Automatic Verification of Real-Time Systems :
A case study

Danieéle Beauquier Tristan Crolard Evguenia Prokofieva
E-mail: {beauquier,crolard,prokofieva}@univ-paris12.fr

Laboratory for Algorithmics, Complexity and Logic,
Department of Informatics, University Paris-12, France'

Abstract

In [BS02], a decidable class of verification is given using a logical framework based on a first order
timed logic (FOTL). We illustrate here the implementation of this approach on a well-known benchmark,
the Generalized Railroad Crossing Problem (GRCP).

1 Introduction

In [BS02], a first order timed logic (FOTL) for specification of real-time algorithms is proposed, where time
is continuous. This logic permits, on the one hand, to rewrite directly and completely requirements and,
on the other hand, to describe executions of various timed algorithms — here block Gurevich Abstract
State Machines (ASM) are considered because of their theoretical clarity and sufficient expressive power.
Then a decidable class of the verification problem that is based on notions reflecting finiteness properties of
systems of control is described. We propose here a tool which implements the algorithm proposed for the
decidable class and we illustrate the efficiency of the method by giving an automatic treatment of the known
benchmark Generalized Railroad Crossing Problem (GRCP). More precisely, we consider the GRCP in all
its generality (the number of tracks and all time constraints are abstract parameters) formalizing directly,
practically without any change the requirements as they are given, without modeling, then we specify a
controller as a 4-line basic ASM. This basic ASM is automatically translated into a FOTL formula which
characterizes its set of runs. All existing proofs of the general case do not follow directly the requirements
— they change the description of the initial requirements without discussing or proving why it is justified,
and all, except that of Gurevich-Huggins, give a much more complicated specification of the controller. The
GRCP was considered in dozens of papers. However, treatment of it in the whole generality is rare. We
point out the importance of [GH96] that was the starting point for us and that contain a profound analysis
of continuous time issues. The first papers where the problem was introduced in the form now usually
considered are [HL94, HL96]. A proof to be considered as a complete one is in [HL96]. Other papers with
formal analysis of the entire problem are: [Sha93], where an early version of the problem from [HJL93] was
analyzed by PVS; [BMSU98] where SteP system was used; [AH98] where PVS was used. There are also
numerous other papers where the bounded or simplified versions of the GRCP were model-checked. We do
not consider them as we speak about wverification of the entire problem. To our knowledge, it is the first
treatment of the benchmark GRCP where the non automatic part is very reduced and simple.

Section 2 introduces the logical framework and presents decidable classes of verification. In section 3,
the Generalized Railroad Crossing Problem is analysed inside this framework. The last section gives a short
description of the tool we have implemented.

2 A decidable class of verification

A First Order Timed Logic used in this framework is constructed in two steps. Firstly, we choose a simple,
decidable theory to deal with concrete mathematical objects (the underlying theory), like reals, and, secondly,

L Address: Dept. of Informatics, University Paris 12, 61 Av. du Gén. de Gaulle, 94010, Créteil, France.

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 2

we extend it in a ‘minimal’ way by abstract functions to deal with our specifications. Here we take as the
underlying theory the theory of real addition and unary multiplications by rational numbers which is known
to be decidable [Wei99], and extend it by functions with at most one time argument and with other arguments
being of finite abstract sorts. Precisions are given below.

Notations:

e R is the set of reals.

e T=, R>o time treated as a subsort of R.

e For a time interval (we denote by (= and (% respectively its left and right ends.
¢ Bool = {true, false} are Boolean values; undef will be used for undefined.

o Z is the set of integers and N is the set of natural numbers.

2.1 Syntax and semantics of FOTL.
Syntax of FOTL.

The vocabulary W of a FOTL consists of a finite set of sorts, a finite set of function symbols and a finite
set of predicate symbols. To each sort there is attributed a set of variables. Some sorts are predefined, i. e.
have fixed interpretations. Here the predefined sorts are the real numbers R and time 7=, R treated as
a subsort of R. The other sorts are finite. If a finite sort has a concrete cardinality it can be considered as
predefined. The interesting finite sorts are those whose cardinality is not specified, for example the number
of processes in a distributed algorithm.

Some functions and predicates are also predefined. As predefined constants we take Bool for boolean
values, undef and Q for rational numbers. Addition +, subtraction — and scalar multiplications of reals
by rational numbers are predefined functions of the vocabulary. The predicates =, <, < over reals are
predefined predicates of W. The vocabulary contains = for all types of objects, and the identity function id
of the type 7 — 7T to represent current time.

Any abstract function (i. e. without any a priori fixed interpretation) is of the type 7 x X — Z, and
any abstract predicate is of the type T x X — Bool, where X is a direct product of finite sorts and Z is an
arbitrary sort. The (sub)vocabulary of abstract functions and predicates will be denoted V.

A vocabulary W being fixed, the notion of term and that of formula over W are defined in a usual way.
Semantics of FOTL.

A priori we impose no constraints on the admissible interpretations. Thus, the notions of interpretation,
model, satisfiability and validity are treated as in first order predicate logic modulo the preinterpreted part
of the vocabulary. Thus M |E F, M |£# F and = F where M is an interpretation and F is a formula,
denote respectively that M is a model of F; M is a counter-model of F' and F' is valid.

Remark that an interpretation f* of a function f of type 7 x X — Z describes a family of temporal
processes parametrized by the elements of the interpretation X™* of X.

Below f will stand for a function of the type mentioned above. The function \tf(¢,z) for a fixed z will
be denoted by f,.

2.2 Algorithm vocabulary versus verification vocabulary.

Though we do not consider here how to represent runs in FOTL (see [BS02] on this subject), we give some
hints on the relation of the vocabulary of an algorithm and the vocabulary needed for requirements and
verification by the example that follows.

Example 1. Consider the following algorithm in a self-explanatory notation (in fact, it is a ‘basic’ Gurevich
ASM [Gur95, Gur00]). This algorithm consists of a set B of non interacting processes. Each process outputs
time moments at which it detects a non zero input.

Vocabulary of the algorithm.

Sorts: T, R, Bool, B.
Input function: Inp: B — R.
Output function: Out : B — 7.

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 3

Proper internal function: Flag : B — Bool
Initial values (at time moment 0): Flag(p) = true, Inp(p) = 0, Out(p) = 0.

Repeat
ForAll p € B InParallelDo
If Flag(p) A Inp(p) = 0 Then Flag(p) := false || Out(p) := 0 EndIf ||
If = Flag(p) A Inp(p) # 0 Then Flag(p) := true|| Out(p) := CT EndIf
EndForall
EndRepeat

To describe the functioning of this algorithm in a FOTL we introduce timed versions of functions. For a
function f of a type B — Z we introduce a function f° of type 7 x B — Z. And in terms of these functions
one can describe the runs of the algorithm.

2.3 Interpretations related to the verification problem.

In the verification setting we distinguish 3 kinds of dynamic functions: external, internal and some auxiliary
functions. The latter must be described in terms of external and internal ones. Internal functions are
computed by the algorithm and thus, strictly speaking, are described in a piecewise constant way. However,
their ‘physical’ interpretation may be of other nature. For example, to represent a piece of linear function
a-t+0bon an interval o we give two values a and b for the function and two values o0~ and oT for the
interval. And these values remain constant up to the moment when the algorithm calculates the next piece.
But the ‘physical’ interpretation of this function that may be used in guards of the algorithm is not constant,
however, it is described as a term of the vocabulary.

We incorporate these considerations in the following system of notions.

We assume that for every abstract function f of type T x X — Z there is fized a term Uy with values
of type Z constructed only from constants, variables and predefined functions. We may admit a fix number
of such terms Uy for a given function (as we do in [BS02]) — the reasoning remains the same with minor
technical changes. We need here to consider only terms of the form z with z being a variable or a constant,
for a more general setting see [BS02].

We will write Uy also as Uy (z) to make explicit the parameter. Let ¢ be an interval. We say that f, is
Uy-defined on ¢ with parameter 2, if for ¢ € ¢ the value f,(t) is defined as f.(t) = zo.

Define also U;q as t, Up(t) for P € Vpreq as B, where B is a Boolean variable, and thus, Uy is attributed
to every f € V.

A partition of T is a sequence ™ = ((;),;c5 of non empty disjoint intervals where: (1) N is a prefix of N,
2) Uien G =T,)¢ =¢ ,for0<i<|N|—=1, (4) { =0, ¢ =o0if N is finite and k is its last
element.

In the logic introduced above one can describe rather directly (see [BS02, BCS00]) the runs of basic
Gurevich Abstract State Machines [BS97] or while-programs, transforming the latter into basic Abstract
State Machines and applying the transformation from [BS02, BCS00].

2.4 Finiteness Properties

We consider a First Order Timed Logic (FOTL) which is an extension of the theory of reals R with order,
addition and unary multiplications by rationals Q that are considered as constants in this theory. Such an
extension is defined by abstract sorts and abstract functions f of the type 7 x X — Z, where T=, Rx is
a sort of time treated as a subsort of R, and Z is either 7 or an abstract sort. This abstract sort is finite
but of unknown cardinality that can be arbitrary. We assume that there can be also predefined finite sorts
(thus of known cardinality).

For technical simplicity we assume that in the type 7 x X — Z of an abstract function (more general
case was considered in [BS02]) X is one sort, not a direct product, though this sort may depend on the
function.

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 4

2.4.1 Finite partial interpretations (FPI)

A partial interpretation (PI) of f, is given as a set of disjoint intervals, that will be called the support of
the PI, and by parameters values to put into Uy to define f, on each such interval. A partial interpretation
(PI) of V is a partial interpretation * of JJ C X" and a collection of PIs, one for each f,, y €).

A partial interpretation M’ of a f, is an extension of a partial interpretation M if every interval of M is
contained in an interval of M’, and the restriction of the function of M’ on intervals of M gives the function
of M. In a similar way we define an extension of a PI of V or W.

A finite partial interpretation (FPI) is a PI with a finite number of time intervals.

If any of the mentioned interpretations is defined on a subinterval of 7, finite or infinite, then it is partial.
When speaking about maximum of complexities we mean

max{(ko, k1), (kh, K1)} = (max{ko, k}}, max{k:, & })

Equivalence.

To reduce the complexity of interpretations in spite of a large amount of elements in abstract sorts we
introduce a notion of equivalence of interpretations, and on its basis will generalize the complexity measures
for PI of individual f. Such an equivalence is defined over elements of abstract sorts for each f.

We will consider only interval-wise equivalences. That means that an abstract sort A is interpreted as
an initial interval on natural numbers, and an equivalence is defined by a partition of such an interval into
consecutive intervals.

ForaPIMof f: T x X — Z with Y* partially interpreting X an equivalence E over J* means that
y1 Ey2 implies that the functions At f*(¢,y1) and At f*(t,y2) are equal, i. e. have the same support and have
the same values on each interval of the support. Denote by m the number of equivalence classes of E, and by
K the maximal complexity of f;. for y* € Y*. Then the complexity of the PI with respect to E is (m, K).
We will write it also as a triplet (m, L, s).

Given a PI M of f, without any mentioning of equivalence, we can always find an equivalence E with
minimal number of equivalence classes. We define the complexity of M as above with respect to this
equivalence F.

Notice that the complexity of a PIM of f: T x X — Zand g: T x X — Z' with the same X will
be measured as maximum of complexities of M as interpretation of f and that of M as interpretation of
g. This means, in particular, that equivalences over the same interpreted part of X' for f and g may be
different.

The complezity of a PI of V is the maximum of complexities of interpretations of all abstract functions.

The strong complexity of a PI of V is K if the equivalence F and the support related to a class is the
same for all abstract functions.

A PT of (strong) complexity K will be called (strong) X-PI.

We will define the finiteness properties in terms of PI contained in models or counter-models M of the
formulas under consideration.

2.4.2 Finite Refutability and Finite Satisfiability - A decidable class

Let a be a total computable function transforming a complexity value of the form (m,s) into a complexity
value of the form (m,s).

A formula G is (strongly)-K-refutable iff for every its counter-model M there exists a (strong) -PT M’
such that M is an extension of M’ and any extension of M’ to a total interpretation is a counter-model of

G.

A formula G is (strongly) K-satisfiable with augmentation « iff for every (strong) K-PI M extendable to
a model of G there is an extension M’ of M with (strong) complexity «(K) that is a model of G.

Remark 1. Finite refutability of properties of functioning of practical real time systems often (maybe
almost always) takes place. For example, the safety property is usually finitely refutable and, in a way, it

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 5

is a general property of safety. As for liveness, too general formulations can be not finitely refutable. For
example, if we consider liveness for the mutual exclusion with unbounded waiting time, it will not be finitely
refutable. But in any practical system the waiting time is always bounded. If we add such a bound the
liveness becomes finitely refutable. And this shows a general principle: adding practical bounds we arrive
at finiteness properties. See [BS02] for detailed examples.

Remark 2. Intuitively finite satisfiability of an algorithm means that every its run is reducible in the
following sense: every interval of the run can be replaced by a piece of bounded complexity. Many control
algorithms possess this property which is, in a way, a finite history property.

Denote by VERIF{srong) (K,) the class of FOTL-formulas of the form (® — W) such that the formula
¥ is (strongly) K-refutable and @ is (strongly) K-satisfiable with augmentation «. In [BS02], it is proven
that:

Proposition 1 A formula of the class VERIF (yonq)(K,a) is valid iff it does not admit a counter-model
of complexity a(K) and for a given complexity K, and a computable augmentation function « this property
is decidable.

Theorem 1 Given a complexity K, an augmentation function o , the validity of formulas from VERIFs4rong) (K, @)
is decidable. Moreover, if a formula of this class is false then its counter-models of complexity «(K) can be
described by a quantifier-free formula.

3 A case study : the Generalized Railroad Crossing Problem

Informal Description of GRCP.

We take the description of GRCP from [GH96]. A railroad crossing has several one-directional tracks
and a common gate. Each track admits two sensors, one at some distance of the crossing in order to detect
incoming of a train and another one just after the crossing in order to detect the train is leaving. An
automatic controller receives the signals from the sensors and on the basis of these signals, decides to send to
the gate a signal close or open. The environment of the functioning of the controller to construct is described
by the following assumptions. It is assumed that a train cannot arrive on a track (i. e. in the zone of control)
before the previous one has left this track. The situation when a train does not leave the crossing is not
formally excluded. It takes at least time d,,;, for a train to reach the crossing after the sensor has detected
its incoming. And it takes at most dopen (respectively deose) to the gate to be really opened (respectively
closed) after the reception of signal to open (respectively, to close) if the opposite signal has not been sent
in between. To exclude degenerated cases, it is assumed that 0 < dgjpse < dmin- The time is presumed to
be continuous.

The requirements to the controller to construct are the following ones:

(Safety). If a train is in the crossing, the gate is closed.
(Liveness). The gate is open as much as possible.

Liveness in this formulation implies second order quantifiers (for discussion see [BS02]) and has never been
treated in literature in this form. So we will take below a first order formulation in terms of input/output
signals (one can show that it gives the liveness in the initial formulation, but it is out of the scope of this
paper).

Formal Specification of the Requirements to GRCP.

FOTL permits to represent the informal requirements directly without any changes (modulo our remark
concerning liveness).

The predefined part of vocabulary W was described above in subsection 2. So we define only the abstract
part of W.

Abstract sorts consist of one sort T'racks that represents the set of tracks which number is finite but not
fixed. The variables for Tracks are x and = with indices.

The part of vocabulary containing abstract functions consists of abstract constants (static functions of
zero arity) dmin, dopens deiose, all of the type — T, and of abstract dynamic functions. The latter are the
following ones:

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 6

e Cmg® : T x Tracks — Bool means a presence (coming) of a train on a track at a given time moment;

e DirOp° : T — Bool means that a signal to open the gate takes place at a given time moment, and
=DirOp° means that the signal is to close the gate;

e InCr° : T — Bool says that there is a train in the crossing at a given time moment;

e GtClsd® : T — Bool says that the gate is closed at a given time moment;

e GtOpnd® : T — Bool says that the gate is opened at a given time moment. (GtOpnd°® is not the
negation of GtClsd® as we know only that the gate cannot be opened and closed at the same time.)

Requirements Specifications of GRCP.

Requirements consist of 2 parts: environment (formula ®g,,) and demands to the functioning (formula
(I>Func) .

We have no formal notion of train within the given syntax. We assume that for a given track a new train
reaches the sensor launching Cmg® only after the previous one has left the crossing making the track status
—Cmg°. The alternation =Cmg°/ Cmg®/ ~Cmg° ... corresponds to appearance of successive trains on a
given track.

Notations:

o WaitTime = WT=; dpmin —dciose Will be used to describe a period of time when a train, though having
been detected, is far enough from the crossing to permit to close the gate.

e For every function f of type 7 x X —), every term X of type X and every term Y of type Y
LimPlusg(t, X, Y)=y Tti (t1 >t AVT(t<T7<t1) = f(1,X)=Y))

LimMinusg(t, X, Y)=4 Ft1 (1 <t AVT((t1 <7 <t) = f(1,X)=Y))

e A notion describing when the controller may open the gate is stated as follows:
SafeToOpenSp(t)=

Va [=Cmg°(t,z) V VT <t (V7' € [r,t)Cmyg°(7',x) = t <1+ WaitTime) |.

Specification of the Environment.
(TrStInit) V2 -Cmg°(0,z)
(At the initial moment there are no trains on any track.)
(GtStInit) GtOpnd®(0)
(At the initial moment the gate is opened.)
GtSt) V¢ =(GtOpnd°(t) A GtClsd®(t))
The gate cannot be closed and opened at the same time, but it can be neither opened nor closed.)
DirInit) DirOp°(0)
At the initial moment the signal controlling the gate is to open the gate.)
CrCm) Vt (InCr°(t) — (t > dmin A 32V T € [t — dmin, t] Cmg°(1,2)))
If a train is in the crossing it had been detected on one of the tracks at least d,,;, time before the current
moment.)
(OpnOpnd) Vit (V7 € (t,t + dopen]DirOp° (1) — GtOpnd® (t + dopen))
(If at time ¢ + dypen, the command has been open for at least a duration dopen then the gate is opened at
this time.)

(ClsClsd) Vit (V1 € (t, t + dejose]mDirOp° (1) — GtClsd® (t + deiose))
(If at time t + dejose the command has been close for at least a duration d.,s. then the gate is closed at this
time.)

(Cmg)

VzVt [Cmg°(t,z) —

Jto (0 <ty <t AVTE to,t]Cmg°(1,2) N LimMinuscmgr(to, z, false))]
(NoCmg)

VoVt [~Cmg°(t,z) —

(
(
(
(
(
(

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 7

Jto (0 <ty <t AVTE [to,t] "Cmg°(1,2) A Lim Minus(-cmge)(to, =, false))]

(The two last properties express that the predicate Cmg° is true on intervals closed on the left and opened
on the right and that the set of points where the value changes has no accumulation points.)

(dIneq) 0 < deose < dmin A0 < dopen
(These are trivial constraints on the durations involved, the time for closing is smaller than the minimum
time of reaching the crossing by any train detected as coming.)

Specification of the Control.

These specifications concern requirements on the functioning.
(Safety): Vit (InCr°(t) — GtClsd°(t)).
(When a train is in the crossing, the gate is closed).
(Liveness) or (Utility): Vt(SafeToOpenSp(t) — DirOp°(t)).
(If the zone of control is safe to open at time ¢ then the control signal must be to open the gate).
One can notice that using FOTL permits us to rewrite almost directly the environment and requirements
specifications without any modeling which could introduce a lot of errors.

Railroad Crossing Controller.

The part of the ASM vocabulary specific to this example consists of
Static functions:
® diin, dopens delose; as above in the logic signature.
External functions:
e CT the current time has type — 7.
e Cmg : Tracks — Bool is an input function giving for every track its status (coming or empty).

Internal functions:
e DirOP says that the signal to open the gate is being generated by the algorithm, its type is — Bool.

e DL : Tracks — T is the first moment of appearance of a train on a given track plus WaitTime, and
this value is then used as a DeadLine to decide on control of the gate, see SafeT oOpen condition below.

e NoDL : Tracks — Bool says that there is no deadline on a given track.

Notation:

SafeToOpen=,Vz (=Cmg(z) V NoDL(z) V CT < DL(z)).

Remark that this SafeToOpen is presumed to represent adequately the SafeToOpenSp condition, but it
is to be proved.

Repeat
ForAll z € Tracks
InParallelDo
If Cmg(z) and NoDL(z) Then NoDL(z) := false;
DL(z) := CT + WT EndIf
If -Cmg(z) and ~NoDL(xz) Then NoDL(z) := true EndIf
If DirOp and —SafeToOpen Then DirOp := false EndIf
If =DirOp and SafeToOpen Then DirOp := true EndIf
EndInParallelDo
EndForall
EndRepeat

Figure 1: Railroad Crossing Controller

An algorithm to control the railroad crossing is given in Figure 3. To distinguish it from that of [GH96]
we will name it Symmetric Controller as it uses our version of SafeToOpen condition in a symmetric way.
Below we will refer to this algorithm simply as Controller.

The initial values of internal functions are defined by the condition

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 8

Init=y4 Vz (NoDL(z) A DL(z) =0) A DirOp

3.1 A decidable class for the GRCP
Finite Refutability of Safety in the Railroad Crossing Problem.

Theorem 2 (Safety) is a strongly (1,1)-refutable.

Proof. Show that the formula Vt(InCr°(t) — GtClsd’(t)) for (Safety) is strongly (1, 1)-refutable. Let
M be a counter model for it. Then there is a train in the crossing and the barrier is not closed at some time
to. We take k = 1 and n = 1. The FPI M’ extendable in M is chosen as follows. An arbitrary track z is
taken, and for this class, the interval of time is {to}. So M’ is a (1,1)-FPI and every interpretation which
extends M’ is a counter-model of (Safety). []

Finite Refutability of Utility in the Railroad Crossing Problem.

The formula for (Utility) is V¢ (SafeToOpenSp(t) — DirOp°(t)), where
SafeToOpenSp(t)=
Va [Emp°(t,z) V V1 <t (V7' € [1,t) Cmg° (7', z) = t < T+ WaitTime) |.
Let M be a counter-model for (Utility). Then for some ¢ we have the situation shown on Figure 2 where
the tracks z with Emp° (¢,) are not shown.

WT >

cmg o Cmg A
T,
Empty ‘ Cmg 3
T
d, Cmg 5
T,
Cmg o Cmg 1
T
t—WT t
WT = dmin_ dclose di = T| _(t _\NT)
d=min{ d} =d,

Figure 2: Utility counter-model.

Denote by X the set of tracks & such that Cmg°(t, z).

For z € X let T, be the moment of coming of this train on the track z, i. e. T, = inf{T < ¢ :Vr €
[T,t] Cmg(t,z)}. Clearly, M is a counter-model iff T, >t — WT for all z € X and DirCI°(t).

Consider the intervals (, = [t — WT,T,), x € X. If all of them had the track status Empty then a FPI,
that ensures that the extensions are counter-models, would be Emp°(r,z) for 7 € [t — WT, mingec x{T:}),
for x € X, Emp°(t,z), for x ¢ X, and DirCi°(t). Hence, we have defined a (2,1)-FPI restriction of M
which every extension is a counter-model of (Utility).

But in the general case, if there is not a lower bound sufficiently large between the moment when a train
leaves some track and the moment when the next train arrives on this same track there is no possibility to
have a FPI extendable into counter-models, independent of the number of tracks. Thus, with an additional
reasonable requirement (that always takes place in practice) that after a train having left the track at some

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 9

t the next one cannot appear before ¢ + 6 on this track, with 8 such that % < K for some constant K € N,
(Utility) is finitely refutable.

Indeed, divide (t — WT,t) into 2K intervals of equal length. Since M is a counter-model, for every track
z € X there is such an interval where Emp° (7, z) holds. Take this interval as T-support for ATEmp° (7,).
For z ¢ X, take {t} as T-support for A\rEmp°(r,z). For DirCI° take {t} as T-support. This defines a
(2K + 1,1)-FPI restriction of M which every extension is a counter-model of (Utility).

Thus, we have :

Theorem 3 (Utility) is strongly (2K + 1,1)-refutable (under the above mentioned hypothesis 'L < K).

F-satisfiability of ®p,ns A Pgyy in the Generalized Railroad Crossing Problem.

Let M be a model of (Pruns A ®Prny) and My be a strong (k,n)-FPI, restriction of M. Let X be one
of the k classes of tracks, and two consecutive intervals I and .J of the support related to this class. First
one can suppress on each of these tracks the occurrence of a train which arrives and leaves the zone after
I and before J. The new model of (®guns A Ppny) admits the same FPI M;. If on some track of X a
train is coming during I and leaves the zone between I and .J, it is the same for all the tracks in X, and
we can take as a time to leave the zone for all the trains on these tracks the latest time. The new model of
(PRuns N PrEny) admits again the same FPI M;. Secondly, if a train arrives in the zone after I and before
J, and is coming during .J, it is the same for all the tracks in X, and we can take as a time to arrive in the
zone for all the trains on these tracks the earliest time. The new model of (® gyns A PErny) admits again the
same FPI M;. We repeat this transformation for each pair of consecutive intervals (a similar transformation
is done before the first interval and after the last one). We get a model of (®guns A P Eny) which restriction
to X has a complexity equal to 6n (a complete phase for one train involves 6 intervals). Thus, we apply this
transformation to each class. If the complement of the k classes is not empty, it is enough to take one more
track, and on this track an interpretation of complexity 6n to ensure the correct value of functions which do
not depend on tracks like InCr® and GtClsd°. We get finally a model of (® guns A ®gny) which is a strong
(k + 1,6n)-FI which is an extension of M;. Therefore we have:

Theorem 4 (Pryns A Prny) is strongly (k,n)-satisfiable with augmentation a(k,n) = (k + 1,6n).

Verification of (Safety) in the Generalized Railroad Crossing Problem.

Using Theorems 2, 4, and Proposition 1 we deduce that (®runs A Prny) = (Safety) is in the class
VERIFy170n4((1,1,a) where a(k,n) = (k+ 1,6n), and so has a counter model iff it has a counter model of
complexity (2,6).

4 The tool

The tool consists into three modules.

e The first one, the ASM2FOTL translator is a tool for translating a Timed ASM (Gurevich Abstract State
Machine) into a FOTL-formula. The translator is written in Objective Caml. It permits to compute the
FOTL-formula associated to a basic Gurevich machine (http://www.univ-paris12.fr/lacl/).

e The second one, FOTL2Reduce which is the new part in this paper, implements the algorithm associated
to Theorem 1 and permits to decide whether a given FOTL-formula ¢ admits a model of a given complexity
(k,n). The algorithm transforms a FOTL-formula ¥ into a formula \i/;m such that ¥ admits a model of
complexity (k,n) iff ¥y, is valid (in the case when ¥ is closed).

The formula \i!km contains real and integer variables and addition, but one can remark that we can
eliminate quantifiers by applying consecutively quantifier elimination for theory of real addition or Presburger
arithmetic. These two sorts of variables are well separated: an atomic formula contains either only real
variables or only integer variables (and even no addition in this case).

Remark 3. If ¥ is in a strong class, since the supposed counter-model is a strong (k,n)-FI, the partition
of the abstract sort is the same for all abstract functions, and then one can suppose that this abstract
sort has cardinality k, and each class has exactly one element. In that case, integer existential (universal)
quantifiers can be replaced by finite disjunctions (conjunctions) and there is no problem of elimination of
integer quantifiers.

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 10

Basic ASM ASM2FOTL

Step 1

FOTL 2Reduce

Step 2

Reduce Result

Step 3

Figure 3: Steps of Verification.

Remark 4. In the case of a formula which is not in a strong class, since the signature for integers contains
only the order (no addition), we have developped and implemented an algorithm of elimination of integer
quantifiers which is simpler than in Presburger arithmetic.

e In the last step, the software Reduce (http://www.rrz.uni-koeln.de/REDUCE/) is used to eliminate the
real quantifiers in ¥y, , and to get the necessary and sufficient condition for ¥ to admit a model of complexity

(k,n).

References

[AH98] M. Archer and C. Heitmeyer. Mechanical verification of timed automata: A case study. Technical
Report 5546-98-8180, University Paris-12, Department of Informatics, Naval Reserach Labora-
tory, Washington, 1998. NRL Memorandum Report.

[BCS00] D. Beauquier, T. Crolard, and A. Slissenko. A predicate logic framework for mechanical verifica-
tion of real-time Gurevich Abstract State Machines: A case study with PVS. Technical Report
00-25, University Paris 12, Department of Informatics, 2000. Available at http://www.univ-
paris12.fr/lacl/.

[BMSU98] N. Bjgrner, Z. Manna, H. Sipma, and T. Uribe. Deductive verification of real-time systems
using STeP. Technical Report Technical Report STAN-CS-TR-98-1616, Computer Sci. Dept.,
Stanford Univ., December 1998. Submitted to Elsevier Science.

[BS97] D. Beauquier and A. Slissenko. On semantics of algorithms with continuous time. Technical
Report 97-15, Revised version., University Paris 12, Department of Informatics, 1997. Available
at http://www.eecs.umich.edu/gasm/ and at http://www.univ-paris12.fr/lacl/.

[BS02] D. Beauquier and A. Slissenko. A first order logic for specification of timed algorithms: Basic

properties and a decidable class. Annals of Pure and Applied Logic, 113(1-3):13-52, 2002.

D. Beauquier, T. Crolard, E. Prokofieva. Automatic Verification ...A case study 11

[GHO6]

[Gur95]

[Gur00]

[HIL93]

[HL94]

[HL96]

[Sha93]

[Wei99]

Y. Gurevich and J. Huggins. The railroad crossing problem: an experiment with instantaneous
actions and immediate reactions. In H. K. Buening, editor, Computer Science Logics, Selected
papers from CSL’95, pages 266—290. Springer-Verlag, 1996. Lect. Notes in Comput. Sci., vol. 1092.

Y. Gurevich. Evolving algebra 1993: Lipari guide. In E. Borger, editor, Specification and Vali-
dation Methods, pages 9-93. Oxford University Press, 1995.

Y. Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM Transac-
tions on Computational Logic, 1(1):77-111, July 2000.

C. Heitmeyer, R. Jeffords, and B. Labaw. A benchmark for comparing different approaches for
specifying and verifying real-time systems. In Proc. of the 10th IEEE Workshop on Real-Time
Operating Systems and Software, New York. IEEE, 1993.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: a case study in formal verification
of real-time systems. In Proc. of Real-Time Systems Symp., San Juan, Puerto Rico. IEEE, 1994.

C. Heitmeyer and N. Lynch. Formal verification of real-time systems using timed automata. In
C. Heitmeyer and D. Mandprioli, editors, Formal Methods for Real-Time Computing, pages 83—106.
John Wiley & Sons, 1996. In series: ” Trends in Software”, vol. 5, Series Editor: B. Krishnamurthy.

N. Shankar. Verification of real-time systems using PVS. In Proc. 5th International Computer
Aided Verification Conference, pages 280-291, 1993.

V. Weispfenning. Mixed real-integer linear quantifier elimination. In Proc. of the 1999 Int. Symp.
on Symbolic and Algebraic Computations (ISSAC’99), pages 129-136. ACM Press, 1999.

