
Automated Certified Proofs with CiME3∗

É. Contejean1, P. Courtieu2, J. Forest3, O. Pons2, and X. Urbain4

1 CNRS, LRI, UMR 8623, Orsay, F-91405
Univ Paris-Sud 11, Orsay, F-91405
INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893
France
evelyne.contejean@lri.fr

2 CNAM, Lab. Cédric, Paris, F-75141
France
{pierre.courtieu,olivier.pons}@cnam.fr

3 ENSIIE, Évry, F-91025
Lab. Cédric, Paris, F-75141
France
julien.forest@ensiie.fr

4 ENSIIE, Évry, F-91025
INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893
LRI, Univ Paris-Sud 11, CNRS, Orsay, F-91405
France
xavier.urbain@ensiie.fr

Abstract
We present the rewriting toolkit CiME3. Amongst other original features, this version enjoys
two kinds of engines: to handle and discover proofs of various properties of rewriting systems,
and to generate Coq scripts from proof traces given in certification problem format in order to
certify them with a sceptical proof assistant like Coq. Thus, these features open the way for
using CiME3 to add automation to proofs of termination or confluence in a formal development
in the Coq proof assistant.

Keywords and phrases Rewriting, formal proof, proof automation, proof assistant

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Category System Description

1 Introduction

Automated tools based on complex mathematical arguments have become widely used in
various domains of computer science. Cryptographic systems, proof assistants or systems
analysing programs involve highly intricate deduction procedures that are indeed beyond
human capabilities. However, this situation raises a real issue as the downside of such
deductive power is the difficulty to trust a result that no human can check.

Regarding rewriting, and in particular automated termination proof, there have been
many new tools since the introduction of the dependency pair approach [1] at the end of the
90’s: CiME2, AProVE [13], TTT2 [17], Jambox,1 etc., to cite a few of them.

∗ This work was partially supported by the french ANR project A3PAT (ANR-05-BLAN-0146).
1 http://joerg.endrullis.de/jambox.html

© É. Contejean, P. Courtieu, J. Forest, O. Pons, X. Urbain;
licensed under Creative Commons License NC-ND

submitted to 22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß Editor; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://joerg.endrullis.de/jambox.html
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 CiME3

However, all these tools exhibited incorrect behaviour at some point, in particular dur-
ing the Termination Competition [20] or its preparatory rounds. Several approaches to
certify the results of automated provers with skeptical proof assistants have been developed:
A3PAT [5, 4] and CoLoR/Rainbow [2] for Coq, CeTA [22] for Isabelle/HOL.

As a new member of the CiME family (http://cime.lri.fr), CiME3 is a toolbox ded-
icated to the handling and analysis of rewriting programs. It allows one to define term alge-
bras, rewriting systems, etc., and to perform a range of treatments over them: computation,
normalisation, matching and unification (modulo equational theories), completion (Knuth-
Bendix) and proofs of equality (both modulo equational theories), etc. An important part of
CiME3 is dedicated to proofs of termination (including solving of ordering constraints), lo-
cal confluence and convergence. CiME3 enjoys a top level mode for interactive development
of rewrite programs; it can also be used in batch mode with full automation.

CiME3 has been developed within the A3PAT project for certification of automated
proofs, and automation for proof assistants (http://a3pat.ensiie.fr). In comparison
to its ancestors, CiME3 features, in addition to its various proof engines, a certification
mechanism which issues proof traces and certificates, and which allows one to check that the
results are correct. To be certified, a proof trace can be translated into a script checked by
a trusted tool: a skeptical proof assistant like Coq, or it can be given directly to a certified
dedicated tool like CeTA. A unique feature of CiME3 is in particular the (discovery and)
certification of proofs of convergence.

The present article is organised as follows. In Section 2 we present some of the proof
engines at work in CiME3, for termination in Sections 2.1.2 and 2.1.3, and local confluence,
Knuth-Bendix completion and convergence in Section 2.2. Some criteria allow for parallel
solving, this is presented in Section 2.1.4. The certification engine is then described in
Section 3, along with its input, output, and the general structure of emitted Coq scripts.
Section 3.3 sketches the use of CiME3 in batch mode. We conclude with a list of resources
and companion tools, and with future work regarding the current implementation.

Problem

termination,
confluence,

constraints...

CiME 3

Proof
engine

Proof

Certif.
engine

Alternate
prover Proof trace(CPF)

Termination

Coq

Coccinelle

Certification

.vo

User

.v

Figure 1 Global CiME 3 architecture.

2 Proof Engines

2.1 Core Language, Termination

CiME3 can be used in interactive or batch mode. We hereafter describe some of the basic
commands for the interactive mode. Note that the batch mode can accept additional files

http://cime.lri.fr
http://a3pat.ensiie.fr

Contejean et al. 3

in various formats (like TRS or SRS formats from the Termination Competition, or in CPF2

(an XML format widely accepted by the certified rewriting community), developed by the
CeTA group and our team), however the commands described here can be used in both
modes. See Section 3.3 for batch specific command line options.

The core top level language of CiME3 is a simple language which allows the user to
type in expressions terminated by a semicolon. Simple expressions consist of booleans,
integers, strings, and basic operations on them. As in previous versions of CiME the nominal
language is powerful enough to define functions (polymorphic higher-order, allowing partial
application, functions as arguments) with a let fun construct. Application is denoted by
juxtaposition of the function and its arguments, as in LISP or other functional languages
based on the λ-calculus. A short manual is available online on the A3PAT web page. We
focus here on the new syntax and features of CiME3 for rewrite systems and constraints.

2.1.1 Declarations
The user can define and name objects, algebras, and systems in the CiME input language
akin to the definitions found in the literature: sets of variables, signatures (symbols with
arities), term algebras, rewrite systems, term ordering constraints. . .

A let construct introduces global declarations. Listing 1 declares successively the global
set X of variables, a signature F for Peano numbers and addition, and the corresponding term
algebra T. One can then easily declare terms, rewrite systems, and even ordering constraints
(built from conjunctions /\ and disjunctions \/ of atomic constraints).

Listing 1 A few simple declarations.

let X = variables "x,y";
let F = signature "plus : binary; O:constant; S:unary;";
let T = algebra F;
let t1 = term T "S(O)";
let R = trs T " plus(O,x) -> x; plus(S x, y) -> S(plus(x,y)); ";
let c = order_constraints T "O < S(O) /\ S(plus(x,y)) < plus(S(x),y)";

2.1.2 Ordering Parameters
CiME3 features a proof engine dedicated to the discovery of (well-founded) term orderings
that fulfil a set of (ordering) constraints. These constraints may come from a direct declara-
tion by the user (see Listing 1), or may appear as the result of operations like the application
of termination criteria on a termination problem, i.e. from termination constraints. As soon
as the ordering constraints are provided, one can try to discover a relevant well-suited or-
dering pair (�, <) using the command ordering_solve or ordering_solve_strict depending
on the expected monotonicity of the ordering, that is depending on whether only �, or both
� and <, respectively, are supposed to be monotonic.

Listing 2 Ordering constraints solving commands.

ordering_solve c; (* Search for weakly monotonic well-founded ordering fulfilling c *)
ordering_solve_strict c; (* Search for strictly monotonic well-founded ordering *)

2 The Certification Problem Format, http://cl-informatik.uibk.ac.at/software/cpf/

RTA’11

http://cl-informatik.uibk.ac.at/software/cpf/

4 CiME3

CiME3 can search for different kinds of orderings, all of which being parameterised by
the user. The presently implemented orderings range from full RPO [10], with or without
argument filterings (AFS) [1], to various polynomial [19, 18, 7] and matrix [11, 9] interpre-
tations. Note that the certification engine can accept traces from other provers, and, thus,
can handle more orderings than those that are currently searched for by the termination
proof engine.

The parameters for the search are provided using the grammar in Figure 2. Ordering
specifications (Ordering_param) are of the generic form n1 ord_kind n2 n3 n4 . . . where
ord_kind specifies the kind of ordering for which to search, n1 is the (optional) timeout of
the solver in seconds, n2 (only for polynomial and matrix interpretations) specifies the upper
bound of the (non-negative integral) coefficients in polynomials or matrices, n3 (matrices
only) specifies the size of the matrix coefficients, and n4 and following parameters are the
list of allowed sizes of strict sub-matrices as defined in [9]. For example, matrix 1 3 1 2
specifies a search for matrix interpretations, with matrix coefficients less or equal to 1,
3× 3 matrices, and strict sub-matrices of size either 1 or 2. As the optional timeout is not
provided, the default will be used (no timeout). Similarly, 30 linear 3 specifies a search for
linear polynomials with coefficients less or equal to 3, and a search timeout after 30s.

The user can declare several ordering parameters for different situations. This is il-
lustrated in Listing 3 where two different ordering parameter sequences op1 and op2 are
declared, in order to be used later in heuristics (see Listing 4).

Listing 3 Ordering parameters.

let op1 = params "30 linear 3; 30 simple 2; 30 rpo; 30 matrix 2 2 1; 30 matrix 1 3 1 2";
let op2 = params "linear 3; simple 2; rpo; matrix 2 2 1; matrix 1 3 1";

Ordering parameters are interpreted sequentially, unless a parallel search is enabled.
In the latter case, several orderings are searched for at the same time, depending on the
computer architecture and the specific parameters given by the user, see Section 2.1.4.

2.1.3 Criteria and Heuristics
Termination criteria are commonly seen as transformations of termination problems into
sets of other termination problems (possibly empty); they can be represented as inference
rules [5, 8] or processors [14]. The strategy of application of termination criteria is specified
in CiME3 with the help of heuristics. Intuitively, a successful heuristic must describe a
cover of a closed termination proof tree.

CiME comes with a simple heuristic description language which contains built-in crite-
ria and criteria combinators. Heuristics are specified following the grammar described in
Figure 2 where: id is a previously declared heuristic, manna_ness stands for the well-known
Manna and Ness criterion [19], and lex_manna_ness for rule removal using lexicographic
combination of orderings; DP and DPM stand respectively for unmarked and marked depen-
dency pair criteria [1], DPG for the graph refinement (estimation EDG) of dependency pairs [1]
(DPG returns the set of strongly connected components); ST denotes the extension [4] of
the original subterm criterion [16]; RMVx denotes vertex removal in dependency graphs com-
ponents [14, 15], and RMC stands for its variant removing all vertices of the component.

A heuristic x applies to a problem and returns the set of generated sub-problems. The
following constructs allow one to combine heuristics. Then[x;y . . .] applies heuristic x on
a problem and then, if it succeeds, heuristic y on each generated sub-problem. It fails if
either x or y fails. Repeat x calls x on a problem and, if x succeeds, applies Repeat x again

Contejean et al. 5

Ordering_param ::= linear n | simple n | quadratic n | rpo | matrix n n n+
Solver_params ::= n Ordering_param (; Solver_params)?
Criterion ::= manna_ness | lex_manna_ness | DP | DPM | DPG | ST | RMVx | RMC
Heuristic ::= Criterion {Solver_params}? | id {Solver_params}?
| Then [Heuristic_l] | Do n Heuristic | Repeat Heuristic | Solve [Heuristic_l]

Heuristic_l ::= Heuristic (; Heuristic_l)?

Figure 2 Grammar for heuristics and ordering parameters.

recursively on sub-problems. It never fails. Do n x is similar to Repeat but uses a limit n
for recursion depth. Finally Solve [x;y . . .] tries to apply x, and in the case x does not
succeed tries to apply y, etc., it fails if all heuristics failed. When all recursive calls have
ended, the proof is successful if all sub-problems are empty.

Listing 4 provides two examples. Heuristic h2 first tries to apply repeatedly rule removal
by lexicographic combination (using strictly monotonic orderings) until it fails to do so. It
transforms then the remaining TRS termination problem into a marked dependency pairs
termination problem and repeats recursively the previously declared h1. Heuristic h1 first
splits the given (DP) problem into sub-problems corresponding to the strongly connected
components of the dependency graph, and then tries on each component: firstly the extended
subterm criterion, and then, if it failed, vertex removal with a weakly monotonic ordering.

Some criteria may be parameterised specifically, for instance the number of rewrite steps
allowed in the extended subterm criterion may be set to n using command subtermparams n.

Listing 4 Heuristics declarations and commands.

let h1 = heuristic " Repeat Then [DPG ; Solve [ST ; RMVx {op2}]] ";
let h2 = heuristic " Then [Repeat lex_manna_ness {op1} ; DPM ; h1] ";
set_heuristic "h2"; (* Sets the termination heuristic. *)

When relevant parameters are set, proof search may be launched using commands
termination, confluence. . . , which print answers and possibly store traces.

Listing 5 Proof search.

termination R;
local_confluence R;
convergence R;
complete o R; (* Completion of R using term ordering o *)
prove_goal o R t1 t2; (* Ordered completion of R, stops when t1 and t2 are found equal*)
unify (term T "plus(O,x)") (term T "plus(y,O)");

2.1.4 External Solvers, Parallel Search for Orderings
External Solvers Ordering constraints are nowadays usually translated into SAT problems.
Thus, the main solving parts are delegated to a SAT solver [12, 21] or an SMT solver [17].
This scheme is implemented in CiME3, and the discovery of interpretations, RPO and AFS,
and application of the extended subterm criterion amount to solving SAT problems.

The directive #Set_sat_solver invoc_name allows one to specify the invocation name of
the external SAT solver, which must fulfil the requirements of the SAT format for input and
output, and the invocation of which must be of the form: invoc_name in_file out_file.

Note that polynomial interpretations and LPO+AFS may still be found without the help
of any external solver, using the internal Diophantine constraint solver of CiME [7].

RTA’11

6 CiME3

Parallel Search Ordering solvers may be used in parallel. When ordering constraints are
generated during termination analysis, CiME3 forks one solver process by ordering con-
straints set and ordering parameter (Listing 3), thus searching for different orderings in par-
allel. Note that solving of different ordering constraints is thus also parallelised. The maxi-
mum number of processes that can be launched in parallel may be set using the #Set_nb_proc
directive. If this limit is reached, new forks are put in a queue and wait for previous ones
to stop before they can be activated. Default behaviour is sequential computation.

2.2 Local Confluence, Completion and Convergence
A noticeable feature of CiME3 is its ability to check and moreover certify local confluence.
Combining this with its possibility to prove and certify termination, one can easily obtain
proof and certification of convergence. To date and to our knowledge CiME3 is the only
tool that can prove and certify convergence of rewrite systems. The proof search of local
confluence (and hence of convergence) is obtained by checking joinability of critical pairs.
When proving local confluence, CiME3 stores a trace in order to be able to certify it later.

Since critical pairs computation is the core of the standard Knuth-Bendix completion,
our implementation of Knuth-Bendix completion (commands complete or prove_goal) also
benefits from the trace production: given two terms which are found equal thanks to ordered
completion, CiME3 yields a trace of equality between these terms, and can also produce a
Coq certificate [3]. Completion modulo AC, also a part of CiME3, is not instrumented yet.

Certification of convergence proofs is obtained by an application of Newman’s lemma,
either using a known proof of termination, or assuming termination of the considered system.
Convergence is then proved by showing that in particular each critical pair is joinable: we
try to normalise each member of the pair and to show that both reduce to the same term.

3 Certification Engine

As proof engines perform proof search, various verbosity levels allow one to control the
process. Once a proof is discovered, its description is printed on the standard output. Gen-
eration of a CPF trace,3 or directly of the corresponding Coq script (for termination, local
confluence and convergence), is enabled by command or through batch mode (Section 3.3).

The purpose of the certification engine is to take a proof trace as an input, and to
output a Coq script for this trace’s certification. Traces may come from proofs discovered
with CiME3, or with other provers (AProVE, TTT2. . .) provided they come as CPF files3.

3.1 Input, Output
The normal input trace format for termination proofs is CPF. CiME3 is not yet able to
certify all criteria supported by the CPF format, but may generate scripts for all criteria
it uses in proof discovery. For properties other than termination (including termination for
convenience), one can take as an input a problem instead of a proof trace. In this case all
the problem formats described in Section 2.1 are supported, CiME will search the proof by
itself and will generate the script, without any intermediate trace. See Listing 7.

The techniques for the generation of Coq scripts for certification have been described in
previous works [4, 6, 8]. The compilation of those scripts relies on the Coccinelle library,

3 As CPF is not yet extended to handle confluence proofs, hence confluence and convergence proofs
output Coq scripts instead of CPF.

Contejean et al. 7

Listing 6 Coq script structure (notations are simplified).

1 Require Import equational_theory... (* Preamble: require coccinelle files. *)
2 Module algebra.
3 Module F <:term_spec.Signature. (* Signature definition *)
4 Inductive symb:Set := plus: symb | S: symb | O: symb. (* Symbols *)
5 ...
6 End F.
7 Module Alg := term.Make(F)(IntVars) (* Algebra by functor instantiation *)
8 End Algebra.
9

10 Inductive R_rules: term → term → Prop := (* Definition of the TRS *)
11 |R_rule0: R_rules (Var 1) (Term plus [Term O [];Var 1]) (* plus(O,x)→x *)
12 |R_rule1: R_rules (Term S [Term plus [Var 1;Var 2]]) (* plus(S(x),y)→S(plus(x,y)) *)
13 (Term plus [Term S [Var 1];Var 2]).
14
15 Module WF_R.
16 ... (* Criteria application proofs *)
17 Lemma wf: well_founded (one_step R_rules). (* Main termination lemma *)
18 ...
19 Qed.
20 End WF_R.
21 Module Confluence := Newman.Confluence(...).
22 ...
23 Lemma confluence: ∀ x, Newman.confluence _ (one_step R_rules) x.
24 ... (* Joinability of critical pairs. *)
25 Qed.

which allows for deep and shallow embeddings of the theory of rewriting. Relying on a deep
embedding to reuse generic theorems instead of reproving them for each instances is usually
faster. However it is interesting to notice that CiME does use both embeddings depending
on the proofs performed. We claim in particular that avoiding an actual deep representation
of the dependency graph is very efficient from a computational point of view, as presented
in [8]. Listing 6 illustrates the fact that the formalisation is partly shallow: on the one
hand, symbols and rewriting rules are defined by new inductive types (symb and R_rules),
on the other hand, term structure and rewriting relations rely on generic deep definitions
(Term, Var and one_step). However, depending on the content of the proof, a deep version
of R_rules, automatically proved equivalent, is defined when needed.

3.2 Structure of a Proof
Listing 6 presents an excerpt of the proof of convergence for the example in Listing 1.
It displays in particular the general structure of a proof script for certification using the
A3PAT approach. Symbols (line 4) and algebra (line 7) are defined at the beginning of
the file, followed by the definition of the system itself (line 10).4 The main lemma for
termination is at the end of the last termination related module: WF_R. The proofs related to
the instances of the different criteria mentioned in the input trace are formalised and proved
in a (nested) sequence of modules (from line 16), thus mirroring roughly the structure of
proof tree described in [4].

4 Notice that R_rules t u means that u rewrites to t.

RTA’11

8 CiME3

Eventually, the confluence proof may be generated with or without an actual proof of
termination (in the latter case, the confluence is proved on the assumption that the system
terminates). As termination is shown in our example, there is no assumption in Listing 6.

To compile the script, and thus to ensure its validity, one must have the Coccinelle
library installed, and a shell variable COCCINELLE set to its root directory. The last lines of
the generated Coq file contains the coqc command line to run.

3.3 Batch Mode Command Line Options
In batch mode CiME takes an input file in a specified format, and returns a result file in a
specified output format. The whole process may include proof searches and/or generation
of Coq scripts. Options -term/-noterm and -confl/-noconfl specify which properties
must be considered or not. Input options include: -itrs (-isrs) for TRS (SRS) (non XML)
formats, -itptp for TPTP format,5 -icime for CiME language, and -icpf for CPF for-
mat. Similarly, output options include: -ocpf, -ocoq, and -ocime (outputs the global
environment in CiME format).

Listing 7 Sample command lines.

1 cime -itrs foo.trs -term -ocpf foo.cpf
2 cime -icpf foo.cpf -ocoq foo.v
3 cime -itrs foo.trs -term -ocoq foo.v
4 cime -itrs foo.trs -term -confl -ocoq foo.v
5 cime -icime preamble.cim3 -itrs foo.trs -term -confl -ocoq foo.v
6 cime -icime preamble.cim3 -noterm -confl -itrs foo.trs -ocoq foo.v

Line 1 asks for a termination proof for the system in file foo.trs and then generates its
CPF trace into foo.cpf. Line 2 generates the Coq script foo.v to certify CPF trace
foo.cpf. Line 3 is equivalent to line 1 followed by line 2 (no CPF file is generated). Line 4
additionally generates the Coq proof of confluence. Line 5 is similar to 4 but loads a
preamble in CiME format before proof search, this is a usual way to set parameters in
batch mode. Line 6 produces a Coq confluence proof parameterised by a proof of termi-
nation (not discovered). All these options may finally be chained in one command line:
cime -noconfl -itrs foo1.trs -ocpf foo1Term.cpf -confl -ocoq foo1TermConf.v\

-icpf foo2.cpf -ocoq foo2Term.v -noterm -ocoq foo2Conf.v
This asks for a termination proof for the system in foo1.trs, generates the corresponding
CPF file foo1Term.cpf, then produces (without any new search) a termination and conflu-
ence Coq proof foo1TermConf.v. It then generates the Coq script foo2Term.v to certify
the CPF trace foo2.cpf, and build script foo2Conf.v to certify the confluence of the TRS
in foo2.cpf. The last proof is parameterised by a proof of termination (not computed).

3.4 Experiments
The following tables present some experiments run on a 24GB machine equipped with 12
cores and running Linux. The base for termination is the category TRS (taken raw) of
the TPDB 5.0 consisting of 2506 problems;6 11 simultaneous processes are allowed. Local
confluence and convergence tests are run on the 1155 problems that are proved terminating
within the global time limit, set to 180s. The version of Coq is the 8.3 release.

5 www.tptp.org up to version 4.
6 In particular strategies are not taken into account.

www.tptp.org

Contejean et al. 9

The vast majority of termination proofs are discovered within 10s, and 30% within 1
10 s.

Regarding certification, the compilation of Coq script is slow compared to certification by
extracted tools like CeTA. However, 730 termination proofs are certified within 180s, of
which 78% within a minute. The only failures observed (out of this run) are due to time or
memory limitations. Regarding local confluence and convergence, 310 proofs of convergence
are discovered, 306 of which are certified within the time limit. The average compile time for
convergence is less than 17s. Over 53% of the convergence proofs are certified within 10s.

Discovery < 0.1s < 1s < 10s
Term. 1155 354 730 1012
Confl. 310 287 310 —

Certification < 5s < 10s < 30s < 60s
Term. 730 200 293 481 573
Confl. 306 157 234 287 299
Conv. 306 53 164 271 293

It is difficult to compare certifiers from the result of the certified termination competition.
Firstly, CiME was the only certifier targeted to Coq participating in 2010. Secondly, the
number of proofs that certifiers have validated essentially reflects the certifiers accordance
to the provers’ proving strategy, as they formalise criteria/orderings that are distinct.

4 Resources and Perspectives

CiME3 is an open source piece of software; it is available under the CeCiLL-C licence on the
resources page of the A3PAT project: http://a3pat.ensiie.fr/pub. The web site provides
ELF executables for 64 bit architectures, a tarball of the sources and installation instructions,
as well as a short user-manual (http://a3pat.ensiie.fr/pub/manual-cime3.html), and
a script tool to ease benches and tests over databases of problems. Note that it is also
possible to give CiME3 a try online through a dedicated web interface with a limited choice
of options at http://a3pat.ensiie.fr/online. The companion library Coccinelle is
also available from this page, and requires version 8.3 of the Coq proof assistant.

Perspectives regards proof and certification engines. Some proof discovery techniques im-
plemented in CiME 2 have not been transferred yet, notably termination modulo equational
theories and modular techniques, including usable rules refinements.

Regarding certification techniques for termination, a short term perspective is the han-
dling of arctic matrices, min/max polynomials, usable rules, and proofs under strategies, as
all the formal material is ready in Coccinelle.

Acknowledgements The authors would like to thank the anonymous referees for their
fruitful comments and their help in improving the presentation of this article.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
2 F. Blanqui, S. Coupet-Grimal, W. Delobel, S. Hinderer, and A. Koprowski. Color, a coq

library on rewriting and termination. In A. Geser and H. Sondergaard, ed., Extended
Abstracts of the 8th Int. Workshop on Termination, WST’06, Aug. 2006.

3 É. Contejean and P. Corbineau. Reflecting proofs in first-order logic with equality. In
20th Int. Conf. on Automated Deduction, vol. 3632 of LNAI, pp. 7–22, Tallinn, Estonia,
July 2005. Springer.

4 É. Contejean, P. Courtieu, J. Forest, A. Paskevich, O. Pons, and X. Urbain. A3PAT, an
Approach for Certified Automated Termination Proofs. In ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pp. 63–72. ACM, 2010.

RTA’11

http://a3pat.ensiie.fr/pub
http://a3pat.ensiie.fr/pub/manual-cime3.html
http://a3pat.ensiie.fr/online

10 CiME3

5 É. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of Automated
Termination Proofs. In B. Konev and F. Wolter, ed., 6th Int. Symp. on Frontiers of
Combining Systems, vol. 4720 of LNAI, pp. 148–162, Liverpool, UK, Sept. 2007. Springer.

6 E. Contejean, J. Forest, and X. Urbain. Deep-Embedded Unification. Technical Report
1547, Cédric lab., CNAM Paris, France, 2008.

7 É. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination
using polynomial interpretations. Journal of Automated Reasoning, 34(4):325–363, 2005.

8 P. Courtieu, J. Forest, and X. Urbain. Certifying a Termination Criterion Based on Graphs,
Without Graphs. In C. Muñoz and O. Ait Mohamed, ed., 21st Int. Conf. on Theorem Prov-
ing in Higher Order Logics, vol. 5170 of LNCS, pp. 183–198, Montréal, Canada, Aug. 2008.
Springer.

9 P. Courtieu, G. Gbedo, and O. Pons. Improved Matrix Interpretation. In J. van
Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, and B. Rumpe, ed., 36th Conf. on Cur-
rent Trends in Theory and Practice of Computer Science, vol. 5901 of LNCS, pp. 283–295,
Špindlerův Mlýn, Czech Republic, Jan. 2010. Springer.

10 N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science,
17(3):279–301, Mar. 1982.

11 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.

12 C. Fuhs, A. Middeldorp, P. Schneider-Kamp, and H. Zankl. SAT Solving for Termination
Analysis with Polynomial Interpretations. In SAT 07, vol. 4501 of LNCS, pp. 340–354,
May 2007. Springer.

13 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In U. Furbach and N. Shankar, ed., 3rd Int.
Joint Conf. on Automated Reasoning, vol. 4130 of LNCS, pp. 281–286, Seattle, USA,
Aug. 2006. Springer.

14 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

15 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information
and Computation, 199(1-2):172–199, 2005.

16 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and Features.
Information and Computation, 205(4):474–511, 2007.

17 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In
R. Treinen, ed., 20th Int. Conf. on Rewriting Techniques and Applications, vol. 5595 of
LNCS, pp. 295–304, Brasília, Brazil, July 2009. Springer.

18 D. S. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Mathematics Department, Louisiana Tech. Univ., 1979.

19 Z. Manna and S. Ness. On the termination of Markov algorithms. In 3rd Hawaii Int. Conf.
on Systems Sciences, pp. 789–792, Honolulu, USA, 1970.

20 C. Marché and H. Zantema. The Termination Competition. In F. Baader, ed., 18th Int.
Conf. on Rewriting Techniques and Applications, vol. 4533 of LNCS, pp. 303–313, Paris,
France, June 2007. Springer.

21 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving Termination
Using Recursive Path Orders and SAT Solving. In B. Konev and F. Wolter, ed., 6th Int.
Symp. on Frontiers of Combining Systems, vol. 4720 of LNAI, pp. 267–282, Liverpool, UK,
Sept. 2007. Springer.

22 R. Thiemann and C. Sternagel. Certification of Termination Proofs using CeTA. In T. Nip-
kow and C. Urban, ed., 22nd Int. Conf. on Theorem Proving in Higher Order Logics,
vol. 5674 of LNCS, pp. 452–468, Munich, Germany, Aug. 2009. Springer.

	Introduction
	Proof Engines
	Core Language, Termination
	Declarations
	Ordering Parameters
	Criteria and Heuristics
	External Solvers, Parallel Search for Orderings

	Local Confluence, Completion and Convergence

	Certification Engine
	Input, Output
	Structure of a Proof
	Batch Mode Command Line Options
	Experiments

	Resources and Perspectives

