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Abstract. We present a new technique to prove termination of Term Rewriting
Systems, with full automation. A crucial task in this context is to find suitable
well-founded orderings. A popular approach consists in interpreting terms into
a domain equipped with an adequate well-founded ordering. In addition to the
usual interpretations: natural numbers or polynomials over integer/rational num-
bers, the recently introduced matrix based interpretations have proved to be very
efficient regarding termination of string rewriting and of term rewriting. In this
spirit we propose to interpret terms as polynomials over integer matrices. De-
signed for term rewriting, our generalisation subsumes previous approaches al-
lowing for more orderings without increasing the search space. Thus it performs
better than the original version. Another advantage is that, interpreting terms to
actual polynomials of matrices, it opens the way to matrix non linear interpreta-
tions. This result is implemented in the CiME3 rewriting toolkit.

1 Introduction

The property of termination, well-known to be undecidable, is fundamental in many as-
pects of computer science and logic. It is crucial in the proof of programs correctness, it
underlies induction proofs, etc. Despite its non-decidability, many heuristics have been
proposed to provide automation for termination proofs. In particular, many heuristics
have been defined in the framework of term rewriting systems (TRS). All of them re-
quire, possibly after several transformations of the initial termination problem, to search
a well-founded ordering satisfying some properties. Among the different kinds of order-
ings, polynomial interpretations [19, 4, 6] and recursive path ordering [8] are the most
used.

More recently matrix interpretation introduced in the context of string rewriting
[16] and adapted to term rewriting system by Endrullis et al. in [11] has proved to
be very efficient. They interpret term into vectors associating to each symbol a linear
mapping with matrix coefficients. We propose a generalization of this method inter-
preting term into matrix and associating to each symbol an actual matrix polynomial.
Our generalization subsumes the previous methods and allows for more matrices and
more orderings. In particular it allows for more systems to be proved to be terminating
without increasing the bounds for coefficients or the size of matrices.

Due to the monotonicity requirement for interpretations, the original matrix inter-
pretations are restricted to matrices with a strictly positive upper left coefficient, and the
associated strict ordering only considers the upper coefficient on vectors. We propose
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weaker limitation still preserving monotonicity. We require for each matrices to have
a fixed sub-matrix with no null columns. The strict ordering only consider coefficients
corresponding to this sub-matrix. In this framework the original matrix interpretation is
a particular case where the sub-matrix is reduced to the upper left coefficients.

Section 2 recalls preliminary notions on term rewriting systems, termination crite-
ria, usual orderings and presents the matrix interpretation. It also introduces our model
of presentation of termination proof as an inference tree [5]. Section 3 presents the
extension we propose and the proof of its correctness. Section 4 describes the proof
search and Section 5 presents severals examples. Section 6 illustrate the efficiency of
our method on the termination problems database (TPDB) and show how it improves
previous methods. Finally we present future work and conclude in Section 7.

2 Preliminaries

2.1 Term rewriting systems

We assume that the reader is familiar with basic concepts of term rewriting [9, 3] and
termination. We recall the usual notions, and give our notations.
Terms— A signatureΣ is a finite set of symbols with fixed arities. LetX be a countable
set of variables; T (Σ,X) denotes the set of finite terms onΣ andX .Λ(t) is the symbol
at the root position in term t. We write t|p for the subterm of t at position p and t[u]p for
term t where t|p is replaced by u. Substitutions are mappings from variables to terms
and tσ denotes the application of a substitution σ to a term t.
Monotonicity— A function f : Dn → D on a domain D is monotonic with respect
to a relation R on D iff ∀d1, d2 ∈ D,∀1 ≤ i ≤ n : ∀a1, . . . ai−1, ai+1, . . . , an ∈
D, d1 R d2 ⇒ f(a1, . . . , ai−1, d1, ai+1, . . . , an) R f(a1, . . . , ai−1, d2, ai+1, . . . , an).
We say that a relation on terms R is monotonic if all function symbols are monotonic
with respect to R.
Rewriting— A term rewriting system (TRS for short) over a signature Σ is a set S of
rewrite rules l → r with l, r ∈ T (Σ,X). In this work we only consider finite systems.
A TRS S defines a monotonic relation →S closed under substitution (aka a rewrite
relation) in the following way: s→S t (s reduces to t) if there is a position p such that
s|p = lσ and t = s[rσ]p for a rule l → r ∈ S and a substitution σ. We shall omit
systems and positions that are clear from the context. We denote the reflexive-transitive
closure of a relation→ by→?. Symbols occurring at root position in the left-hand sides
of rules in S are said to be defined, the others are said to be constructors. We denote
→1 .→2 the relation defined by x→1 .→2 y iff ∃z, x→1 z →2 y where→1 and→2

are two relations.
Ordering— Termination proofs usually make use of orderings and ordering pairs [18].
We use a slightly restricted definition of ordering pair but it does not interfere with the
topic of this work. An ordering pair is a pair (≥, >) of relations over T (F , X) such
that: 1) ≥ is a quasi-ordering, i.e. reflexive and transitive, 2) > is a strict ordering, i.e.
irreflexive and transitive, and 3) ≥ ·> = >.

An ordering > is well-founded (denoted by WF(>)) if there is no infinite strictly
decreasing sequence t1 > t2 > . . . . An ordering pair (≥, >) is well-founded (denoted

2



by WF(≥, >) if its strict ordering is well-founded. An ordering < is stable by substitu-
tion if ∀σ∀t∀u, t < u ⇒ tσ < uσ. An ordering pair is stable if > and ≥ are stable by
substitution. If a strict ordering > is monotonic we call it strictly monotonic (denoted
SM(>)). An ordering pair (≥, >) is weakly monotonic (denoted by WM(≥, >) if ≥ is
monotonic and strictly monotonic(denoted by SM(≥, >)) if > is monotonic.
Termination— A term is S-strongly normalizable if it cannot reduce infinitely many
times for→S . A rewrite relation→S terminates if any term is S-strongly normalizable,
which we denote SN(→S). In such case we may say that S terminates. A termination
criterion due to Manna and Ness [3] states that it is sufficient to find a stable and well-
founded strictly monotonic ordering > such that for all rule l → r ∈ S, l > r. This is
stated in the rule MN below.

Moreover, it is also well known that the lexicographic combination of two well-
founded relations is well-founded. This is stated in the rule LEX below. An effective
termination criterion using this property is described in [13]. It allows to prove the so-
called relative termination of a relation of the form →∗S1

. →S2 by finding a strictly
monotonic, stable and well-founded ordering pair (≥, > ) for which all rules of S1

decrease for ≥ and all rules of S2 decrease for >. This is stated in the rule LEXAX

below.
Dependency pairs— The set of unmarked dependency pairs [2] of a TRS S, denoted
DP(S) is defined as {〈u, v〉 | u→ t ∈ S and t|p = v and Λ(v) is defined}. Let D be a
set of dependency pairs, a dependency chain in D is a sequence of dependency pairs

〈ui, vi〉 with a substitution σ such that ∀i, viσ
6=Λ ?−−−→
S

ui+1σ. Remark that to enhance

this technique, implementations may distinguish the root symbols of dependency pairs
(by means of marks). We will omit the details of this technique as it is not crucial in

this work. Given a TRS S and a set of dependency pairs D , s
6=Λ ?−−−→
S

uσ
Λ−−−−−→

〈u,v〉∈D
vσ ≡

t is denoted by s�D,S t. The main theorem of dependency pairs of [2] is the following:
Let S be a TRS, �DP(S),S terminates if and only if→S terminates. This is stated in
the inference rule DP below. An effective technique for proving that �D,S terminates
consists in discovering a stable and well-founded weakly monotonic ordering pair (≥
, >) for which S ⊆≥ and D ⊆>. This is stated in the rule DPAX below.
Termination proofs— The algorithms of an automated termination prover is usually
presented as popularised by the APROVE processors [15]. It transforms recursively
problems into equivalent sets of sub-problems until each sub-problem can be directly
solved by a suitable well-founded ordering (pair). We call criterion a transformation
of a well-foundation problem p into a set of new problems p1 . . . pn such that p is
well-founded iff p1 . . . pn are. Following the idea introduced in [5, 7] we model a ter-
mination proof by an inference tree where inference rules are criteria possibly guarded
by a parameter (an ordering) and conditions. Guard conditions are properties that are
not proved by inference trees but must be checked when applying rules. The termina-
tion criteria described above are summarized by the rules below1. Rules MN, LEXAX

and DPAX are axioms of the inference system. In automated termination provers, these
orderings are typically found by constraint solvers. In particular, term interpretation is

1 Refer to [7] for a detailed presentation of more criteria in a similar framework
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a well-known method to define such orderings.

MN(>)
SN(→S)

WF(>) ∧ SM(>)
∧∀l→ r ∈ S, l > r

LEX
SN(→S1) SN(→∗S1

.→S2)
SN(→S1∪S2)

LEXAX (≥, >)
SN(→∗S1

.→S2)

WF(≥, >) SM(≥, >)
∀l→ r ∈ S2, l > r
∀l→ r ∈ S1, l ≥ r

DP
SN(�DP (S),S)

SN(→S)
DPAX (≥, >)

SN(�D,S)

WF(≥, >) WM(≥, >)
∀〈l, r〉 ∈ D , l > r
∀l→ r ∈ S, r ≥ l

2.2 Orderings by Interpretation

As explained in section above, a crucial task in termination proofs is to find strictly or
weakly monotonic ordering pairs. In this section we describe the general framework of
homomorphic interpretations which allows for both. All the following results are well
known and can be found in [14, 8, 3]. In the sequel we suppose a non empty set D
(domain), a quasi-ordering ≥D on D, and >D = ≥D − ≤D. Therefore (≥D, >D) is
an ordering pair. The following definitions and results are well known:

Definition 2.2.1. A valuation function is a function v : X → D from variables to D.

Definition 2.2.2. A homomorphic interpretation ϕ is a function that takes a symbol
f and returns a function [f ]ϕ : Dn → D, where n is the arity of f . We define
the homomorphic interpretation ϕ(t) of a (possibly non-closed) term t as a function
from valuation functions to D by induction on t as follows: ϕ(x)(v) = v(x) and
ϕ(f(t1, . . . , tn))(v) = [f ]ϕ(ϕ(t1)(v), . . . , ϕ(tn)(v)).

Definition 2.2.3. We define the ordering pair (�ϕ,�ϕ) on terms by: s �ϕ t iff ∀v ∈
(X → D), ϕ(s)(v) ≥D ϕ(t)(v) and s �ϕ t iff ∀v ∈ (X → D), ϕ(s)(v) >D ϕ(t)(v).

Theorem 2.2.1. (�ϕ,�ϕ) is stable, and well-founded if (≥D, >D) is.

Theorem 2.2.2. If [f ]ϕ is monotonic with respect to >D (respectively ≥D), then (�ϕ
,�ϕ) is strictly monotonic (respectively weakly monotonic).

2.3 Matrix interpretation

The main idea of matrix interpretation of [11] is to define homomorphic interpretations
suitable to apply rules MN, LEXAX(strictly monotonic), and DPAX (weakly monotonic)
by interpreting terms as vectors (D = Nd) using linear mappings represented by poly-
nomials with matrix coefficients. The ordering pair on Nd, that we note (≥Nd , >Nd)
is defined as follows: (ui) ≥Nd (vi) iff ∀i, ui ≥N viand (ui) >Nd (vi) iff ∀i, ui ≥N
vi and u1 >N v1. As homomorphic interpretations defined by matrix polynomials may
not be monotonic, Endrullis et alf [11] propose a restriction on the form of vectors and
matrices to ensure strict monotonicity: the upper-left coefficient of vectors and matrices
must be strictly positive.

In the following we define a family of interpretations parmetrized by the set of
coefficients considered by the strict ordering. We adapt the restriction accordingly.
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3 Generalized matrix interpretation

We use polynomials with matrix constants instead of vectors (D = Nd×d). This cor-
responds to the usual notion of polynomials where constants and coefficients have the
same type. However all the following results and proofs are applicable to interpretations
as defined in [11].

We define in the following matrix interpretation as homomorphic interpretations
as defined in Section 2.2. First we define the ordering (family) (≥Nd×d , >ENd×d) on the
domain, then we define the form of an interpretation, finally we prove in which cases
interpretations are weakly and strictly monotonic.

3.1 The ordering

We define a family of orderings (≥Nd×d , >ENd×d) parametrized by the set E ⊂ N of
column and line numbers that can be considered for strict comparison between matrices
(the large comparison being on all coefficients).

Definition 3.1.1. We define the orderings ≥Nd×d and >ENd×d on Nd×d as follows: Let
m,m′ ∈ Nd×d and E ⊆ {1, ..., d}, m ≥Nd×d m′ ⇐⇒ ∀i, k ∈ [1..d],mik ≥N m′ik and
m >ENd×d m

′ ⇐⇒ ∀i, k ∈ [1..d],mik ≥N m
′
ik ∧ ∃i, j ∈ E,mij >N m

′
ij

Remark 1. By definition, if E ⊂ E′ then >ENd×d⊂>E
′

Nd×d .

Lemma 3.1.1. For any E, (≥Nd×d , >ENd×d) is a well-founded ordering pair.

Proof. >ENd×d is well-founded because it is included in the ordering >Σ defined by
m >Σ m′ ⇐⇒

∑
1≤i,j≤dmik >N

∑
1≤ik≤dmik which is well-founded. Moreover

≥Nd×d . >ENd×d⊆>ENd×d follows from ≥N . >N=>N on each coefficient. ut

3.2 The interpretation

We now define the homomorphic interpretation of a symbol f ∈ Σ by a matrix linear
polynomial, as explained in definition 2.2.2.

Definition 3.2.1 (matrix interpretation). Given a signature Σ and a dimension d ∈
N, a matrix interpretation ϕ is a homomorphic interpretation that takes a symbol f of
arity n and returns a function of the form: [f ]ϕ(m1, . . . ,mn) = F1m1 + · · ·+Fnmn+
Fn+1 where Fi ∈ Nd×d and m1, . . . ,mn take their values in Nd×d.

Definition 3.2.2 (E-interpretation). An E-interpretation is a matrix interpretation
where the ordering pair used on matrices is (≥Nd×d , >ENd×d).

Definition 3.2.3. The ordering pair (�ϕ,�Eϕ ) is defined from (≥Nd×d , >ENd×d) as ex-
plained in definitions 2.2.3 (with D = Nd×d).

Lemma 3.2.1. Given an interpretation ϕ, The ordering pair (�ϕ,�Eϕ ) is (1) stable by
substitution and (2) well-founded.
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Proof. (1) is proved by theorem 2.2.1 and (2) by theorems 2.2.1 and 3.1.1. ut

The following lemma shows that homomorphic interpretations are weakly mono-
tonic with respect to (�ϕ,�Eϕ ).

Lemma 3.2.2. Let ϕ be a matrix interpretation. Then (�ϕ,�Eϕ ) is weakly monotonic.

Proof. By lemma 2.2.2 it is sufficient to prove that for all symbol f , [f ]ϕ is monotonic
with respect to ≥Nd×d . Let f ∈ Σ of arity n and 1 ≤ k ≤ n. Let x, y, a1 . . . an ∈
Nd×d s.t. x ≥Nd×d y, let us show that [f ]ϕ(a1, ..., ak−1, x, ..., an) ≥Nd×d

[f ]ϕ(a1, ..., ak−1, y, ..., an). By definition there exists n+ 1 matrices Fi such that:

[f ]ϕ(a1, ..., ak−1, x, ..., an) = F1a1 + ...+ Fkx+ ...+ Fnan + Fn+1

= [f ]ϕ(...,0, ...) + Fkx
[f ]ϕ(a1, ..., ak−1, y, ..., an) = F1a1 + ...+ Fky + ...+ Fnan + Fn+1

= [f ]ϕ(...,0, ...) + Fky

Since the (matrix × matrix) product is monotonic with respect to ≥Nd×d , Fkx ≥Nd×d

Fky and thus [f ]ϕ(a1, ..., ak−1, x, ..., an) ≥Nd×d [f ]ϕ(a1, ..., ak−1, y, ..., an). ut

Remark 2. The corollary of this lemma is that all matrix interpretations are suitable to
define weakly monotonic orderings on terms, whatever E is. Therefore according to
remark 1 we will always chose the maximal E = {1, . . . , d} when searching weakly
monotonic ordering pairs.

Remark 3. Since the (matrix×matrix) product is not monotonic with respect to>ENd×d ,
there exists some E-interpretation such that (�ϕ,�Eϕ ) is not strictly monotonic.

Therefore we define the set ofE-compatible matrices, parametrized byE, on which
(matrix × matrix) product is monotonic with respect to >ENd×d .

Definition 3.2.4. Let E ⊆ {1, ..., d}, we call an E-position in a matrix m ∈ Nd×d a
position mij where i ∈ E and j ∈ E. We also call E-columns and E-lines the sub-
columns and sub-lines of E-positions.

Definition 3.2.5 (E-compatible matrices). Let E ⊆ {1, ..., d}, we say that a matrix
m ∈ Nd×d is E-compatible if and only if each E-column is non null, that is at least one
E-position on each E-column is non null.

For example the matrix


0 1 0 0
0 0 0 0
2 3 1 0
0 2 1 0

 is {1, 3}-compatible whereas


1 1 0 0
0 0 0 0
2 3 0 0
0 2 1 0

 is not.

Definition 3.2.6 (E-compatible interpretation). Let ϕ be a matrix interpretation. We
say that ϕ is E-compatible if for all symbol f s. t. [f ]ϕ(m1, . . . ,mn) = F1m1 + · · ·+
Fnmn + Fn+1, the matrices F1 . . . Fn are E-compatible. Notice that Fn+1 does not
need to be E-compatible.
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The following lemma shows that E-compatible homomorphic interpretations are
strictly monotonic with respect to (�ϕ,�Eϕ ).

Lemma 3.2.3. Let ϕ be an E-compatible interpretation. Then (�ϕ,�Eϕ ) is strictly
monotonic.

Proof. We proceed as above: By lemma 2.2.2 it is sufficient to prove that the following
property holds for all symbol f (of arity n):

∀1 ≤ k ≤ n,∀a1 . . . ai−1, ai+1 . . . an ∈ Nd×d,∀x, y ∈ Nd×d, x >ENd×d y →
[f ](a1, . . . , ak−1, x, ak+1, . . . , an) >ENd×d [f ](a1, . . . , ak−1, y, ak+1, . . . , an)

By definition there exists n E-compatible matrices F1 . . . Fn and a matrix Fn+1 s.t.:

[f ](a1..., x, ...an) = F1m1 + ...+ Fkx+ ...+ Fnmn + Fn+1 = [f ](...,0, ...) + Fkx
[f ](a1..., y, ...an) = F1m1 + ...+ Fky + ...+ Fnmn + Fn+1 = [f ](...,0, ...) + Fky

Therefore it is sufficient to prove that ∀1 ≤ k ≤ n,∀x, y ∈ Nd×d, x >ENd×d y =⇒
Fkx >ENd×d Fky. Since the product (E compatible matrix) × (matrix) is monotonic
with respect to >ENd×d , the statement of the lemma follows. ut

The corollary of this lemma is that when anE-interpretation isE-compatible, it can
be used to build a strictly monotonic ordering pair on terms.

3.3 Proving termination

To prove termination of a given TRS R using rules MN, LEXAX or DPAX, we need to
compare matrix interpretations of the left hand side and the right hand side of rules with
�ϕ. These interpretations can be computed by developing polynomials, as stated by the
two following lemmas:

Lemma 3.3.1. Let ϕ be a matrix interpretation and t, a term with n free variables
x1 . . . xn. There exists n + 1 matrices M1 . . .Mn+1 such that ϕ(t)(v) = M1v(x1) +
· · ·+Mnv(xn) +Mn+1.

Proof. By induction on t. If t is a variable x, then by definition 2.2.2 the property
holds: ϕ(x)(v) = v(x). If t = f(t1, . . . , tm) then by definition 2.2.2: ϕ(t)(v) =
[f ]ϕ(ϕ(t1)(v), . . . , ϕ(tm)(v)) = F1(ϕ(t1)(v)) + · · · + Fm(ϕ(tm)(v)) + Fm+1

where by induction hypothesis each ϕ(ti)(v) is itself a linear polynomial of the
form

∑
jMijv(xj) + Min+1 . Thus ϕ(t)(v) is equal to (

∑
k FkMk1) v(x1) + · · · +

(
∑
k FkMkn

) v(xn) +
(∑

k FkMkn+1

)
+ Fm+1. ut

Lemma 3.3.2. Let ϕ be an E-compatible homomorphic interpretation and t a term
containing n variables x1 . . . xn. There exists a set of n E-compatible matrices
M1 . . .Mn and a matrixMn+1 such thatϕ(t)(v) = M1v(x1)+· · ·+Mnv(xn)+Mn+1.

Proof. We proceed by the same induction as above and in equation above F1 . . . Fn
are E-compatible matrices by hypothesis, and Mk1 . . .Mkn

are E-compatible matrices
by induction hypothesis. Since matrix addition and product are stable on E-compatible
matrices we can conclude that the

∑
k FkMki are E-compatible matrices in equation

above. ut
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Therefore in order to check that rules or dependency pairs are decreasing, we must
compare matrix linear polynomials, which is decidable:

Lemma 3.3.3. Let t and u be terms such that ϕ(t)(v) = L1v(x1) + · · ·+ Lkv(xk) +
Lk+1 and ϕ(u)(v) = R1v(x1)+· · ·+Rkv(xk)+Rk+1. If ∀1 ≤ i ≤ k+1, Li ≥Nd×d Ri
then ϕ(t)(v) ≥Nd×d ϕ(u)(v) for any valuation v : Nk → N. If moreover Lk+1 >

E
Nd×d

Rk+1, then ϕ(t)(v) >ENd×d ϕ(u)(v) for any valuation v : Nk → N.

Proof. Let v be a valuation. Since ∀1 ≤ i ≤ k + 1, Li ≥Nd×d Ri, the matrix m =
ϕ(t)(v)−ϕ(u)(v) is such that m =

∑k
i=1 ((Li −Ri)v(xi)) +Lk+1 −Rk+1 ≥Nd×d 0

which proves the first property. If Lk+1 >
E
Nd×d Rk+1 then moreover we have m ≥Nd×d

Lk+1 −Rk+1 >
E
Nd×d 0. ut

4 Proof search

In this section we describe the adaptation of the method of [11] for generating ter-
mination proofs. The main differences are the choice of an E, the treatment of E-
compatibility and the ordering constraints using E.

Due to the symmetrical shape of our orderings with respect to matrices, it is clear
that forE andE′ having the same cardinality, if there exists anE-interpretation satisfy-
ing conditions of lemma 3.3.3, then there exists anE′-interpretation satisfying the same
conditions, obtained by applying to all matrices the same column and line permutation.
Therefore it is enough to try each E of the form {1, . . . , n} where 2 ≤ n ≤ d.

4.1 Manna and Ness Criterion

In order to prove the termination of a given TRS S using Rule MN, we need to find an
E and an E-compatible matrix interpretation ϕ such that ∀l → r ∈ S, ϕ(l) �Eϕ ϕ(r).
This amounts to solving constraints on matrix coefficients. More precisely, for each rule
l → r ∈ S, where ϕ(l) =

∑n
1 Lixi + Ln+1 and ϕ(r) =

∑n
1 Rixi + Rn+1 (If r has

less variables than l, the corresponding Ri are null matrices), we have the following
constraint: ∀1 ≤ i ≤ n,Li ≥Nd×d Ri and Ln+1 >

E
Nd×d Rn+1. The E-compatibility of

interpretation are also expressed as constraints on E-positions.
We try to solve these constraints using a SAT solver, which is common practice [12,

1],[11]. In order to call the SAT solver once, we encode the constraints corresponding
to all desired sizes of E in one disjunctive formula.

4.2 Lexicographic composition criterion

In order to use the lexicographic criteria we need to split the TRS S into two systems
S1 and S2, such that we can apply rule LEXAX to prove SN(→∗1 . →2). Then we are
left with the property SN(S1) that can be proved by any other criterion recursively.

LEX

...
SN(→S1)

LEXAX (�ϕ,�E
ϕ )

SN(→∗S1
.→S2)

WF(�ϕ,�E
ϕ ) SM(�ϕ,�E

ϕ )

∀l→ r ∈ S2, l �E
ϕ r

∀l→ r ∈ S1, l �ϕ r

SN(→S1∪S2)
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In order to find ϕ we first fix E then we solve the following constraint: ∀l → r ∈
S, l �ϕ r ∧ ∃l→ r ∈ S, l �Eϕ r. The existential part of this property may be expressed
by a disjunction on rules of S. If a solution is found, then S2 is the set of strictly
decreasing rules and S1 the remaining ones. As previously we can try several E.

4.3 Dependency pairs criterion

In order to use the dependency pair criterion, we first need to apply DP then find an
matrix interpretation ϕ satisfying the condition of Rule DPAX. This is done by similar
techniques than above taking the maximal E as explained in remark 2.

4.4 Comparison with previous notions of matrix interpretation

The interpretation defined in [11] almost corresponds to one member of our family
of interpretations, namely {1}-interpretations. To be precise it corresponds to {1}-
interpretations where constant coefficients of polynomials are vectors instead of ma-
trices. In the following we analyze the differences between {1}-interpretations and E-
interpretations where |E| > 1 in the case of each criterion. For the symmetry reasons
given in Section 4, we focus on {1, . . . , k}-interpretations.

MN and LEXAX— In the strict monotonic setting, when E 6= {1} matrix interpre-
tations do not solve the same sets of problems. This is due to several facts. On one

hand a greater E makes more matrices comparable. For instance
(

1 0
1 1

)
and

(
1 0
0 1

)
are comparable with >{1,2}N2×2 but not with >{1}N2×2 . Therefore the comparison of constant
coefficient of polynomials is more powerful when E is greater.

On the other hand strict monotonicity constraints (for non constant coefficients) are
such that the sets of allowed matrices are different when E changes. More precisely
there is no inclusion relation between them. For example if f is a unary symbol, then

[f ](m) =
(

0 0
1 1

)
m +

(
1 0
1 0

)
is {1, 2}-compatible and not {1}-compatible, whereas

[f ](m) =
(

1 0
1 0

)
m+

(
1 0
1 0

)
is {1}-compatible and not {1, 2}-compatible. Therefore

the set of ordering problems solved by different sizes ofE are usually different. For this
reason an implementation should try all possible size for E. In practice in our prototype
CiME3 this is configurable.

DPAX— In the weak monotonic setting, there is no monotonicity constraint on matrices,
therefore the set of allowed matrices is the same whatever E is. Therefore the maximal
E = {1, . . . , n} is always more powerful because, as said above, it allows for more
matrices to be compared strictly.

However this statement is not true anymore when trying to remove only one pair
〈l, r〉 of a set of dependency pairs D . This is done (for example in the graph refinement)
by finding a weakly monotonic well-founded ordering pair (≥, >) such that: l > r and
∀〈t, u〉 ∈ D , t ≥ u and ∀t → u ∈ D , t ≥ u. In that case, the fact that only one
pair needs to be ordered strictly implies that if a solution exists with any non empty E,
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then by the adequate permutation of columns and lines, we can obtain an interpretation
which also works for E = {1}. Therefore for example the choice of E is not critical
anymore when using the graph refinement, as shown in the results of section 6. How-
ever, a greater E may lead to shorter proofs, which is interesting in the framework of
termination certificate (see Section 7).

As a conclusion, we see that the best strategy is to try all possible sizes ofE for MN
and LEX, and only the maximal E for DP.

5 Examples

In this section we show examples of rewrite systems where {1, 2}-interpretations are
used to prove termination, whereas {1}-interpretations cannot. In all these examples,
matrix coefficients are forced to be 0 or 1. It is worth noticing that some of these exam-
ples can be solved by {1}-interpretations if the bound on matrix coefficients is higher,
but at a price of a greater search space.
LEX and LEXAX— Consider the following rewrite system: {(1) plus(plus(x, y), z)→
plus(x, plus(y, z)); (2) times(x, s(y)) → plus(x, times(y, x))}. Rule (2) can be re-
moved as explained in section 4.2 by the following interpretation:

[plus]ϕ(x, y) =
(

1 0
0 1

)
x+

(
1 0
0 1

)
y +

(
1 0
0 0

)
[s]ϕ(x) =

(
1 1
1 1

)
x+

(
1 1
1 1

)
[times]ϕ(x, y) =

(
1 1
1 1

)
x+

(
0 1
1 0

)
y

and rule (1) by: [plus]ϕ(x, y) =
(

1 0
0 1

)
y +

(
1 1
0 1

)
x+

(
0 1
1 1

)
DP— Consider the system:f(0, x) → f(s(x), x); f(x, s(z)) → s(f(0, z)) which
leads to the following dependency pairs: 〈f(x, s(z)), f(0, z)〉 and 〈f(0, x), f(s(x), x)〉.
There is no matrix {1}-interpretation (with coefficients bound ≤ 1) such that all
pairs are strictly decreasing and all rule weakly decreasing. However there is a {1, 2}-
interpretation (DPAX):

[f ]ϕ(x, y) =
(

0 0
0 1

)
x+

(
1 0
1 0

)
y [s]ϕ(x) =

(
1 0
0 0

)
x+

(
0 1
0 0

)
[0]ϕ() =

(
1 1
0 1

)

6 Results

The benchmarks were made with a prototype of CiME on the 1436 problems of the ter-
mination problems database (TPDB) (category standard TRS termination, 2008-11-04
termination competition). Ordering constraints are solved by giving an upper bound b to
matrix coefficients and then by translation to the SAT solver minisat2 [10]. Each call
to the SAT solver is limited to 100s and the overall timeout is 300s for each problem.
The first table compares the number of problems solved using matrix 2×2 interpreta-
tions only with different E and b. The tested criteria are: MN, LEX, DP, DPG (graph
refinement of dependency pairs), LGST (LEX then graph and subterm refinements).
The latter being close to the best heuristic of CiME. The second table shows the results
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using the strategy LGST and the usual combination of orderings of CiME (linear poly-
nomial, RPO, simple polynomial) followed by matrix interpretations (2×2 and 3×3).
This shows how our matrix interpretations increase the power of the full system2.

Ordering = Matrix interpretation only, matrix size = 2
Criterion MN LEX DP DPG LGST
Bounds 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
E={1} 88 167 186 230 278 285 266 345 358 433 448 452 466 479 482
E={1,2} +41,-0 +14,-0 +6,-6 +26,-0 +39,-2 +36,-3 +63,-0 +11,-1 +3,-2 +0,-0 +0,-6 +0,-12 +14,-0 +30,-11 +30,-7

Ordering = usual+Matrix interpretation
Criterion LGST (mat. 2×2) LGST (mat. 3×3)
Bounds 1 2 3 1 2 3
E={1} 576 583 586 592 588 587
E={1, 2} +5,-0 +12,-0 +16,-1 +3,-0 +7,-10 +10,-10
E={1, 2, 3} N/A N/A N/A +7,-3 +13,-19 +10,-17

A cell containing +n,−m sums up the comparison with E={1}: n new problems
solved, m problems not solved anymore because of timeouts. Timeouts are caused by
larger E leading to more complex constraints, despite the search space is the same. Our
benchmarks showed an average overhead time of 20 to 30%. This explains why the
current state of our implementation does not always reflect the expected improvement
of our interpretations, in particular with 3×3 matrices. Except those timeouts, larger E
is, as expected, always more powerful excepted in the DPG column (see section 4.4).

7 Conclusion and Future work

Our approach generalizes the original matrix interpretations. It should naturally ex-
tend to other refinement of matrix interpretations such as arctic interpretations (where
the usual plus/times operations are generalized to an arbitrary semi-ring [17]). Our ap-
proach using true polynomials over matrices, instead of mixing matrices and vectors,
may allow for matrix non linear polynomials. Another point is that when discovering
a solution our implementation (an early prototype of CiME-3) produces a proof trace
which we translate into a proof certificate[5] for verification. We are currently working
on adapting our proofs to our matrix interpretations.
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