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Abstract

Recent advances in Distributed Computing highlight models and algorithms for au-
tonomous swarms of mobile robots that self-organise and cooperate to solve global ob-
jectives. The overwhelming majority of works so far considers handmade algorithms
and proofs of correctness.

This paper builds upon a previously proposed formal framework to certify the cor-
rectness of impossibility results regarding distributed algorithms that are dedicated to
autonomous mobile robots evolving in a continuous space. As a case study, we con-
sider the problem of gathering all robots at a particular location, not known beforehand.
A fundamental (but not yet formally certified) result, due to Suzuki and Yamashita,
states that this simple task is impossible for two robots executing deterministic code
and initially located at distinct positions. Not only do we obtain a certified proof of the
original impossibility result, we also get the more general impossibility of gathering
with an even number of robots, when any two robots are possibly initially at the same
exact location.

Keywords: mobile autonomous robots, gathering, impossibility results, proof
certification

1. Introduction

The Distributed Computing community, motivated by the variety of tasks that can
be performed by autonomous robots and their complexity, started recently to propose
formal models for these systems, and to design and prove protocols in these models.
The seminal paper by Suzuki & Yamashita [1] proposes a robot model, two execution
models, and several algorithms (with associated correctness proofs) for gathering and
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scattering a set of robots. In their model, robots are identical and anonymous (they
execute the same algorithm and they cannot be distinguished using their appearance),
robots are oblivious (they have no memory of their past actions) and they have neither
a common sense of direction, nor a common handedness (chirality). Furthermore,
robots do not communicate in any explicit way. They have however the ability to
sense the environment and see the position of the other robots. Also, robots execute
three-phase cycles: Look, Compute and Move. During the Look phase, robots take
a snapshot of the other robots’ positions. The collected information is used in the
Compute phase in which robots decide to move or to stay idle. In the Move phase,
robots may move to a new location computed in the previous phase. The two execution
models are denoted (using recent taxonomy [2]) FSYNC, for fully synchronous, and
SSYNC, for semi-synchronous. In the SSYNC model, an arbitrary non-empty subset
of robots execute the three phases synchronously and atomically. In the FSYNC model,
all robots execute the three phases synchronously.

One of the benchmarking [2] problems for mobile robots is that of Gathering. Re-
gardless of their initial positions, robots have to move in such a way that they eventually
stand on the same location, not known beforehand, and remain there thereafter. A key
impossibility result for gathering is due to Suzuki & Yamashita [1]: two robots initially
located at distinct positions may never gather if they execute a deterministic algorithm.
This result is fundamental because any weakening of the initial system hypotheses (e.g.
anonymity, obliviousness, common sense of direction) makes the problem solvable [3].

Related Works. Most related to our concern are recent approaches to mechanising
the algorithm design or the proof of correctness in the context of autonomous mo-
bile robots [4, 5, 6, 7, 8]. Model-checking proved useful to find bugs in existing lit-
erature [6] and assess formally published algorithms [5, 6], in a simpler setting where
robots evolve in a discrete space where the number of possible positions is finite. How-
ever, no method exists to derive impossibility results using model checking. Automatic
program synthesis (for the problem of perpetual exclusive exploration in a ring-shaped
discrete space) is due to Bonnet et al. [4], and could be used to prove impossibility
in a particular setting (by a side effect, if no algorithm can be generated), yet it ex-
hibits important limitations for studying the gathering problem we focus on here. First,
the authors consider only the discrete space setting (with a ring shape). Second, their
approach is brute force (it generates every possible algorithm in a particular setting,
regardless of the problem to solve). Third, the generator is limited to configurations
where (i) a location can only host one robot (so, gathering cannot be expressed), and
(ii) no symmetry appears (which eludes all interesting cases for studying gathering).
The approach was recently refined by Millet et al. [8] for the problem of gathering in
a discrete ring network. Yet, the tools used prevent algorithm synthesis for more than
three robots in a (small) fixed size ring. So, none of those approaches is suitable for po-
sitions requiring real numbers, or for establishing results that are valid for any number
of robots and any network size.

Developed for the COQ proof assistant1, the Pactole framework enabled the use

1http://coq.inria.fr
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of high-order logic to certify impossibility results [7] for the problem of convergence:
for any positive ε, robots are required to reach locations that are at most ε apart. Of
course, an algorithm that solves gathering also solves convergence, but the converse is
not true. As convergence is solvable in the usual setting, the impossibility results that
can be obtained involve Byzantine robots (that is, robots that may exhibit arbitrary, and
possibly malicious, behaviours). The impossibility results obtained in previous work
using Coq [7] show that convergence is impossible if more than half of the robots are
Byzantine in the FSYNC model (or more that one third of the robots are Byzantine in
the SSYNC model). These results cannot be directly reused for the case of “Gathering
Impossibility” for several reasons. First, they involve the active participation of Byzan-
tine robots to destabilise the correct ones, while the gathering problem involves only
correct robots. Second, the possible positions robots may occupy are encoded using
rational numbers, while positions in the original model actually use real numbers.

Our Contribution. In this paper, we consider the construction of a formal proof for
the fundamental impossibility result of Suzuki and Yamashita [1], for two robots ex-
ecuting deterministic code and initially located at distinct positions. Our proof builds
upon the previously initiated Pactole framework [7] to use actual real numbers as loca-
tions instead of rational numbers, and refines the definitions of executions (including
scheduling assumptions) to enable the study of executions involving only correct pro-
cesses. Not only do we obtain a certified proof of the original impossibility result of
Suzuki and Yamashita, we also get the more general impossibility result with an even
number of robots, when any two robots are possibly initially at the same exact location.

2. Preliminaries

2.1. Certification and the COQ proof assistant

To certify results and to guarantee the soundness of theorems, we use the COQ
proof assistant, a Curry-Howard based interactive prover enjoying a trustworthy ker-
nel. The Pactole formal model is thus developed in COQ’s formal language, a very
expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [9]. In this (func-
tional) language, datatypes, objects, algorithms, theorems and proofs can be expressed
in a unified way, as terms. λ-abstraction is denoted fun x:T ⇒ t, and application is
denoted t u. Curry-Howard isomorphism associates proofs and programs, types and
logical propositions. Writing a proof of a theorem in this setting amounts to building
(interactively in most cases but with the help of tactics) a term the type of which corre-
sponds to the theorem statement. As a term is indeed a proof of its type, ensuring the
soundness of a proof thus simply consists in type-checking a λ-term.

COQ has already been successfully employed for various tasks such as the formal-
isation of programming language semantics [10, 11] or mathematical developments as
involved as the 4-colours [12] or Feit-Thompson [13] theorems. Regarding distributed
algorithms, local calculi enjoy a formal model with the COQ library Loco [14].

The reader will find in [15] a very comprehensive overview and good practices with
reference to COQ. Developing a proof in a proof assistant may nonetheless be tedious,
or require expertise from the user. To make this task easier, Pactole proposes a formal
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model, as well as lemmas and theorem, to specify and certify results about networks of
autonomous mobile robots. It is designed to be robust and flexible enough to express
most of the variety of assumptions in robots network, for example with reference to the
considered space: discrete or continuous, bounded or unbounded. . .

We do not expect the reader to be an expert in COQ but of course the specification
of a model for mobile robots in COQ requires some knowledge of the proof assistant.
We want to emphasise that the framework eases the developer’s task. The notations and
definitions given hereafter should be read as the typed functional expressions they are.

The formal model we rely on, as introduced in [7], exceeds our needs with reference
to Byzantine robots, which are irrelevant in the present work. Thus, for the sake of
readability, a few notations have been slightly simplified: the pruned code essentially
deals with taking into account the empty set of Byzantine robots in demonic actions.
The reader is invited to check that the actual code is almost identical.

2.2. The Formal Model

The Pactole model2 has been sketched in [7] to which we refer for further details;
we recall here its main characteristics.

Two important features of COQ are used: a formalism of higher-order, which al-
lows us to quantify over programs, demons, etc., and the possibility to define inductive
and coinductive types [16], so as to express inductive and coinductive datatypes and
properties. Coinductive types are in particular of invaluable help to express in a rather
direct way infinite behaviours, infinite datatypes and properties on them, as we shall
see with demons.

Robots are anonymous, however we need to identify some of them in the proofs.
Thus, we consider given a finite set of identifiers, isomorphic to a segment of N. We
omit this set G (usually inferred by COQ) unless it is necessary to characterise the
number of robots. If needed in the model, we can make sure that names are not used
by the embedded algorithm.

Robots are distributed in space, at places called locations. We define a position as
a function from a set of identifiers to the space of locations. The set of locations we
consider here is the real line R.

Robots compute their target position from the observed configuration of their sib-
lings in the considered space. We also define permutations of robots, that is bijective
applications from G to itself, usually denoted hereafter by Greek letters. Moreover,
any correct robot is supposed to act as any other correct robot in the same context, that
is, with the same perception of the environment. For two real numbers k 6= 0 and t,
a similarity is a function mapping a location x to k × (x − t), denoted [[k, t]]. Real
number k is called the homothetic factor, and −k × t is called the translation factor.
Similarities can be extended to positions, by applying the similarity transform to the
extracted location. This operation will be (abusively) written [[k, t]](p). Similarities are
used as transformations of frames of reference.

For a robot r-idi, a computation takes as an input an entire position p as seen by
r-idi, in its own frame of reference (scale, origin, etc.), and returns a real number li

2Available at http://pactole.lri.fr
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corresponding to a location (the destination point) in the same frame. As the robots are
oblivious in the present context, the scale factor is taken anew at each cycle. Moreover
to avoid any symmetry breaking mechanism based on identifiers, the result of r must
be invariant by permutation of robots. We call robograms the embedded computation
algorithms that fulfil this fundamental property.

Robograms may be naturally defined in a completely abstract manner, without any
concrete code, in our COQ model as follows.

Record robogram := {
algo : position → location ;
AlgoMorph : ∀ p q σ, (q ≡ p ◦ σ-1) → algo p = algo q }.

Demonic actions consist of a function associating to each correct robot a real num-
ber k such that k = 0 and the robot is not activated, or k 6= 0 and the robot is activated
with a scale factor. An actual demon is simply an infinite sequence (stream) of demonic
actions, that is a coinductive object.

Record demonic_action := {frame : G → R}.
CoInductive demon := NextDemon : demonic_action → demon → demon.

Characteristic properties of demons include fairness and synchronous aspects. We
described in [7] how fair, FSYNC, and SSYNC demons could be defined using coin-
ductive types. We show in Section 3 how k-fair demons can be expressed similarly.

Finally, an execution (pi)i∈N from an initial position for (correct) robots p0 and a
demon (locate_byzi, framei)i∈N, is an infinite sequence such that

pi+1(x) =

{
r[[framei(x),gpi(x)]](pi) if framei(x) 6= 0
pi(x) otherwise

It is thus an object of type:

CoInductive execution :=
NextExecution : (G → location) → execution → execution.

Its computation is reflected by a corecursive function execute.

3. Certification of Impossibility

The impossibility result we aim to prove formally is the following:

Theorem 1. It is impossible to achieve the gathering of an even number of oblivious
robots moving on the real line R with SSYNC k-fair demons for all k ≥ 1.

In this section, we specialise and enrich the Pactole model to provide a formal proof
of this theorem. Note that for the sake of readability some notations may be slightly
simplified compared to the actual code, available from http://pactole.lri.fr.

The main idea of the proof is taken from [1] while our premises are different:
we allow for an unbounded number of robots, provided that it is even, and for an
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arbitrary initial position. On the contrary, [1] requires the initial position to have robots
at distinct locations.3

To this goal: (i) we consider robots as points, that is two or more robots can occupy
the same location, thus no constraint is added to the definition of a position, (ii) we
assume robots enjoy strong global multiplicity detectors, the same global position is
thus used for the computations of all robots, (iii) we consider that the travelling time
is negligible, destination points returned by robograms are used directly to determine
new locations, (iv) we consider oblivious robots, that is a new frame is chosen by the
demon for each activation of any robot, (v) we take location to be R, the (axiomatic)
definition of R in the COQ standard library Reals. Note that we are considering an
unbounded continuous space.

3.1. k-Fairness
A demon is said to be k-fair if it is fair and k-bounded, that is such that between two

successive activations of any robot, all other robots can be activated at most k times.
Roughly speaking, k-fairness expresses the ratio between the most active robot and the
less active one, and also avoids the degenerated case of robots not being activated.

Firstly we express the property that, for any two robots g and h, the demon activates
g within the k next activations of h. It consists in three cases referring to which of the
robots are activated in an inital round. Either g is activated (its new frame is non-null)
and we are done; this is case kReset, a base case. Either g is not activated but h is, and
the property will hold for k + 1 if it holds for k for the remainder of the demon (case
kReduce). Last possibility: neither g nor h is activated during this round (both new
frames are null), then the property has to hold in the remainder of the demon, with the
same k, as the activated robots in this round are irrelevant. This is case kStall; should
this case happen indefinitely, Between g h d would not be provable since any proof
of this inductive property has to reach its base case.4

Inductive Between {G} g h (d : demon G) : nat → Prop :=
| kReset : ∀ k, frame (demon_head d) g 6= 0 → Between g h d k
| kReduce : ∀ k, frame (demon_head d) g = 0
→ frame (demon_head d) h 6= 0 → Between g h (demon_tail d) k
→ Between g h d (k + 1)

| kStall : ∀ k, frame (demon_head d) g = 0
→ frame (demon_head d) h = 0 → Between g h (demon_tail d) k
→ Between g h d k.

An infinite demon is thus k-fair, for a certain k, if Between holds for any couple of
robots at any time, that is if the demon is k-fair (for the very same k) from the start and
also for the remainder of the demon. This is a coinductive property:

CoInductive kFair {G} k (d : demon G) :=
AlwayskFair : (∀ g h, Between g h d k) → kFair k (demon_tail d)
→ kFair k d.

3This is why our results are not in contradiction with [1], Theorem 3.4, that exhibits a solution for a
number of robots n ≥ 3.

4The curly brackets around the first argument ({G}) set it as implicit, which allows us to omit it later on.
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Intended as a framework and a library, our formal development provides several
theorems about k-fairness that may prove useful, namely that a k-fair demon is fair,
that if a demon is k-fair, then it is k′-fair for all k′ ≥ k, etc.

3.2. Definition of Success

A robogram is a solution to the Gathering problem if robots reach the same, un-
known beforehand, location within finite time regardless of their initial positions. First
we define the property for a position pos of having all robots at a same location pt.

Definition stacked_at {G} (pos : G → location) (pt : location) :=
∀ r : G, pos r = pt.

Hence there is a gathering point for an execution at some step if for all future execution
steps, the location is the same for all robots. Such an infinite behaviour is a coinductive
property.

CoInductive Gather {G} (pt : location) (e : execution G) :=
Gathering : stacked_at (execution_head e) pt
→ Gather pt (execution_tail e) → Gather pt e.

This situation has to occur eventually, which we thus define as an inductive property.

Inductive WillGather {G} (pt : location) (e : execution G) :=
| Now : Gather pt e → WillGather pt e
| Later : WillGather pt (execution_tail e) → WillGather pt e.

If this holds for a given robogram r and a given demon d from any initial position then
r is a solution to the Gathering problem for d.

Definition solGathering {G} (r : robogram G) (d : demon G) :=
∀ (p : G → location),
∃ pt : location, WillGather pt (execute r d p).

We will prove that with a well chosen demon, even as constrained as a k-fair demon,
there exists an execution where robots are always apart (we prove that this notion is in
contradiction with being a solution). More precisely, there is an execution that keep
half the robots away from the other half; that is: the position is split. In the following,
(G ] G) denotes the union of two disjoint sets isomorphic to the same segment of N,
hence guaranteeing an even number of robots. By construction, an element g of the left
(respectively right) G is denoted inl g (respectively inr g). Moreover, recall that the
location is obtained by application of the position (which is a function) to an identifier.

Definition Split {G} (p : (G ] G) → R) :=
∀ x y : G, p (inl x) 6= p (inr y).

The following coinductive property characterises such an execution:

CoInductive Always_Split {G} (e : execution (G ] G)) :=
CAS : Split (execution_head e)
→ Always_Split (execution_tail e)
→ Always_Split e.
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In fact, the faulty execution we exhibit with this property in the proof leaves a partic-
ular position indefinitely bivalent: with the robots evenly distributed over two distinct
locations only.

Of course, any execution for which this property holds cannot be compatible with
a solution for a non-empty set of robots (of even cardinality).

Theorem Always_Split_no_gathering :
∀ (G : finite) (e : execution (G ] G)),
inhabited G → Always_Split e → ∀ pt, ¬ WillGather pt e.

3.3. The Theorem in COQ

We may now state a formal version of Theorem 1 as follows:

Theorem noGathering : ∀ (G : finite) (r : robogram (G ] G)),
inhabited G
→ ∀ k : nat, (1 <= k)
→ ¬ (∀ d, kFair k d → solGathering r d)

the proof of which amounts to showing that for a non-null even number of robots, any
k and any robogram r there exists a k-fair demon that prevents r to gather all robots.

The proof we formalise is inspired from [1]; it makes use of two demons, one that
is fully synchronous, and one that is 1-fair. Depending on the expected result of the
first move, we use one or the other.

We consider an initial position consisting of two separate towers of the same num-
ber of robots. If the expected first move brings the robots of one tower onto the other
tower, we choose the fully-synchronous demon, which results in switching the loca-
tions of the two towers, thus in obtaining an equivalent position. Otherwise, we choose
the 1-fair demon that will activate only one tower at a time; the towers moving alterna-
tively, a change of frame suffices then to get back to an equivalent position.

Both cases allow us to show that Always_Split holds, thus proving Theorem
noGathering.

4. Remarks and Perspectives

Thanks to the abstraction level of the Pactole framework, setting the space to be R,
thus both unbounded and continuous, is not as complicated as one could imagine; it
emphasises the relevance of a formal proof approach and how it is complementary to
other formal verification techniques. In addition to the syntactical invocation of R and
associated functions, the main change from previous formalisations (that in particular
were dealing with Q) addresses proofs more than specifications, and lies in the fact that
we use axiomatic reals. With such a description of R, there is no computation. Hence
relations between two elements of type Rmust be actually proved as they usually cannot
be obtained by computation primitives.

The size of the specialised development for the relevant notions and the aforemen-
tioned theorems (thus excluding for example the complete library for reals) is quite
small, as it is approximately 480 lines of specifications and 430 lines of proofs. The
file noRDVevenR.v itself is about 200 lines of specifications for 250 lines of proof
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scripts. This is a good indication on how adequate our framework is, as proofs are not
too intricate and remain human readable.
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