, then, again due to Safety and Liveness the process stops since one
single node is root. As eventually one has different random bits (the probability
to never get different random bits is equal to zero) the protocol satisfies the
requirement S.

Conversely, if C1 ∧ C2 is not satisfied, then if in a cycle the random bits are
different three cases occur:
- the two nodes are root and the protocol is not correct
- no node is root and there is no new contention, the protocol stops and fails
- no node is root and there is a new contention.
Moreover for each cycle with equal random bits, a new contention can occur.
So if C1∧C2 is not satisfied, either two roots are elected, either the protocol stops
and fails because no root is elected, or the process can run infinitely entering
infinitely often in contention.
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We have proved that C1∧C2 is a necessary and sufficient condition for protocol
correctness. The next section describes how we get C1 ∧ C2.

4.3 Model-Checking Results

Let ΦB be the FOTL formula which characterizes the set of runs of machine B.
The first step is to prove that every run of machine B has complexity 3. Notice
that machine B does not have external dynamic functions. So we have only to
look at internal ones. Every guard has an atom of the form CT = f , where f
is an external static function. So every guard can be true only once: at moment
f . Moreover guards with the same CT = f atom, like (2) and (2’) for example,
”are not true together”. Then no more than one guard is true at any moment
of time. We have three internal functions whose interpretations are computed
by the ASM. Function Statei can be changed by executing rules (2) or (2’) at
moment delay . So no more than one assignment will take place for Statei and the
maximal complexity of its interpretations is 2. Function Root i can be changed
by rule (2’) at CT = waiti − delay starti, and its complexity is also 2. At last
Port i can be changed by rule (1) at time delay , and by rule (3) or (3’) at time
wait i + delay , so its complexity is 3. The maximal complexity of interpretations
is 3, and every model of ΦB is a model of complexity 3.

As a consequence, for every FOTL formulas Φ, Ψ , the formula Φ∧ΦB → Ψ
has a counter-model iff it has a counter-model of complexity 3.

One can observe that the requirements depend on the equality or no equal-
ity of the random bits got by the two contender nodes. Consider the following
formulas:

A1 : (fast min ≤ wait1 ≤ fast max ∧ slow min ≤ wait2 ≤ slow max)
A2 : (fast min ≤ wait2 ≤ fast max ∧ slow min ≤ wait1 ≤ slow max)
A3 : (slow min ≤ wait1 ≤ slow max ∧ slow min ≤ wait2 ≤ slow max)
A4 : (fast min ≤ wait1 ≤ fast max ∧ fast min ≤ wait2 ≤ fast max)
We split the machine B in two machines, one with the axiom A1 ∨ A2 which

corresponds to the case when the two bits are different, and a second one with
the axiom A3 ∨ A4 which corresponds to the case when the two bits are equal.

Let
R1 : Safety
R2 : Liveness
R3 : Liveness ∨ Content
where Safety, Liveness, and Content are requirements defined as in sub-

section 4.2.
The formula (A1 ∨ A2) ∧ ΦB describes the runs with different random bits

and the formula (A3 ∨ A4) ∧ ΦB with equal ones. The verification problem of
RCP is reduced to compute for what values of parameters from P the following
formulas are valid

∀delay start ≤ delay ∀wait1 ∀wait2(((A1 ∨ A2) ∧ ΦB) → (R1 ∧ R2)) (1)

∀delay start ≤ delay ∀wait1 ∀wait2(((A3 ∨ A4) ∧ ΦB) → (R1 ∧ R3)) (2)
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From the remark made before, we have to compute what values of parameters
ensure the existence of counter-models of complexity 3.

The next step is to generate automatically (using our FOTL2REDUCE tool)
formulas Ci

j of the theory of real addition (here we do not need multiplication)
for i = 1, 2, j = 1, 2 or i = 3, 4, j = 1, 3 such that Ci

j is valid iff FOTL formula
Ai ∧ ΦB → Rj has a counter-model of complexity 3. It is done by applying to
formula ¬(Ai ∧ ΦB → Rj) our abstract symbol elimination algorithm. It turns
out that the formula Ci

1 returned by the elimination for i = 1, 2 is False.
The last step is to apply a quantifier elimination algorithm to formulas:
∀delay start ≤ delay ∀wait1 ∀wait2(¬Ci

j).

We denote the result of this quantifiers elimination by C̃i
j . The conditions C1

and C2 can be now written:
C1 = ∧i=1,2, j=1,2C̃i

j and C2 = ∧i=3,4, j=1,3C̃i
j

So C1 = C̃1
2 ∧ C̃2

2 and C2 = C̃1
2 ∧ C̃3

2 . Thus formula (1) is valid iff C1 is true and
formula (2) is valid iff C2 is true.

But it is not enough to get “nice” necessary and sufficient conditions. The
obtained results are too big to be easily interpreted. So we experimented with
different techniques of simplification realized in Reduce and obtained suitable
results by applying iteratively a ”tableau simplifier” method. The result we get
is a small formula compared to the initial one, nevertheless it is not completely
simplified, and we did not succeed to achieve the simplification with Reduce. So
the last simplification is done by hand, but it is easy to perform. We get:

C1 : 2 ∗ delay < fast min ∧ 2 ∗ delay < slow min − fast max.
C2 : 2 ∗ delay < fast min.

The table below summarizes the performance of our experiments.

property parameters time memory processor
Safety 5 0m6 750M UltraSparc II

(64bits) 440mhg
Liveness 5 17m03 3G UltraSparc III (64bits)2

(2×)900mhg
Liveness ∨ Content 5 75m36 3G UltraSparc III (64bits)

(2×)900mhg

The entire process of verification is summarized in Figure 2.The inputs are the
ASM which models the system, the complexity k, and the requirements written
in FOTL. The ASM2FOTL tool transforms an ASM into an FOTL formula. The
FOTL2REDUCE tool proceeds to the elimination of abstract symbol functions
and gives the result with the help of Reduce.

2 We would like to thank J.-M. Moreno from the Computer Science Department of
Paris 7 University for allowing us to experiment with this server.
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5 Comparison with Other Methods – Conclusion

The paper [Sto02] contains a comparative study of formal verification methods
applied to the IEEE 1394 RCP. Case studies are divided into three classes:
papers that study the functional behaviour of the protocol, papers that employ
parametric model checking to synthesize the parameters constraints needed for
protocol correctness, and at last papers that focus on the performance analysis
of RCP. Our paper belongs to the second class, so we restrict our comparaison
to this class [BLSdRT00,TSB00,CAS01,HRSV02].

The modeling

First of all, since the values of probabilities of random bits are not relevant for
the analysed properties of Safety and Liveness, the probabilistic part is replaced
by a non deterministic one in all the papers.

The four papers use linear parametric timed automata to model the protocol
and choose different model checking tools.

The processes which represent the nodes and the wires communicate via
synchronization. The abstraction which is done is rather far from the initial
specification and it is not always clear whether this modeling is correct, because
the behavior of the whole system is not easy to apprehend.

The use of ASMs widely reduces the efforts to accomplish in order to model
the protocol. The description of the useful part of the protocol is given by a
basic ASM with 5 rules and the properties to verify are very easy to write down
in FOTL logic.

Another important aspect is the expressiveness of the models. The tools
used in [BLSdRT00,TSB00,HRSV02] can treat only linear constraints, which
is enough for RCP, but is a limitation for more general cases. ASMs with the
FOTL logic used in the present paper and the TReX tool used in [CAS01] permit
non linear arithmetical constraints. Nevertheless, TReX overapproximates the
constraints for which a property does not hold, so several runs of the tool with
different initial constraints are needed to derive the exact contraints. It is not
entirely automatic.

The analysis made in [CAS01] is based on results of [SV99]. In this latter
paper, in order to demonstrate that Impl (the parallel composition of Nodes



386 D. Beauquier, T. Crolard, and E. Prokofieva

and Wires automata) is a correct implementation of Spec three intermediate
automata are introduced with a laborious stepwise abstraction procedure.

In comparison, our proof is more direct. We have just to verify before the
mechanical part that the ASM has a bounded complexity. And this proof is easy.

Parameters treatment

In [BLSdRT00,TSB00] not all five parameters are considered at the same time.
Depending on the property to verify, only one or two values are taken as param-
eters, the other values are fixed constants. In our method, as in [CAS01], the
five values are parameters at the same time; a restriction for us is that the delay
is always taken as its maximal value.

As a conclusion, we are convinced that our approach to the problem veri-
fication is a promissing one as it is demonstrated by this case study, and by a
previous one, namely the Generalized RailRoad Crossing Problem [BTE03]. The
modeling process of the system with ASMs is direct and easy, FOTL is a pow-
erful logic with which requirements are very easy to write down. Our algorithm
provides directly necessary and sufficient conditions for the correctness of the
system. We hope to improve the time and the space necessary to the computa-
tion by using for quantifiers elimination not a general algorithm but a specific
one which should be more efficient.

We do not have for the moment an achieved tool, with a user friendly inter-
face, it is a first experiment. But, in view of these first encouraging and compet-
itive results, we intend to develop this tool and to make more experiments.
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