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Abstract. We describe a package to reason efficiently about executable
specifications in Coq. The package provides a command for synthesizing
a customized induction principle for a recursively defined function, and
a tactic that combines the application of the customized induction prin-
ciple with automatic rewriting. We further illustrate how the package
leads to a drastic reduction (by a factor of 10 approximately) of the size
of the proofs in a large-scale case study on reasoning about JavaCard.

1 Introduction

Proof assistants based on type theory, such as Coq [9] and Lego [15], combine
an expressive specification language (featuring inductive and record types) and
a higher-order predicate logic (through the Curry-Howard Isomorphism) to rea-
son about specifications. Over the last few years, these systems have been used
extensively, in particular for the formalization of programming languages. Two
styles of formalizations are to be distinguished:

– the functional style, in which specifications are written in a functional pro-
gramming style, using pattern-matching and recursion;

– the relational style, in which specifications are written in a logic programming
style, using inductively defined relations;

In our opinion, the functional style has some distinctive advantages over its rela-
tional counterpart, especially for formalizing complex programming languages.
In particular, the functional style offers support for testing the specification and
comparing it with a reference implementation, and the possibility to generate
programs traces upon which to reason using e.g. temporal logic. Yet, it is strik-
ing to observe that many machine-checked accounts of programming language
semantics use inductive relations. In the case of proof assistants based on type
theory, two factors contribute to this situation:

– firstly, type theory requires functions to be total and terminating (in fact,
they should even be provably so, using a criterion that essentially captures
functions defined by structural recursion), therefore specifications written in
a functional style may be more cumbersome than their relational counter-
part;



– secondly, a proof assistant like Coq offers, through a set of inversion [10, 11]
and elimination tactics, effective support to reason about relational specifi-
cations. In contrast, there is no similar level of support for reasoning about
executable functions.

Here we address this second issue by giving a package that provides effective sup-
port for reasoning about complex recursive definitions, see Section 2. Further,
we illustrate the benefits of the package in reasoning about executable specifica-
tions of the JavaCard platform [3, 4], and show how its use yields compact proofs
scripts, up to 10 times shorter than proofs constructed “by hand”, see Section 3.
Related work is discussed in Section 3. We conclude in Section 5.

2 Elimination principles for functions

2.1 Elimination on inductive types and properties

One of the powerful tools provided by proof assistants like Coq for reasoning on
inductive types is the elimination principle, which is usually generated automat-
ically from the definition of the type. We see here the definition in Coq of the
type nat and the type of its associated principle:

Inductive nat : Set := O : nat | S : nat→nat.
nat_ind:
(P: nat→Prop) (P O) → ((n:nat)(P n)→(P (S n))) → (n:nat)(P n).

The logical meaning of an elimination principle attached to an inductive type
T is that closed normal terms of type T have a limited set of possible forms,
determined by the constructors of T . It also captures the recursive structure of
the type. It is important to notice that elimination principles are nothing else
than recursive functions, for example the definition of nat_ind is the following:

[P: nat→Prop; f:(P O); f0:((n:nat)(P n)→(P (S n)))]
Fixpoint F [n:nat] : (P n) :=

<[x:nat](P x)> Cases n of O ⇒ f
| (S n0) ⇒ (f0 n0 (F n0))

end}

The expression <[x:nat](P x)> is a specific type scheme for dependently
typed case expressions (dependent types are necessary to represent predicates
like P). It is used to build case branches having different types, provided that
each one corresponds to the scheme applied to the corresponding pattern. For
example the first branch is correct because ([x:nat](P x) O)=(P O). Sim-
ilarly the second case is accepted because (f0 n0 (F n0)) has type (P (S
n0)), which is equal to ([x:nat](P x) (S n0)).

The type of the whole case expression is obtained by applying the scheme to
the term on which the case analysis is done, here n, i.e. (P n).

Reasoning by elimination on an inductive property P can be understood
intuitively as reasoning by induction on the proof of P . We see here the principle
associated to the relation le:



Inductive le [n : nat] : nat→Prop :=
le_n : (le n n)

| le_S : (m:nat)(le n m)→(le n (S m)).

le_ind: (n:nat; P:(nat→Prop))
(P n) → ((m:nat)(le n m)→(P m)→(P (S m)))

→ (m:nat)(le n m)→(P m).

Suppose we are trying to prove (P m) for all m such that H:(le n m), we
can apply the theorem le_ind, which leads to two subgoals corresponding to
the possible constructors of le. This way of reasoning, which has proved to be
very useful in practice, makes relational specifications a popular solution.

2.2 Elimination following the shape of a function

Basic idea When we choose a functional style of specification, recursive func-
tions are used instead of inductive relations and elimination principles are usu-
ally not automatically available. However, once a function is defined (i.e. proved
terminating which is automatic in Coq for structural recursion) it is relatively
natural to build an induction principle, which follows its shape. It allows reason-
ing by induction on the possible branches of the definition of the function. Since
the new term follows the same recursive calls as the function, we know that this
new term defines a correct induction scheme and that it will be accepted by Coq.
For example the following function:

Fixpoint isfourtime [n:nat] : bool :=
Cases n of | O ⇒ true

| (S S S S m) ⇒ (isfourtime m)
| _ ⇒ false

end.

yields an induction principle with a nested case analysis of depth 5. Redoing all
the corresponding steps each time we want to consider the different paths of the
function would be long and uninteresting (see Section 3 for more examples).

We have designed a Coq package allowing automation of the inductive/case
analysis process. According to the Coq paradigm, our package builds proof terms
in the Curry-Howard philosophy. Surprisingly the presence of proof terms is help-
ful: since functions and proofs are all represented by λ-terms, we can build proof
terms by transforming the term of the function we consider. Since moreover we
focus on functions defined by structural recursion (see Section 4.2 for extension to
more general recursion schemes), termination of the function (and consequently
the correctness of the elimination principles we generate) is ensured by the type
checking of Coq.

The proof of a property ∀x.P using isfourtime as a model will be a term
Q obtained by transforming isfourtime (notice how implicit cases have been
expanded):

Fixpoint Q [n:nat]: P :=
<[x:nat](P x)> Cases n of



| O ⇒ (?: (P O))
| (S O) ⇒ (?: (P (S O)))
| (S S O) ⇒ (?: (P (S S O)))
| (S S S O) ⇒ (?: (P (S S S O)))
| (S S S S m) ⇒ ((?:(x:nat)(P x)→(P (S S S S x))) m (Q m))

end.

where the five (?:H) stand for properties H yet to be proved (subgoals). In
Subsection 2.5 we concentrate on the structure of this incomplete term and its
automatic generation from the definition of the function.

Once built, this incomplete term can be applied to a particular goal with
the Refine tactic, or completed into a general reusable induction principle.
To achieve the latter, we replace the ?’s by abstracted variables (Hypx in the
example below). We also abstract the predicate (P) and finally obtain a general
principle. On our example this leads to:

[P:(nat→Prop); Hyp0:(P O); Hyp1:(P (S O));
Hyp2:(P (S (S O))); Hyp3:(P (S (S (S O))));
Hyp4:(x:nat) (P x) → (P (S (S (S (S x)))))]

Fixpoint Q [n:nat]: P :=
<[x:nat](P x)> Cases n of
| O ⇒ Hyp0
| (S O) ⇒ Hyp1
| (S S O) ⇒ Hyp2
| (S S S O) ⇒ Hyp3
| (S S S S m) ⇒ Hyp4 m (Q m)
end

: (P:(nat→Prop)) (P O) → (P (S O)) → (P (S (S O)))
→ (P (S (S (S O)))) → ((x:nat) (P x) → (P (S (S (S (S x))))))
→(n:nat)(P n)

This term is well-typed and thus defines a correct induction principle.

Capturing the environment of each branch In the examples above subgoals
contain nothing more than induction hypotheses, but generally this will not be
enough. Indeed, we need to capture for each subgoal the environment induced
by the branches of Cases expressions which have been chosen. We illustrate this
situation with the following function (which computes for every n the largest
m ≤ n such that m = 4k for some k):

Fixpoint findfourtime [n:nat]: nat :=
Cases n of
| O ⇒ O
| (S m) ⇒

Cases (isfourtime n) of
| true ⇒ n
| false ⇒ (findfourtime m)
end

end.



In this case it is necessary to remember that in the first branch n=O, in
the second branch n=O and (isfourtime n)=true and in the third branch
(isfourtime n)=false. Otherwise it will be impossible to prove for example
the following property:

P ≡ ∀n:nat.(isfourtime (findfourtime n)) = true.

Finally the proof of the elimination principle generated from findfourtime

has the form:
Fixpoint Q2 [n:nat]: (P n) :=
(<[x:bool](isfourtime n)=x → (P n)>
Cases n of
| O ⇒ (?:(P O))
| (S m) ⇒
<[b:bool](isfourtime (S m))=b→(P (S m))>
Cases (isfourtime (S m)) of
| true ⇒ (?:(isfourtime (S m))=true→(P (S m)))
| false ⇒ (?:(P m)→(isfourtime (S m))=false→(P (S m))) (Q2 m)
end (refl_equal bool (isfourtime (S m))))

end

where (reflequal bool (isfourtime (S m))) is the proof of the differ-
ent equalities induced by the case analysis. Recall that reflequal is the con-
structor of the inductive type eq representing the equality, so {(reflequal A x)}

is of type (eq A x x)).
These proofs are gathered outside the case expression so as to obtain a well-

typed term. This point is subtle: equality proofs have the form (reflequal
bool (isfourtime (S m))), which is of type (isfourtime (S m))=(isfourtime
(S m)). We see therefore that to be accepted by the case typing rule ex-
plained above, we must apply this term to a term of type (isfourtime (S
m))=(isfourtime (S m))→ (P (S m)). This is the type of the whole case
expression, but not of each branch taken separately. So moving the reflequal
expression inside the Cases would result in an ill-typed term.

2.3 Contents of the package

The main components of the package are:

– A Coq command Functional Scheme which builds a general induction prin-
ciple from the definition of a function f . It is a theorem of the form:

(P : (∀xi : Ti.P rop))(H1 : PO1)...(Hn : POn)→ ∀xi : Ti.(P xi)

where the POi’s are the proof obligations generated by the algorithm de-
scribed above, and xi’s correspond to the arguments of f . To make an elim-
ination, the user just applies the theorem. The advantage of this method is
that the structure of the function (and its type checking) is not duplicated
each time we make an elimination;

– A tactic Analyze which applies the above algorithm to a particular goal.
This tactic allows for more automation, see for that section 2.6.



2.4 Using the package on an example

We now prove the following property:

P ≡ ∀n:nat.(findfourtime n) ≤ n

Using the tactic Analyze. In order to benefit from the rewriting steps of the
tactic, we first unfold the definition of the function, and then apply the tactic:

Lemma P:(n:nat)(le (findfourtime n) n).
Intro n. Unfold findfourtime.
Analyze findfourtime params n.

At this point we have the following three subgoals corresponding to the three
branches of the definition of findfourtime, notice the induction hypothesis
on the last one:

1: (le O O)

2: [(isfourtime (S m))=true] ` (le (S m) (S m))

3: [(le (findfourtime m) m); (isfourtime (S m))=false]

` (le (findfourtime m) (S m))

Each of these subgoals is then proved by the Auto tactic.

Using the general principle. We set:

Functional Scheme findfourtime_ind := Induction for findfourtime.

Then the proof follows the same pattern as above:

Lemma Q’:(n:nat)(le (findfourtime n) n).
Intro n. Unfold findfourtime.
Elim n using findfourtime_ind.

Again we have three subgoals:
1: (le O O)

2: [eq:(isfourtime (S m))=true]

` (le (if (isfourtime (S m))

then (S m) else (findfourtime m)) (S m))

3:[(le (findfourtime m) m); eq:(isfourtime (S m))=false]

` (le (if (isfourtime (S m))

then (S m) else (findfourtime m)) (S m))

We see that some rewriting steps must be done by hand to obtain the same
result than with the tactic. Finally the whole script is the following:

Lemma Q’:(n:nat)(le (findfourtime n) n).
Intro n. Unfold findfourtime.
Elim n using findfourtime_ind;Intros;Auto;Rewrite eq;Auto.
Save.

In more complex cases, like in section 3.2, the rewriting operations done by the
Analyze tactic make the script significantly smaller than when using the general
principle.



2.5 Inference system

In this subsection, we give an inference system to build an elimination princi-
ple for a particular property G from a function t. The main goal of this sys-
tem is to reproduce the structure of the term t, including Case, Fix, let and
λ-abstractions, until it meets an application, a constant or a variable. The re-
maining terms are replaced by proof obligations whose type is determined by the
Case, Fix, let and λ-abstractions from above. The result of this algorithm is
an incomplete term, like Q2 above, from which we can either apply the Refine
tactic or build a general principle.

Grammar Coq’s internal representation of the expressions of the Calculus of
Inductive Constructions (CIC) is given in Figure 1. Although our package deals
with mutually recursive functions, we omit them from the presentation for clarity
reasons. The construction Ind(x : T ){T }, where T stands for a vector of terms
(types actually), is an inductive type whose n-th constructor is denoted by Cn,T

(in the sequel we often omit T ). In the Fix expression X is bound in f and
corresponds to the function being defined, t is its type and f is the body of the
function. In the Case expression ti’s are functions taking as many arguments as
the corresponding constructors take, see [16, 17].

Judgment Judgments are of the form: t,X,G, Γ1, Γ2 ` P where t is the function
to use as a model, X is the variable corresponding to the recursive function
(bound by Fix in t, used to find recursive calls), G is the property to be proved
(the goal), Γ1 is the list of bound variables (initially empty), Γ2 is the list of
equalities corresponding to the case analysis, and P is the proof term of the
principle. When proving a property G, we build a term P containing proof
obligations represented by (? : T ) where T is the awaited property (i.e. type)
that must be proved.

Rules are given in Figure 2. In the last rule, (X ti) represents all recursive
calls found in t. In the present implementation, no nested recursion is allowed.
In the rule (Case), we note (Ci xi) the fully applied constructor Ci.

2.6 More automation

We can use the equalities generated by the tactic to perform rewriting steps
automatically, thereby reducing the user interactions to achieve the proof.

– First, we can rewrite in the generated hypothesis of each branch. We give
a modified version of the (Case) rule in figure 3, where Γ2[E ← Ci(xi)] is
the set of equalities Γ2 where E has been replaced by Ci(xi) in the right
members.



Variables : V ::= x, y . . .
Sorts: S ::= Set | Prop | Type
Terms: T ::= V | S | λV : T.T | ∀V : T.T | (T T )

| Fix(V, T, T ) | Case T of T end | let T = T in T
| Ind(x : T ){T } | Cn,T

Fig. 1. Syntax of terms of CCI

t,X, G, x : T ∪ Γ1, Γ2 ` P
λx : T.t, X, G, Γ1, Γ2 ` λx : T.P

(Lambda)

∀i.{ti, X, G, xi : Ti ∪ Γ1, E = (Ci xi) ∪ Γ2 ` Pi}
Case E of ti end, X, G, Γ1, Γ2

` (Case E of Pi end (reflequal TE E))

(Case)

t,X, G, xi : Ti ∈ u ∪ Γ1, u = v ∪ Γ2 ` P
let u = v in t, X, G, Γ1, Γ2 ` let u = v in P

(Let)

f,X,G, Γ1, Γ2 ` P
Fix(X,T, f), _, G, Γ1, Γ2 ` Fix(X,G, P )

(Fix)

(X ti) ∈ t
t,X,G, Γ1, Γ2 ` ((? : ∀Γ1.X ti → Γ2 → G) Γ1)

(Rec)

if t 6= Fix, Case,let or λx : T.t.

Fig. 2. Elimination algorithm

∀i.{ti[E ← Ci(xi)], X, G, xi : Ti ∪ Γ1, E = (Ci xi) ∪ Γ2[E ← Ci(xi)] ` Pi}
Case E of ti end, X, G, Γ1, Γ2

` (Case E of Pi end (reflequal TE E))

(Case)

Fig. 3. (Case) rule with rewriting



– Second, we can propagate these rewriting steps in the goal itself. This is
possible in the tactic Analyze, where we call the Rewrite tactic of Coq,
which performs substitutions in the goal, with the set of equalities Γ2.
As Coq provides a mechanism for folding/unfolding constants, it is possible
that rewriting steps become possible later during the proofs of the generated
subgoals. This is specially true when dealing with complex specifications
where unfolding all definitions is not comfortable. Therefore we also provide
a rewriting database that contains all the equalities of Γ2 for each branch.
The database can be used later with the AutoRewrite tactic.

– Third, we can optimize the Analyze tactic in the particular case of a non
recursive function applied to constructor terms, i.e. terms of which head
symbol is a constructor of an inductive type. For example, suppose we have
a goal of the form:

(n:nat)(P (f O (S (S (S n)))))

Where f is a non recursive function. It is clear that we do not want to
consider all possible constructors for the arguments of f. For example the
case (f (S ...) ...) is not interesting for us. The idea is to focus on
the case branch corresponding to the constructors. We use a simple trick
to achieve this: we apply the function to its arguments and reduce. The
resulting term is a new function containing only the relevant case analysis.
We apply the tactic to this term instead of the initial function.
Note that this optimization is hardly useful for recursive functions because
some recursive hypothesis can be lost when focusing on a particular branch.

3 Applications to JavaCard

In this section, we illustrate the benefits of our package in establishing correctness
results for the JavaCard platform. Note that for the clarity of presentation, the
Coq code presented below is a simplified account of [3, 4].

3.1 Background

JavaCard is a dialect of Java tailored towards programming multi-application
smartcards. Once compiled, JavaCard applets, typically electronic purses and
loyalty applets, are verified by a bytecode verifier (BCV) and loaded on the
card, where they can be executed by a JavaCard Virtual Machine (JCVM).

Correctness of the JavaCard platform The JCVM comes in two flavours: a de-
fensive JCVM, which manipulates typed values and performs type-checking at
run-time, and an offensive JCVM, which manipulates untyped values and relies
on successful bytecode verification to eliminate type verification at run-time.
Following a strategy streamlined in [14], we want to prove that the offensive and
defensive VMs coincide on those programs that pass bytecode verification. This
involves:



– formalizing both VMs, and show that both machines coincide on those pro-
grams whose execution on the defensive VM does not raise a type error;

– formalizing a BCV as a dataflow analysis of an abstract VM that only ma-
nipulates types and show that the defensive VM does not raise a type error
for those programs that pass bytecode verification.

In both cases, we need to establish a correspondence between two VMs. More
precisely, we need to show that the offensive and abstract VMs are sound (non-
standard) abstract interpretations of the defensive VMs, in the sense that under
suitable constraints “abstraction commutes with execution”.

CertiCartes [3, 4] is an in-depth feasibility study in the formal verification of the
JavaCard platform. CertiCartes contains formal executable specifications of the
three VMs (defensive, abstract and offensive) and of the BCV, and a proof that
the defensive and offensive VM coincide on those programs that pass bytecode
verification. The bulk of the proof effort is concerned with the soundness of the
offensive and abstract VMs w.r.t. the defensive VM. In our initial work, such
proofs were performed by successive unfoldings of the case analyses arising in
the definition of the semantics of each bytecode, leading to cumbersome proofs
which were hard to produce, understand and modify. In contrast, the Analyze
tactic leads to (up to 10 times) smaller proofs that are easier to perform and
understand, as illustrated in the next subsections.

3.2 Applications to proving the correspondence between virtual
machines

In order to establish that the offensive VM is a sound abstraction of the de-
fensive VM, one needs to prove that abstraction commutes with execution for
every bytecode of the JavaCard instruction set. In the particular case of method
invocation, one has to show:

nargs:nat
nm: class_method_idx
state: dstate
cap:jcprogram
=========================================
let res=(dinvokevirtual nargs nm state cap) in
let ostate=(alpha_off state) in
let ores=(oinvokevirtual nargs nm ostate cap)
in (INVOKEVIRTUAL_conds res) → (alpha_off res) = ores

where:

– the abstraction function alpha_offmaps a defensive state into an offensive
one;

– the predicate INVOKEVIRTUAL_conds ensures that the result state res is
not a type error;

– the functions dinvokevirtual and oinvokevirtual respectively de-
note the defensive and offensive semantics of virtual method invokation.



The definition of dinvokevirtual is:
Definition dinvokevirtual :=
[nargs:nat][nm:class_method_idx][state:dstate][cap:jcprogram]

(∗ The i n i t i a l s t a t e i s decomposed ∗)
Cases state of
(sh, (hp, nil)) ⇒ (AbortCode state_error state) |
(sh, (hp, (cons h lf))) ⇒

(∗ nargs must be grea ter than zero ∗)
Cases nargs of
O ⇒ (AbortCode args_error state) |
(S _) ⇒

(∗ Extract ion of the ob j e c t re f e rence ( the nargsth element ) ∗)
Cases (Nth_func (opstack h) nargs) of
error ⇒ (AbortCode opstack_error state) |
(value x) ⇒

(∗ Tests i f t h i s element i s a re ference ∗)
Cases x of
((Prim _), vx) ⇒ (AbortCode type_error state) |
((Ref _), vx) ⇒

(∗ t e s t s i f the re ference i s nu l l ∗)
(if (test_NullPointer vx)
then (ThrowException NullPointer state cap)
else

(∗ Extract ion of the re ferenced ob j e c t ∗)
Cases (Nth_func hp (absolu vx)) of
error ⇒ (AbortMemory heap_error state) |
(value nhp) ⇒

(∗ Get the corresponding c l a s s ∗)
Cases (Nth_elt (classes cap) (get_obj_class_idx nhp)) of
(value c) ⇒

(∗ Get the corresponding method ∗)
Cases (get_method c nm) of
(∗ Succe s s fu l method c a l l ∗)
(value m) ⇒ (new_frame_invokevirtual nargs m nhp state cap) |
error ⇒ (AbortCap methods_membership_error state)
end |

_ ⇒ (AbortCap class_membership_error state)
end end) end end end end.

In our initial work on CertiCartes, such statements were proved “by hand”,
by following the successive case analyses arising in the definition of the semantics
of each bytecode. The proofs were hard to produce, understand and modify. In



contrast, the Analyze tactic leads to smaller proofs that are easier to perform
and understand. For example, the following script provides the first steps of the
proof:

Simpl.
Unfold dinvokevirtual.
Analyze dinvokevirtual params nargs nm state cap.

At this point, nine different subgoals are generated, each of them corresponding
to a full case analysis of the function. In the case of a successful method call,
the corresponding subgoal is:

...
_eg_8 : (get_method c nm)=(value m)
_eg_7 : (Nth_elt (classes cap) (get_obj_class_idx nhp))

=(value c)
_eg_7 : (Nth_func hp (absolu vx))=(value nhp)
_eg_6 : (test_NullPointer vx)=false
_eg_5 : t=(Ref t0)
_eg_4 : x=((Ref t0),vx)
_eg_3 : (Nth_func (opstack h) (S n))=(value ((Ref t0),vx))
_eg_2 : nargs=(S n)
_eg_1 : state=(sh,(hp,(cons h lf)))
...
H : (INVOKEVIRTUAL_conds
(new_frame_invokevirtual (S n) m nhp (sh,(hp,(cons h lf))) cap))

=========================================
(alpha_off
(new_frame_invokevirtual (S n) m nhp (sh,(hp,(cons h lf))) cap))

=(oinvokevirtual (S n) nm (alpha_off (sh,(hp,(cons h lf)))) cap)

This goal, as all other goals generated by the tactic, can in turn be discharged
using rewriting and some basic assumptions on the representation of JavaCard
programs.

3.3 Applications to proving memory invariants

In order to establish that the abstract VM is a sound abstraction of the defensive
VM, one needs to establish a number of invariants on the memory of the virtual
machine, for example that executing the abstract virtual machine does not create
illegal JavaCard types such as arrays of arrays. Proving such a property is tedious
and involves several hundreds of case analyses, including a topmost case analysis
on the instruction set. In the case of the load bytecode, one is left with the goal:

s : astate
t : type
l : locvars_idx
==================================================
(legal_types s) → (legal_types (tload t l s))



Whereas a proof “by hand” leaves the user with 29 subgoals to discharge, an
application of the Analyze tactic leaves the user with 3 subgoals to discharge,
namely the three interesting cases corresponding to the successful execution of
the tload bytecode. In such examples, the use of our tactic reduces the size of
proof scripts by a factor of 10.

4 Extensions and related work

4.1 Related work

Our work is most closely related to Slind’s work on reasoning about terminating
functional programs, see e.g. [20] where Slind presents a complete methodology
to define a function from a list of equations and a termination relation. This
relation is used to generate termination conditions, which need to be discharged
to prove that the rewrite system defined by the equations terminates. From the
proofs of the termination conditions, Slind automatically synthesizes an induc-
tion principle for the function. Slind’s induction principle is closely related to
ours but there are some differences:

– Slind’s work focuses on proof-assistants based on higher-order logic, in par-
ticular on Isabelle [18] and HOL [13], that do not feature proof terms. In
our framework, objects, properties and proofs are all terms of the Calculus
of Inductive Constructions, and hence we need to provide a proof term for
the customized principle attached to the function. As pointed out in Section
2, the construction of the proof term can be done directly by transforming
the term corresponding to the function;

– Slind’s work provides for each total and terminating function f a generic
induction principle that can be used to prove properties about f. In contrast,
the tactic Analyze starts from the property to be proven, say φ, and proceeds
to build directly a proof of φ by following the shape of the definition of
f. Eventually the tactic returns some proof obligations that are required
to complete the proof of φ. This allows our package to perform rewriting
and other operations during the building of the proof, leading to a drastic
increase in automation. Since similar proof terms are constructed every time
one applies the tactic on the function f, it could be argued that such a
feature is costly in terms of memory. However, we have not experienced any
efficiency problem although our JavaCard development is fairly large;

– Slind’s work provides support for well-founded and nested recursion, which
our package does not handle currently.

Our work is also closely related to the induction process defined by Boyer
and Moore. In Nqthm [8], the directive INDUCT (f v1...vn) can be used
during a proof to perform the same case analysis and recursion steps as in the
definition of f. An interesting feature that we do not handle in this paper is the
ability of merging different functions into one single induction principle.

These works, as well as ours, aims at providing efficient support for reasoning
about executable specifications. An alternative strategy consists in developing



tools for executing specifications that may be relational, at least in part. For ex-
ample, Elf [19] combines type theory and logic programming and hence provides
support for executing relational specifications. Further, there have been some
efforts to develop tools for executing specifications written in Coq, Isabelle or
related systems. In particular some authors have provided support for executing
relational specifications: for example Berghofer and Nipkow [5] have developed
a tool to execute Isabelle theories in a functional language, and used it in the
context of their work on Java and JavaCard. Conversely, some authors have
provided support to translate executable specifications into input for proof as-
sistants: for example, Terrasse [21, 22] has developed a tool to translate Typol
specifications into Coq. However, we believe that executable specifications are
better suited for automating proofs, especially because they lend themselves well
to automated theorem-proving and rewriting techniques.

A third possible strategy would consist of relating relational and functional
specifications. For example, one could envision a tool that would derive automat-
ically from a functional specification (1) its corresponding relational specification
(2) a formal proof that the two specifications coincide. Such a tool would allow
the combination of the best of both worlds (one could be using elimination/in-
version principles to reason about relational specifications, and then transfer the
results to functional ones); yet we are not aware of any conclusive experience in
this direction.

4.2 Extensions

As emphasized in the introduction, the main motivation behind the package is
to develop effective tool support to reason about the JavaCard platform. The
following two extensions are the obvious next steps towards this objective:

– support for conditional rewriting rules. We would like to introduce functions
using the format of conditional rewriting rules of [2]. Indeed, this format,
which can be automatically translated into Coq (provided the guard condi-
tions are satisfied), lead to more readable specifications, especially for partial
functions.

– support for inversion principles. We also would like to provide inversion
principles like those that exist for inductive types [10]. Such principles do
not use induction; instead they proceed by case analysis and use the fact
that constructors of inductive types are injective. For example, inversion
principles for functions should allow us to deduce:

x=O ∨ x=(S S S S y)∧((isfourtime y)=true)

from (isfourtime x)=true.
– support for merging. Merging [8] allows to generate a single induction prin-

ciple for several functions. This technique allows to define very accurate
induction principles, that are very useful in fully automated tactics.



From a more general perspective, it would be interesting to provide support for
nested and well-founded recursion. Furthermore, a higher automation of equa-
tional reasoning is required in the proofs of commuting diagrams. One possibility
is to rely on an external tool to generate rewriting traces that are then translated
in Coq. There are several candidates for such tools, including Elan [6] and Spike
[7], and ongoing work to interface them with proof assistants such as Coq, see
e.g. [1].

5 Conclusion

We have described a toolset for reasoning about complex recursive functions in
Coq. A fuller account of the package, including a tutorial, can be found in [12].

In addition, we have illustrated the usefulness of our package in reasoning
about the JavaCard platform. This positive experience supports the claim laid
in [2] that proofs of correctness of the JavaCard platform can be automated to a
large extent and indicates that proof assistants could provide a viable approach
to validate novel type systems for future versions of Javacard.
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