Certification of automated termination proofs *

Evelyne Contejean’, Pierre Courtieu?, Julien Forest?, Olivier Pons?, and
Xavier Urbain?

1 LRI, Université Paris-Sud, CNRS, INRIA Futurs, Orsay F-91405
2 CEDRIC - Conservatoire national des arts et métiers

Abstract. Nowadays, formal methods rely on tools of different kinds: proof as-
sistants with which the user interacts to discover a proof step by step; and fully
automated tools which make use of (intricate) decision procedures. But while
some proof assistants can check the soundness of a proof, they lack automa-
tion. Regarding automated tools, one still has to be satisfied with their answers
Yes/No/Do not know, the validity of which can be subject to question, in par-
ticular because of the increasing size and complexity of these tools.

In the context of rewriting techniques, we aim at bridging the gap between proof
assistants that yield formal guarantees of reliability and highly automated tools
one has to trust. We present an approach making use of both shallow and deep
embeddings. We illustrate this approach with a prototype based on the CiIME
rewriting toolbox, which can discover involved termination proofs that can be
certified by the COQ proof assistant, using the COCCINELLE library for rewriting.

1 Introduction

Formal methods play an increasingly important role when it comes to guaranteeing
good properties for complex, sensitive or critical systems. In the context of proving,
they rely on tools of different kinds: proof assistants with which the user interacts step
by step, and fully automated tools which make use of (intricate) decision procedures.

Reducing the cost of formal proofs amounts to using more and more automation.
However, while some proof assistants can check the soundness of a proof, one still
has to be satisfied with the answer of automated tools. Yet, since application fields
include possibly critical sectors as security, code verification, cryptographic protocols,
etc., reliance on verification tools is crucial.

Some proof assistants, like CoQ [29], need to check mechanically the proof of each
notion used. Among the strengths of these assistants are firstly a powerful specification
language that can express both logical assertions and programs, hence properties of
programs, and secondly a highly reliable procedure that checks the soundness of proofs.

For instance, COQ or ISABELLE/HOL [27] have a small and highly reliable ker-
nel. In CoQ, the kernel type-checks a proof term to ensure the soundness of a proof.
Certified-programming environments based on these proof assistants find here an addi-
tional guarantee. Yet, among the weaknesses of these assistants, one may regret the lack
of automation in the proof discovery process. Automation is indeed difficult to obtain

* Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-0146-01).

in this framework: the proof assistant has to check a property proven by an external
procedure before accepting it. Therefore, such a procedure has to return a proof trace
checkable by the assistant.

We want to meet the important need of proofs delegation for some properties in
the framework of rewriting techniques. We will focus on generic ways to provide
reasonably-sized proof traces for complex properties, for instance termination.

Termination is the property of a program any execution of which always yields a re-
sult. Fundamental when recursion and induction are involved, it is an unavoidable pre-
liminary for proving many various properties of a program. Confluence of a rewriting
system, for instance, becomes decidable when the system terminates. More generally,
proving termination is a boundary between fotal and partial correctness of programs.
Hence, automating termination is of great interest for provers like COQ, in which func-
tions can be defined only if they are proven to be terminating.

The last decade has been very fertile w.r.t. automation of termination proofs, and
yielded many efficient tools (APROVE [17], CiME [8], JAMBOX [15], TPA [22],
TTT [20] and others) referenced on the website of the Termination Competition [25].
Some of them display nice output for human reading. However, there is still a clear
gap between proof assistants that provide formal guarantees of reliability and highly
automated tools that do not. In the sequel, we aim at bridging this gap.

We present here a methodology for the particularly important challenge of auto-
matically generating proof traces in the domain of first order term rewrite systems and
in particular for termination proofs of such systems. We do not restrict to classical ap-
proaches of all-shallow embedding or, like Color [4], of all-deep embedding to model
properties or techniques. Instead we use a mixed approach so as to get the best of both
worlds. We implemented our principles and methodology within the version 2.99 of the
CiME rewrite tool box. This version uses parts of the termination engine of CiIME2.04,
with our mixed approach it can certify (with COQ) termination proofs of more than 350
problems of the TPDB, using involved criteria. This is made possible thanks to a COQ
library for rewriting (COCCINELLE) developed by E. Contejean in our project.

COCCINELLE Required
\ Compilation .
/ CoqQ ———» Certificate
Problem —» CiIME Trace generation

We make our notations precise and give some prerequisites about first order term
rewriting and about the COQ proof assistant in Section 2. Then, in Section 3, we present
our modelling of termination of rewriting in COQ, which mixes deep and shallow em-
beddings in order to take benefits of both. We briefly present the CoQ library COC-
CINELLE developed in the project to that purpose. In section 4 we present the certifi-
cation of proofs using involved criteria such as Dependency Pairs [1] with graphs re-
finement, mixing orderings based on polynomial interpretations [23] or RPO [10] with
AFS [1]. We shall adopt the end-user point of view and provide some experimental re-
sults of CiME 2.99 in Section 5. Eventually we briefly compare with related works and
conclude in Section 6.

2 Preliminaries

2.1 Rewriting

We assume the reader familiar with basic concepts of term rewriting [2, 13] and ter-
mination, in particular with the Dependency Pairs (DP) approach [1]. We recall usual
notions, and give notations. A signature JF is a finite set of symbols with arities. Let X
be a countable set of variables; T'(F, X) denotes the set of finite terms on F and X.
A(t) is the symbol at root position in term ¢. We write ¢|,, for subterm of ¢ at position p
and t[u],, for term ¢ where t|,, has been replaced by w. Substitutions are mappings from
variables to terms and to denotes the application of a substitution o to a term ¢.

A term rewriting system (TRS for short) over a signature F is a set R of rewrite
rules I — r with [,7 € T(F, X). A TRS R defines a monotonic relation — closed
under substitution (aka a rewrite relation) in the following way: s —p t (s reduces to
t) if there is a position p such that s|, = lo and ¢t = s[ro], forarule! — r € Rand a
substitution ¢. In the following, we shall omit systems and positions that are clear from
the context. We denote the reflexive-transitive closure of a relation — by —*. Symbols
occurring at root position in the left-hand sides of rules in R are said to be defined, the
others are said to be constructors.

A term is R-strongly normalizable (R-SN) if it cannot reduce infinitely many times
for the relation defined by System R!. A rewrite relation terminates if any term is
SN. Termination is usually proven with the help of reduction orderings [11] or or-
dering pairs with dependency pairs. The set of unmarked dependency pairs®> of a
TRS R, denoted DP(R) is defined as {(u,v) suchthat v — t € R and t|, =
v and A(v) is defined}. An ordering pair is a pair (=, >) of relations over T'(F, X)
such that: 1) > is a quasi-ordering, i.e. reflexive and transitive, 2) > is a strict ordering,
i.e. irreflexive and transitive, and 3) > - > = > or »= - > = >. An ordering pair is
well-founded if there is no infinite strictly decreasing sequence t; > to > ...

2.2 The CoQ proof assistant

The CoQ proof assistant is based on type theory and features: 1) A formal language
to express objects, properties and proofs in a unified way; all these are represented as
terms of an expressive A-calculus: the Calculus of Inductive Constructions (CIC) [9].
A-abstraction is denoted fun x:T => t, and application is denoted t u. 2) A proof
checker which checks the validity of proofs written as CIC-terms. Indeed, in this frame-
work, a term is a proof of its type, and checking a proof consists in typing a term. The
tool’s correctness relies on this type checker, which is a small kernel of 5 000 lines of
OBJECTIVE CAML code.

For example the following simple terms are proofs of the following (tautological)
types (remember that implication arrow — is right associative): the identity function
fun x:A => xisaproofofA — A,and fun (x:A) (f:A— B) => f xisaproof
ofA - (A — B) — B.

"' When R is clear from the context, we shall write SN.
2 For readability’s sake we detail only unmarked DP, see Sec. 4.4 for how we deal with marks.

A very powerful feature of COQ is the ability to define inductive types to express in-
ductive data types and inductive properties. For example the following inductive types
define the data type nat of natural numbers, 0 and S (successor) being the two con-
structors®, and the property even of being an even natural number.

Inductive nat : Set := | O : nat | S : nat — nat.
Inductive even : nat — Prop := | even_O : even O
| even_S : Vn : nat, even n — even (S (S n)).
Hence the term even_ S (S (S 0)) (even_ S O (even_0)) is of type even
(S (S (S (s 0)))) soitisa proof that 4 is even.

2.3 Termination in COQ

We focus in this paper on termination. This property is defined in COQ standard li-
brary as the well-foundedness of an ordering. Hence we model TRS as orderings in the
following. This notion is defined using the accessibility predicate. A term t : A is ac-
cessible for an ordering < if all its predecessors are, and < is well-founded if all terms
of type A are accessible (R y x stands for y < x):

Inductive Acc (A : Type) (R : A —- A — Prop) (x : A) : Prop :=
| Acc_intro : (V y : A, Ry x — Acc Ry) — Acc R x
Definition well_ founded (A : Type) (R : A - A — Prop) :=
Va : A, Acc R a.

This inductive definition contains
both the basis case (that 1s when an

element has no predecessor w.r.t.
the relation) and the general in-
dUCthe CaSC. For example, in a relation R on bool defined by

R true false, true is accessible because it has no predecessor, and so is false be-
cause its only predecessor is t rue. Hence Acc R true and Acc R false are prov-
able, hence well-founded R is provable. The usual ordering < is well-founded over
the natural numbers, since 0 has no predecessor, and by structural induction, if n is
accessible, so is S(n); whereas < is not well-founded over the integers.

3 Modelling termination of rewriting in COQ

If R is the relation modelling a TRS R, we should write R u ¢ (which means u < t)
when a term ¢ rewrites to a term . For the sake of readability we will use as much as
possible the COQ notation: ¢ —[R]> u (and ¢ - [R] »> u for ¢ —™ w) instead.

The wanted final theorem stating that R is terminating has the following form:

3 Note that this notion of constructors is different from the one in Section 2.1.

Theorem well founded_R: Well_founded R.

Since we want certified automated proofs, the definition of R and the proof of this theo-
rem are discovered and generated in COQ syntax with full automation by our prototype.
In order to ensure that the original rewriting system R terminates, the only things the
user has to check is firstly that the generated relation R corresponds to R (which is easy
as we shall see in Section 3.2), and secondly that the generated CoQ files do compile.

3.1 Shallow vs deep embedding

In order to prove properties on our objects (terms, rewriting systems, polynomial inter-
pretations. . .), we have to model these objects in the proof assistant by defining a theory
of rewriting. There are classically two opposite ways of doing this: shallow embedding
and deep embedding. When using shallow embedding, one defines ad hoc translations
for the different rewriting notions, and proves criteria on the translation of each consid-
ered system. When using deep embedding, one defines generic notions for rewriting and
proves generic criteria on them, and then instantiates notions and criteria on the con-
sidered system. Both shallow and deep embedding have advantages and drawbacks. On
the plus side of shallow embedding are: an easy implementation of rewriting notions,
and the absence of need of meta notions (as substitutions or term well-formedness w.r.t.
a signature). On the minus side, one cannot certify a criterion but only its instantiation
on a particular problem, which often leads to large scripts and proof terms. Regarding
deep embedding, it usually leads (not always as we explain below) to simpler scripts
and proof terms since one can reuse generic lemmas but at the cost of a rather technical
first step consisting in defining the generic notions and proving generic lemmas.

We present here an hybrid approach where some notions are deep (X'-algebra, RPO)
and others are shallow (rewriting system, dependency graphs, polynomial interpreta-
tions). The reason for this is mainly due to our proof concern which makes sometimes
deep embedding not worth the efforts it requires: some premises of generic lemmas,
which have to be proven on each considered problem, are as hard (if not harder) to
prove than the shallow lemma itself. We will show that using both embeddings in a
single proof is not a problem, and moreover that we can take full benefit of both.

3.2 The COCCINELLE library

The deep part of the modelling is formalised in a public COQ library called Coc-
CINELLE [6]. To start with, it contains a modelling of the mathematical notions needed
for rewriting, such as term algebras, generic rewriting, generic and AC equational the-
ories and RPO with status. It contains also proofs of properties of these notions, for
example that RPO is well-founded whenever the underlying precedence is so.
Moreover COCCINELLE is intended to be a mirror of the CiME tool in COQ; this
means that some of the types of COCCINELLE (terms, etc.) are translated from CiIME
(in OBJECTIVE CAML) to COQ, as well as some functions (AC matching)*. Trans-

* It should be noticed that COCCINELLE is not a full mirror of CiME: some parts of CiME are
actually search algorithms for proving for instance equality of terms modulo a theory or termi-
nation of TRSs. These search algorithms are much more efficient when written in OBJECTIVE
CAML than in COQ, they just need to provide a trace for COCCINELLE.

lating functions and proving their full correctness obviously provide a certification of
the underlying algorithm. Note that some proofs may require that all objects satisfying
a certain property have been built: for instance in order to prove local confluence of a
TRS, one need to get all critical pairs, hence a unification algorithm which is complete?.
Since module systems in OBJECTIVE CAML and COQ are similar, both CiIME and
COCCINELLE have the same structure, except that CiIME contains only types and func-
tions whereas COCCINELLE also contains properties over these types and functions.

Terms A signature is defined by a set of symbols with decidable equality, and a function
arity mapping each symbol to its arity.

The arity is not simply an integer, it mentions also whether a symbol is free of arity
n, AC or C (of implicit arity 2) since there is a special treatment in the AC/C case.

Inductive arity_type : Set :=
| Free : nat — arity_type | AC : arity_type | C : arity_type.

Module Type Signature.
Declare Module Export Symb : decidable_set.S.
Parameter arity : Symb.A — arity_type.

End Signature.

Up to now, our automatic proof generator does not deal with AC nor C symbols,
hence in this work all symbols have an arity Free n. However, AC/C symbols are used
in other parts of COCCINELLE, in particular the formalisation of AC matching [5].

A term algebra is a module defined from its signature F and the set of variables X.

Module Type Term.
Declare Module Import F : Signature.
Declare Module Import X : decidable_set.S.

Terms are defined as variables or symbols applied to lists of terms. Lists are built
from two constructors nil and : :, and enjoy theusual [x ; y; ...] notation.

Inductive term : Set :=
| Var : variable — term | Term : symbol — list term — term.

This type allows to share terms in a standard representation as well as in a canonical
form; but this also implies that terms may be ill-formed w.r.t. the signature. The module
contains decidable definitions of well-formedness. However, the rewriting systems we
consider do not apply on ill-formed terms, so we will not have to worry about it to prove
termination.

The term module type contains other useful definitions and properties that we
omit here for the sake of clarity. The COCCINELLE library contains also a functor
term.Make which, given a signature and a set of variables, returns a module of type
Term. We will not show its definition here.

Module Make (F1 : Signature) (X1 : decidable_set.S) : Term.

3 Local confluence is not part of COCCINELLE yet.

Rewriting systems TRSs provided as sets of rewrite rules are not modelled directly in
COCCINELLE. Instead, as explained in the introduction of this Section, we use orderings
built from any arbitrary relation R : relation term (by definition relation Ais
A — A — Prop). The usual definition can be retrieved obviously from a list of
rewrite rules (i.e. pairs of terms) R by defining R as:
Vs,t e T(F,X),s —-[R]> t<= (s —>t) R

The COCCINELLE library provides a module type RWR which defines a reduction

relation (w.r.t. the "rules" R) and its properties.

Module Type RWR.
Declare Module Import T : Term.

The first step toward definition of the rewrite relation is the closure by instantiation:

Inductive rwr_at_top (R : relation term) : relation term :=
| instance : Vtl t2 sigma, tl —-[R]> t2
— (apply_subst sigma tl) —-[rwr_at_top R]> (apply_subst sigma t2).

Then we define a rewrite step as the closure by context of the previous closure.
Notice the use of mutual inductive relations to deal with lists of terms.

(x* One step at any position. x)
Inductive one_step (R : relation term) : relation term :=
| at_top : Vtl t2, tl —-[rwr_at_top R]> t2 —
tl —[one_step R]> t2
| in_context : Vf 11 12, 11 -[one_step_list R]> 12
— (Term £ 11 -[one_step R]> Term f 12)
with one_step_list (R : relation term): relation (list term) :=
| head_step : Vtl t2 1, tl —-[one_step R]> t2

— (t1 :: 1 -[one_step_list R]> t2 :: 1)
| tail_step : Vt 11 12, 11 -[one_step_list R]> 12
— (t :: 11) —[one_step_list R]> (t :: 12).

This module type contains properties declared using the keyword Parameter.
This means that to build a module of this type, one must prove these properties. For
instance it contains the following property stating that if t; —T 5 then t;0 —7 t50°
for any substitution o.

Parameter rwr_apply_subst
VR tl t2 sigma, tl -[rwr R]> t2 —
(apply_subst sigma tl —-[rwr R]> apply_subst sigma t2).

The library contains a functor rewriting.Make building a module of type RWR
from a module T of type Term. This functor builds in particular the proof of all prop-
erties required by RWR. For an R representing the rules of the TRS under consideration,
the final theorem we want to generate is:

Theorem Well_ founded_R: Well_founded (one_step R).

To ensure that one_step R corresponds to the original TRS R, it suffices for the
user to perform the easy check that R corresponds to the set of rules defining .

® The transitive closure of one_step is defined as rwr in COCCINELLE.

Note that since the datatype term represents any 3'-algebra (via application of the
functor Make), we can say that terms are represented in a deep embedding. However,
to simplify proofs, we avoid using substitutions by quantifying on subterms as much as
possible. That makes our use of the type t erm slightly more shallow on this point.

4 Generation of proof traces

We will illustrate our approach by presenting proof generation techniques at work on a
small example in our prototype, namely CiME 2.99. While being based on the CIME2
tool box, this prototype does not certify all its predecessor’s termination power. For
instance, modular criteria [30] and termination modulo equational theories are not sup-
ported yet. In the following, we restrict to (marked/unmarked) Dependency Pairs [1]
with/without graphs refinements. The orderings we deal with include strictly the or-
derings that CiME generates: (non-linear) polynomial interpretations (section 4.6) and
RPO with status’ (section 4.7).

4.1 Global structure of a generated proof

A close look at different termination tools reveals a common underlying methodology
which we use as the skeleton of our generated proofs. It consists in deriving recursively
from a relation R a set of other relations R; such that if all R;s are terminating, then so is
R. For instance, this structure appears explicitly with the processors [18] of APROVE.

This recursive decomposition is done using fermination criteria like DP criteria,
(complex) graph criteria, modular criteria, etc. Some tools may use some backtracking
but if the procedure succeeds, it means that an implicit tree was built:

<2 (RPO) <3 (poly. interp.)
<1 (pOly interp.) < { .. <t2’1’1‘, UQ71’1'> . } { .. <t2’2’i, ’LL2,271'> . }
SUB-GRAPH
{...<t1,i,’lll1’7;>...} {...<t2’i,U27i>...} GRAPH
de:{...<ti7ui>...} DP

Ruut:{llHTL}

This tree is rooted by the initial problem, namely the initial rewriting system and
the first termination criterion used. Each intermediate node is also labelled by a relation
and the termination criterion used to decompose the node into its children. Finally each
leaf must be labelled by a relation R; and a well-founded ordering which includes it.

The tree structure is reflected in the generated file. Indeed, for each criterion step
(R replaced by sufficient conditions { R; }), we will generate a lemma of the form:

Lemma wf R if wf Ri : well_founded Rl — well founded R2
— well_founded R.

The proof of this lemma depends on the termination criterion used (Sec. 4.4 and 4.5).
Each time a leaf is proven using an ordering, we generate a lemma of the form:

Lemma wf_Ri : well_ founded Ri.

7 To date, CiME can discover polynomials and LPO with AFS.

The proof is made by induction on the ordering built by the automated tool. Once all
leaves have been proven this way, one can easily build the proof of the initial termination
property by applying lemmas from leaves to the root:

Lemma final: well founded R.
Proof. apply (wf_R_if wf Ri wf_R1 wf_R2 ...). Qed.

4.2 The running example

We illustrate our method with a very simple TRS R = R, U Raqq (0ver a signature F)
where R, computes the Ackerman function on Peano integers, and R,qq computes
addition on binary integers. The digits are denoted as postfix operators (_)0 and (_)1,
whereas # is the constant 0 seen as a number, shared between Peano integers and binary
ones.

R {aCk(#7 y) — s(y) ack(s(z),#) — ack(z, s(#))
ack ack(s(x), s(y)) — ack(z, ack(s(x),y))
R (#)0 — # #+x—x T+H# —x
Raga § ()0 + ()0 — (z +)0 (@)1 + ()0 — (z+y)1
(2)0+ (y)1 — (z +y)1 (@)1 + (y)1 — ((z +y) + (#)1)0

4.3 Generation of the TRS definition

For sake of clarity we will use COQ notations that are different than in previous sections:
Term X (Y::Z::...::nil) will now be denoted by X (v,z...).

The generation of the Y'-algebra corresponding to a signature in the automated tool
is straightforward. We show here the signature corresponding to the X'-algebra of F.
Notice the module type constraint <: Signature making COQ check that definitions
and properties of SIGMA_F comply with Signature as defined in Section 3.2.

Module SIGMA_F <: Signature.

Inductive symb : Set := | # : symb | s : symb
Module Export Symb.
Definition A := symb.
Lemma eq dec : Vfl f2 : symb, {fl = f2} + {fl1 <> f2}...
End Symb.
Definition arity (f:symb) : arity_type :=
match f with | # => Free 0 | s => Free 1... end.

End SIGMA_F.

We define a module VARS for variables, apply functors building the term algebra
and rewrite system on it, and then the rewriting system corresponding to R:

Module Import TERMS := term.Make (SIGMA) (VARS) .
Module Import Rwr := rewriting.Make (TERMS) .
Inductive R_rules : term — term — Prop :=

| Ro : VVi : term, ack(#,Vy) —-[R_rules]> s(Vi1)...
Definition R := Rwr.one_step R_rules.

Notice that from now on notation T -[R]> U denotes that T rewrites to U in the
sense of section 2.1, i.e. there exists two subterms ¢ and u at the same position in re-
spectively T and U, such that R « t (see the definition of one_step in section 3.2).

4.4 Criterion: Dependency Pairs

The (unmarked) dependency pairs of R generated by CiME are the following:

(s(x), #), ack(z, s(#)))

(s(x), s(y)), ack(z, ack(s(x),y))) (ack(s(x), s(y)),ack(s(z),y))

() 1+)0,z +y) (2)0+@Wlz+y) (#)0+(y)0,z+y) ((2)0+ (y)0,(z+y)0)
@)1+ Wlz+y) (@)1+ @)L, (@+y)+ @) (@)1 + @1, ((z+y) + (F#)1)0)

An inductive relation representing the dependency chains [1] is built automatically.
A step of this relation models the (finite) reductions by R in the strict subterms of DP
instances (e.g. zg —* s(Vp),...) and one step of the relevant dependency pair. We
illustrate this on (ack(s(z), #), ack(x, s(#))) with o = {z — Vp}:

(y

Inductive DPR : term — term — Prop :=
| DPRp: Vxo x1 Vg, xo —[R]*> s(Vg) — x1 —[R]*> #
— ack(xg,x1) —-[DPR]> ack (Vo,s (#))

The main lemma on DPs fits in the general structure we explained on section 4.1:

Lemma wfR_if_ wfDPR: well_ founded DPR — well_founded R.

The proof follows a general scheme due to Hubert [21]. It involves several nested
inductions instantiating the proof of the criterion in the particular setting of DPR and R.

Note that we can also prove this lemma in the case of an enhancement of DPs by
Dershowitz [12] consisting in discarding DPs whose rhs is a subterm of the lhs®,

Marked symbols A refinement of the DP criterion consists in marking head symbols
in lhs and rhs of dependency pairs in order to relax ordering constraints. We simply
generate the symbol type with two versions of each symbol and adapt the definition of
orderings. The proof strategy needs no change.

4.5 Criterion: Dependency Pairs with graph

Not all DPs can follow one another in a dependency chain: one may consider the graph
of possible sequences of DPs (dependency graph). This graph is not computable, so one
uses graphs containing it. We consider here Arts & Giesl’s simple approximation [1].

The graph criterion [1] takes benefit from working on the (approximated) graph. In
its weak version, it consists in providing for each strongly connected component (SCC)
an ordering pair that decreases strictly for all its nodes, and weakly for all rules. In its
strong version, it considers cycles:

Theorem 1 (Arts and Giesl [1]). A TRS R is terminating iff for each cycle P in its
dependency graph there is a reduction pair (=p,=p) such that: (1)l =p r for any
l—r€R,(2)s=ptforany (s,t) € P, and (3) s =p t for at least one pair in P.

8 Such DPs cannot occur in minimal chains. Thus they can be discarded.

10

In practice, our tool uses a procedure due to Middledorp and Hirokawa [19] which
splits recursively the graph into sub-components using different orders. The proof uses
shallow embedding. One reason for this choice is that a generic theorem for a complex
graph criterion is not easy to prove since it involves a substantial part of graph theory
(e.g. the notion of cycle). Moreover, verifying the premises of such a theorem amounts
to checking that all SCCs found by the prover are really SCCs and that they are ter-
minating, but also to proving that it found all SCCs of the graph. That is tedious. On
the contrary, using shallow embedding we use these facts implicitly by focusing on the
termination proof of each component.

Weak version The first thing we generate is the definition of each component as com-
puted by CiME. To illustrate the graph criterion on our example we may take the whole
system R. CiME detects two components (subg with some DPs of R,qq, sub; with
some DPs of R,c): we generate the two corresponding sub-relations of DPR.

Inductive DPR_subg : term — term — Prop :=

| DPR_subgo: Vxo x1 Vo, x0 —[R]*> s(Vg) — x1 —[R]*> #

— ack (xo,x1) —[DPR_subgl> ack (Vo, s (#)) (x<ack(s(Vo),#), ack(Vo,s(#))>*). . .
Inductive DPR_sub; : term — term — Prop :=

The following lemma states the criterion and fits the general structure in Section 4.1.

Lemma wf DPR_1f wf subg_subi : well_ founded DPR_subg —
well_ founded DPR_sub; — well_founded DPR.

The proof of these lemmas uses the idea that if we collapse each SCC into one node,
they form a DAG on which we can reason by cases on the edges in a depth-first fashion.

Strong version In addition, when the strong version of the criterion is used, the ter-
mination of each sub-component may itself be proven from the termination of smaller
components, each one with a different ordering. Due to lack of space, we will not go
into the details of this methodology.

It remains to conclude by providing well-suited ordering pairs.

4.6 Orderings: Polynomial interpretations

In our framework a polynomial interpretation is defined as a recursive function on terms.
CiME outputs an interpretation for the SCC suby (other symbols are mapped to 0):

[#]1= 0; [0](X0)= X0 + 1; [1]1(X0)= X0 + 1; [+](X0,X1)= X1 + XO;

From this interpretation we produce a measure: term — Z:

Fixpoint measure_DPR_subg (t:term) {struct t} : Z :=

match t with

| Var _ => 0 | # => 0

| 0(xp) => measure_DPR x¢o + 1 | 1(xg9) => measure_DPR xgp + 1
| plus (xo, x1) => measure_DPR x; + measure_DPR xo | _ => 0
end.

11

Notice that although our term definition is a deep embedding, the measure is defined
as if we were in a shallow embedding. Indeed it is defined by a direct recursive func-
tion on terms and does not refer to polynomials, substitutions or variables (xy above
is a COQ variable, it is not a rewriting variable which would be of the form Var n).
This choice makes, once again, our proofs simpler to generate. In a deep embedding
we would need a theory for polynomials, and a generic theorem stating that a polyno-
mial on positive integers with positive factors is monotonic. But actually this property
instantiated on measure_DPR_subg above can be proven by a trivial induction on t.
So again the effort of a deep embedding is not worth this effort. The following Lemma
proves the well-foundedness of measure_DPR_suby:

Lemma Well_ founded_DPR_subg : well_ founded DPR_subg.

which is equivalent to V x, Acc DPR x. This is proven firstly by induction on the
value of (measure_DPR_subg x), then by cases on each DP of DPR_suby, finally
by applying the induction hypothesis using the fact that each pair is decreasing by
measure_DPR_subg. One concludes by polynomial comparison. It is well known that
the comparison of non-linear polynomials on N is not decidable in general. We have a
decision procedure for the particular kind of non linear polynomials CIME produces.

4.7 Orderings: RPO

The COCCINELLE library formalises RPO in a generic way, and proves it to be well-
suited for ordering pairs. RPO is defined using a precedence (a decidable strict ordering
prec over symbols) and a status (multiset/lexicographic) for each symbol.

Inductive status_type: Set := Lex:status_type | Mul:status_type.
Module Type Precedence.
Parameter (A: Set) (prec: relation A) (status: A — status_type).
Parameter prec_dec : Val a2 : A, {prec al a2} + {~prec al a2}.
Parameter prec_antisym : Vs, prec s s — False.
Parameter prec_transitive : transitive A prec.
End Precedence.

A module type for an RPO should be built from a term algebra and a precedence:

Module Type RPO.
Declare Module Import T : term.Term.
Declare Module Import P : Precedence with Definition A:= T.symbol.

The library contains a functor rpo . Make building an RPO from two modules of
type Term and Precedence. It also builds among other usual properties of RPO,
the proof that if the precedence is well-founded, then so is the RPO. This part of the
library is in a deep embedding style. Proofs of termination using RPOs are very easy to
generate as it is sufficient to generate the precedence, the proof that it is well-founded
and to apply the functor rpo . Make. It should be noticed that the fact that the generic
RPO uses a strict precedence and a comparison from left to right in the lexicographic
case is not a restriction in practice: a simple translation from terms to terms mapping
equivalent symbols onto the same symbol, and performing the wanted permutation over
the subterms under a given lexicographic symbol is both monotonic and stable. Hence

12

the relation defined by comparing the translations of terms by the generic RPO still has
the desired properties.
The generated definition of the RPO used for proving well-foundedness of sub; is:

Module precedence <: Precedence.

Definition A : Set := symb.
Definition prec (a b:symb) : Prop :=

match a,b with | s,ack => True | _,_ => False end.
Definition status: symb — status_type:= fun x => Lex.

Lemma prec_dec: Val a2: symb, {prec al a2}+{~ prec al a2}.
Lemma prec_antisym: Vs, prec s s — False.
Lemma prec_transitive: transitive symb prec.

End precedence.

And as previously: Lemma Well founded DPR_subi : well founded DPR_subj.

Argument filtering systems The use of Dependency Pairs allows a wide choice of order-
ings by dropping the condition of strict monotonicity. Regarding path orderings, this can
be achieved using argument filtering systems (AFS) [1]. We define AFSs as fixpoints
and apply them at comparison time. This does not affect the (COQ) proof scheme.

5 Results and benchmarks

CiME 2.99 can be downloaded and tested from the A3PAT website’. Once the system
is defined, we have to choose the termination criterion and the orderings. For instance,
we may select DP with graphs refinement and both linear polynomials (bound 2) and
RPO with AFSs, then ask CiME to check termination and generate the proof trace:

CiME> termcrit "dp"; termcrit "nomarks"; termcrit "graph";
CiME> polyinterpkind { ("linear",2); ("rpo",1)}; termination R;
CiME> coq _certify proof "example.v" R;

We used the Termination Problems Data Base'® V3.2 as challenge. Until now we
have produced a CoQ certificate for 100% of the 358 TRS that CiME proves terminating
without using modular technique or AC termination''. We will now give some details on
our experiments. We give below, depending on the use of graphs, the average and max.
sizes of compiled COQ proofs, as well as the average compilation time (together with
the number of problem solved) using marks on a 2GHz, 1GB machine, running Linux.
RPO + Pol. means that selected orderings for proof search are RPOs and polynomials.

with graph without graph
S. av. s.max t.av (nb) S. av. s.max t.av (nb)
RPO 3.71MB 9.1MB 27.3s (202)|3.52MB 4.77MB 21.2s (123)
Linear Pol.|0.76MB 3.86MB 13.6s (231)|0.5IMB 4.56MB 8.1s (175)
Simple Pol.|0.9IMB 10.91MB 30.3s (274)
RPO + Pol.| 1.27MB 1IMB 21.5s (358) [1.99MB 7.39MB 12.7s (255)

®http://www3.ensiie.fr/~urbain/a3pat/pub/index.en.html

Onttp://www.lri.fr/~marche/tpdb

' Not all the systems of the TPDB are terminating. Some are proven by the full termination
engine of CiME 2.04 using techniques for which CiME 2.99 does not produce a certificate yet.

13

6 Related works and conclusion

There are several works to be mentioned w.r.t. the communication between automated
provers and COQ. Amongst them, the theorem-prover ZENON [14], based on tableaux,
produces COQ proof terms as certificates. ELAN enjoys techniques to produce COQ
certificates for rewriting [26]. Bezem describes an approach regarding resolution [3].
However, these systems do not tackle the problem of termination proofs.

To our knowledge the only other approach to generate termination certificates for
rewriting systems relies on the CoLoR/Rainbow libraries [4]. In this approach, term
algebras and TRSs are handled via an embedding even deeper than in COCCINELLE,
since a TRS is given by a set of pairs of terms. Rainbow is a relatively efficient tool
thanks to orderings built with matrix interpretations (which we don’t handle yet). But it
does not handle the following techniques: enhanced or marked dependency pairs, com-
plex graphs, RPO with AFS. We think that adding these techniques to CoLoR/Rainbow
will be hard, due to the pure deep embedding approach. There are currently 167 out of
864 termination problems in TPDB (v3.2) proven by TPA [22] and certified by CoL-
oR/Rainbow using polynomial interpretations and the webpage mentions 237 problems
certified using matrix interpretations.

We presented a methodology to make automated termination tools generate fraces
in a proof assistant format. The approach is validated by a prototype generating COQ
traces. The performances of the prototype on the examples of the TPDB database are
promising. Our approach is easy to extend, in particular because extensions may be
done in deep or shallow embedding.

To apply this methodology on different tools and targeted proof assistants, one needs
a termination trace language. An ongoing work in the A3PAT group is to define a more
general language that can even tackle proofs of various rewriting properties such as
termination, confluence (which needs termination), equational proofs [7], etc. We think
that a good candidate could be based on the tree structure we explained on Section 4.1.

One particularly interesting follow-up of this work is the possibility to plug au-
tomated termination tools as external termination tactics for proof assistants. Indeed
termination is a key property of many algorithms to be proven in proof assistants. More-
over, in type theory based proof assistants like COQ, one cannot define a function with-
out simultaneously proving its termination. This would allow to define functions whose
termination is not obvious without the great proof effort it currently needs.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133-178, 2000.
. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
. M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof construction in type theory
using resolution. J. Autom. Reasoning, 29(3-4):253-275, 2002.
4. F. Blanqui, S. Coupet-Grimal, W. Delobel, S. Hinderer, and A. Koprowski. Color, a coq
library on rewriting and termination. In Geser and Sondergaard [16].

[SS I)

14

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

E. Contejean. A certified AC matching algorithm. In V. van Oostrom, editor, /5th Interna-
tional Conference on Rewriting Techniques and Applications, volume 3091 of Lecture Notes
in Computer Science, pages 70-84, Aachen, Germany, June 2004. Springer-Verlag.

. E. Contejean. Coccinelle, 2005. http://www.lri.fr/~contejea/Coccinelle/

coccinelle.html.

. E. Contejean and P. Corbineau. Reflecting proofs in first-order logic with equality. In 20¢th In-

ternational Conference on Automated Deduction (CADE-20), number 3632 in Lecture Notes
in Artificial Intelligence, pages 7-22, Tallinn, Estonia, July 2005. Springer-Verlag.

. E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving termination of rewriting with

CiME. In Rubio [28], pages 71-73. http://cime.lri.fr.

. T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-L6f and

G. Mints, editors, Proceedings of Colog’88, volume 417 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1990.

N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science,
17(3):279-301, Mar. 1982.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1):69-115,
Feb. 1987.

N. Dershowitz. Termination Dependencies. In Rubio [28]. Technical Report DSIC 11/15/03,
Univ. Politécnica de Valencia, Spain.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 243-320. North-Holland, 1990.

D. Doligez. Zenon. http://focal.inria.fr/zenon/.

J. Endrullis. Jambox. http://joerg.endrullis.de/index.html.

A. Geser and H. Sondergaard, editors. Extended Abstracts of the 8th International Workshop
on Termination, WST’06, Aug. 2006.

J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic termination proofs in
the dependency pair framework. In U. Furbach and N. Shankar, editors, Third International
Joint Conference on Automated Reasoning, volume 4130 of Lecture Notes in Computer Sci-
ence, Seattle, USA, Aug. 2006. Springer-Verlag.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving De-
pendency Pairs. Journal of Automated Reasoning, 37(3):155-203, 2006.

N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In F. Baader,
editor, 19th International Conference on Automated Deduction (CADE-19), volume 2741
of Lecture Notes in Computer Science, pages 32—46, Miami Beach, FL, USA, July 2003.
Springer-Verlag.

N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In J. Giesl, editor, 16th In-
ternational Conference on Rewriting Techniques and Applications (RTA’05), volume 3467
of Lecture Notes in Computer Science, pages 175-184, Nara, Japan, Apr. 2005. Springer-
Verlag.

T. Hubert. Certification des preuves de terminaison en Coq. Rapport de DEA, Université
Paris 7, Sept. 2004. In French.

A. Koprowski. TPA. http://www.win.tue.nl/tpa.

D. S. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-
3, Mathematics Department, Louisiana Tech. Univ., 1979. Available at http://perso.
ens—lyon.fr/pierre.lescanne/not_accessible.html.

B. N. m. Terminating general recursion. BIT Numerical Mathematics.

C. Marché and H. Zantema. The termination competition 2006. In Geser and Sondergaard
[16]. http://www.lri.fr/~marche/termination—competition/.

Q. H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof assistants.
J. Autom. Reasoning, 29(3-4):309-336, 2002.

15

27.

28.

29.

30.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
A. Rubio, editor. Extended Abstracts of the 6th International Workshop on Termination,
WST’03, June 2003. Technical Report DSIC II/15/03, Univ. Politécnica de Valencia, Spain.
The Coq Development Team. The Coq Proof Assistant Documentation — Version V8.1, Feb.
2007. http://coq.inria. fr.

X. Urbain. Modular and incremental automated termination proofs. Journal of Automated
Reasoning, 32:315-355, 2004.

16

