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ABSTRACT

This paper presents a novel approach where distributed
nodes participating to a common infrastructure can mod-
ify in a distributed way a Mandatory Access Control policy
without any central component. This approach is consid-
ered for the security of large shared networks such as secur-
ing distributed stations connected to the Internet. The local
modification enables a node first to adapt its configuration
to the application that has to be deployed on that node, and
second to react to specific attacks that are detected locally.
Moreover, a local approach provides a better fault tolerance
since the policy update does not rely on a central compo-
nent. The general idea is to have a common shared policy
including protection rules plus modification rules. A modi-
fication rule enables a node first to modify existing protec-
tion rules and second to add new types, roles and users in
the system in order to define new rules. A modify rule pro-
vides also the ability to suppress types, roles and users from
the protection rules. So, our approach is to have a meta-
control supporting distributed evolutions of local protection
rules. This approach is developed as a joint research project
with INRIA and FT R&D, called ACI SATIN, where veri-
fication techniques will be proposed to verify that the dis-
tributed modifications cannot violate the required security
properties.

Keywords: Internet security, access control, security
management, peer-to-peer.

1 INTRODUCTION

Different approaches exist to carry out Mandatory Ac-
cess Control. Discretionary Access Control has shown its
limits as malicious hackers usually find their way to root
access. The need for stronger control is obvious as now
the focus is on Mandatory Access Control. Access con-
trol management should not be delegated to end-users but
to an independent entity that can be implemented at a ker-
nel level.

There are many models of Access Control, the most
generic being the Lampson model [1] of access matrix. The
classic Bell - La Padula model [2], was inherited from the
military classification model, and implements access con-
trol in a hierarchical way. The classic laws of BLP - No
Read Up, No Write Down - ensure the non-disclosure. The
Biba Integrity model [3] is the dual of BLP and deals with
integrity issues, the No Read Down and No Write Up rules
ensure that objects and subjects cannot access lower in-
tegrity levels in a way that would compromise them. These
models have been heavily criticized and have proven to be
difficult to apply on standard operating systems.

New Access Control models apply much more to mod-
ern operating systems. Role-based Access Control (RBAC)
[4] [5] defines roles, with a given set of permissions, i.e ac-
tions on the operating system, and associates users to roles.
Given a particular role, every access that is not explicitly
authorized should be denied. Also, the Domain and Type
Enforcement model [6] has been designed to allow the spec-
ification of security policies covering many applications.It
associates subjects to domains, and objects to types, where
domains and types are security equivalence classes. Access
Control rules then specify how domains can access types,
and also the domains and types for new subjects and ob-
jects.

This paper presents a novel approach where distributed
nodes can update locally their MAC policies. In contrast
with the other solutions, it enables distributed nodes to up-
date accordingly their local policy while satisfying a com-
mon meta-policy. This approach can serve for distributed
applications relying on a set of Internet nodes. For example,
it can help an Internet provider to protect end user station
while enabling the client to modify locally its policy without
requiring any external control. A central approach would
provide poor fault-tolerance since attackers could carry out
a denial of service on the server. To resist such attacks, each
node has the power to update its policy accordingly while
satisfying a meta security properties that the provider de-
fined.
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We propose a novel framework where distributed nodes
can add, remove or update different attributes of their pro-
tection rules while reusing existing shared attributes and
rules. The important point is that the framework provides
a meta-policy guarantying that the distributed modifications
satisfy a control policy telling who has the right to make lo-
cal modifications and for which attributes and rules. Since
the purpose is to be able to guaranty security properties for
such distributed evolutions, we present a solution for ver-
ifying that the distributed modifications still satisfy some
security properties. Typically, we propose to guaranty that
there is no information flow for non permitted interactions.

This paper first presents the different solutions that can
be compared with our new approach of meta-policy. Sec-
ond, it presents our motivation for defining a framework
for controlling distributed policies. Third, it presents our
approach based upon a language for controlling distributed
modifications of MAC policies. Fourth, we propose a for-
mal approach to show that forbidden information flows can-
not occur for a given meta-policy.

2 RELATED WORKS

Linux Security Modules [7] is a powerful and extensible
architecture that adds security hooks to the Linux kernel.
LSM does not provide any specific control but allows the
implementation of many kinds of access control.

SELinux [8] uses the LSM framework [9] to implement
a fine-grained MAC. The configuration grammar provides
a very configurable and extensible way to define a secu-
rity policy, in particular Role-Based Access Control. The
Flask architecture [10] allows a strong separation between
the security enforcement and the security policy. The Se-
curity Server is a kind of local manager that distributes the
security policy to the Access Vector Cache for performance
improvements.

Despite Flask is not a distributed system, one can imag-
ine extending The system through externalization of the Se-
curity Server, which could then distribute the security pol-
icy to a collection of distant AVCs. The distributed solution
would be similar to the DSI [11] distribution system. The
counterpart of the refinement of the SELinux security pol-
icy is the administration effort required to defined efficient
security rules. The policy language is very expressive but
a deep understanding of SELinux and of the applications
to secure are required to define relevant security rules. In
practice, a hard and time-consuming work is needed to de-
fine security rules for a given application.

Grsecurity [12] can restrict the access rights of specific
subjects, with an ACL system that is relatively rough com-
pared to SELinux. Nevertheless, it is much easier to define
security rules. The real problem is the difficulty to evaluate
the expressiveness of the security language. Moreover, the

prevention system of Grsecurity addresses a really different
purpose. Prevention deals with making really hard the ex-
ploitation of buffer overflows, when MAC deals with con-
tainment for buffer overflows. MAC also deals with other
types of attacks such as social engineering. Actually, the
main limitation is the Poor description of the software de-
sign.

DSI [11] does not address primarily the completeness of
the access control but the capability to distribute a security
policy among a group of nodes. The security language is
very simple as the access control is limited to a subset of
the system calls. In contrast with the three previous solu-
tions, DSI is the only solution dealing with the distribution
of a security policy, but it relies on a centralized approach,
without advanced recovery solutions. For example, a rout-
ing attack could separate nodes from the server. Even in
case of server replication, nodes could be prevented from
receiving updates for the security policy, thus making the
policy distribution ineffective. Moreover, various formsof
DoS attacks could also prevent the server from updating the
security policy.

Extensions have been proposed to cover organizational
features. In OrBAC [13], the basic idea is to provides a set
of policies entities (role, activity, context, view, subject, ob-
ject, action, organization) that enables to adapt a common
policy to different organizations using organization model
as an extension of role based access control. Inheritance
enables to give a sub-roleR2 the same power than a role
R1. A hierarchy of activity and a hierarchy of organization
can also be defined. All these hierarchies are based on in-
heritance. Since all the basic roles, activities and organiza-
tion are defined globally, there is no facilities to add locally
new roles, subject, object, views and rules while satisfying
a meta-protection. It is more or less a database approach
where all the elements of a hierarchy are globally defined.
So, there is no distributed way to manage locally new pro-
tection attributes. Finally, there is no tool to verify security
properties.

3 META-POLICY FRAMEWORK

3.1 Architecture overview
The architecture of the meta-policy framework is de-

scribed in Figure 1. Basically, it consist of a policy control
component installed on each host of the network. This com-
ponent is an agent in charge of validating the policy updates
against the modification policy.

This agent obtains the modification policy plus a
reusable protection policy from a ”meta-policy bus”, i.e. a
secure communication channel. It can be an encrypted file
on a USB disk, that will then be plugged during the meta-
policy framework deployment on each host, as well as a
secure network protocol allowing distant configuration of
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Figure 1: Architecture overview.

the framework. Every host connected to the same meta-
policy bus recovers thus the same modification policy and
a start-up protection policy. This paper does not detail the
meta-policy bus because various communication tools can
address the transmission of the meta-policy and the hard-
est point is how to define a modification policy and how
to solve the heterogeneity between different target systems
(e.g. SELinux and grsecurity).

The modification policy defines modification rules us-
ing a meta-policy language. These modification rules form
a protection mechanism for controlling the updates of the
protection policy. The main concern is to define a modifi-
cation language enabling to write modification rules. For
simplification, the modification rules can be seen as a meta-
protection matrix. The protection policy contains the cur-
rent protection of the resources that the under-laying MAC
target has to apply. In turn, the protection policy is com-
posed of protection rules. The protection policy is ex-
pressed into a neutral language in order to solve the het-
erogeneity between the different under-laying targets. For
that purpose, a Language Adapter converts the rules defined
with the neutral language into target rules (e.g. SELinux
rules or grsecurity rules). The neutral rules can be seen for
convenience as a protection matrix.

The different nodes, participating to the same distributed
system, share the modification policy. Since the security
policies are modified locally without need of any communi-
cations with a third party or server, two distant policies can
be completely different while satisfying the global security
properties that are defined by the modification policy.

Security policy updates queries are used as input to this
agent. The latter is then responsible for verifying that these
queries are valid accordingly with the modification policy.
How security updates are transmitted is outside the scope of
this paper and it is not the main concern.

3.2 Reusable protection policy
In a general manner such as SELinux, a protection policy

defines a permission between a couple of security context.
Each security context has three attributes role, type and user.

A type defines a set of given subjects or objects. Different
users are considered in the system. These users are MAC
users. Specific MAC users can be projected onto classi-
cal end-user such as Unix users. Finally, a role enables the
same MAC user to play different roles into the system. It
provides a concise mean to define protection rules since the
same role can be played by different MAC users.

A protection rule gives the authorization for a specific
interaction between two security contexts. For example, an
interaction for writing on a raw device is allowed between
a subject security context(R1,T1,U1) and an object secu-
rity context(R2,T2,U2). So, a protection rule is expressed
with a language such as enable(Interaction Type, Subject
Security Context, Object Security Context). That type of
language can be easily projected onto a protection matrix
such as:

scO1 scO2 scO3

scS1 ITA, ITB ITC, ITD, ITE . . .
scS2 . . . . . . . . .
scS3 . . . . . . . . .

For compact coding, each element of that matrix con-
tains a list of permitted interactions. In the sequel, we do
not consider anymore the under-laying protection language.
At the beginning of its lifetime, a node recovers a copy of
the reusable protection rules. Then that copy of the protec-
tion rules can evolve locally becoming thus a completely
new protection rule that could be very different from distant
protection rules.

3.3 Modification policy
This type of rules are not available currently within ex-

isting MAC or RBAC systems. We propose a protection
language for defining the permissions to modify the protec-
tion policy. This language enables 1) to modify the reusable
protection policy and 2) to add/remove/update security con-
texts.

3.3.1 Meta-policy rules for policy modification
A rule enableAddIT(sc, [scS,scO],PVA) allows a given

entity sc to add an authorization for a new interaction (IT)
between the two target security contextsscS andscO, in the
scope ofPVA which is a Permitted Value Array.

The rulesenableRemoveIT and enableModi f yIT re-
spectively control the functionsremoveIT ([scS,scO],PVA)
andmodi f yIT ([scS,scO],PVA).

For example, considerscapache (the security con-
text of the apache process) for which the interac-
tion ITaccept (accept connections) is authorized. The
ruleenableRemoveIT(scIDS, [scapache,sc∗], [accept]) allows
a process with the security contextscIDS to call
removeIT ([scapache,sc∗], [accept]) and to forbid the accep-
tance of new connections by apache. This could be useful
in case an attack is detected by an intrusion detection tool,
to prevent attacks on apache.

3



3.3.2 Meta-policy rules for type, role and user manage-
ment

Three rulesenableCreateT(sc), enableCreateR(sc) and
enableCreateU(sc) allow a given entitysc to create either a
new type, role or MAC user. For example, the addition of a
new application requires the creation of a new type. A user
with a security contextscSU installing this new application
can be granted the right to add new types so that it can be in-
tegrated in the protection policy, by the way of the installer.
A rule such asenableCreateT(scSU ) would be added to the
meta-protection.

Also, new roles or MAC users can be created for the
cases where specific permissions are needed. For exam-
ple, a particular system user may need a read access to a
log file, typically owned by an admin, so a particular role
could be created with that permission so that he can read this
file. The system administrator with security contextscSADM

would be given the right to add users and roles, with these
rules:enableCreateR(scSADM), enableCreateU(scSADM).

We define three more rulesdisableCreateT(sc),
disableCreateR(sc) and disableCreateU(sc), that are the
exact opposite of the create rules. They may be required
to disable certain enable rules, for example in case some
conditions are not satisfied.

The six rules defined previous apply to these three
functions: createT(T,attributes) creates a type where
attributes define its scope;createR(R,types) creates a role
with a set of associated types;createU(U,roles) creates a
MAC user with a set of possible roles.

According to the examples given previously, a user in-
stalling a new application would callcreateT (TA) with TA

being the type of the new application. Adding new users
would be done byscSADM with createU(U1) to create a new
userU1.

Now we define six additional rules, so that types, roles
and users can be removed, and so that their properties can
be changed.

The rules allowing to remove previously defined types,
roles and MAC users are the following:removeT (T ),
removeR(R) andremoveU(U).

The rules allowing to remove previously de-
fined types, roles and MAC users are the following:
changeT(T,attributes) to modify the scope of the type T;
changeR(R,types) to modify the set of types associated to
the role R;changeU(U,roles) to modify the set of possible
roles for user U.

3.4 Neutral policy language
The meta-policy framework doesn’t rely on a specific

MAC mechanism. The fact that different MAC mechanisms
are configured in different ways lead to the creation of a
neutral policy language, that can express a security policy
in a generic way.

The creation of this neutral language has been done by
comparing the semantics of the configuration grammars for
SELinux and grsecurity. The features included in these
grammars have been studied, resulting in a generic language
that can be used to write a policy. This policy can then be
translated to configure the underlying MAC mechanism.

Here is a partial example policy for the apache program,
written using the neutral language (keywords are in french):

autoriser /usr/sbin/apache lire /var/www
autoriser /usr/sbin/apache ecrire /var/log/apache
autoriser /usr/sbin/apache lire /etc/apache
autoriser /usr/sbin/apache setuid

When applied to grsecurity, it would be translated that
way:

/usr/sbin/apache {
/var/www r
/var/log/apache w
/etc/apache r

-CAP_ALL
+CAP_SETUID

connect {
disabled

}

bind {
disabled

}
}

Note that connect and bind are disabled here because we
didn’t specify any rule allowing it. Such rules could be
added easily, but here we can see that, by default, an ap-
plication cannot connect or bind sockets.

3.5 Application to the Internet
Let us give a typical use case in context of an Internet

provider. Typically, consumers will have an offer for the
Internet connection but also for various services. Security
packages become a predominant added-value service. Us-
ing our solution, the Internet provider can propose different
kinds of security services.

First, the provider can set-up a propagation bus between
its proper administration facilities and the various hostsand
network components that are available at the customer lo-
cation. The propagation bus enables to set-up the meta-
protection policies. The reusable protection policy provides
common protection rules controlling the usage of various
resources located at a customer host or network component.
For example, rules can be provided to control the usage of a
Web server available at a customer host. Thus, the Internet
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Figure 2: Local intelligence reacting to malicious code.

provider discharge the customer administrator from the job
of securing network services. Our solution can be imple-
mented on top of MAC kernel such as SELinux or grsecu-
rity. But it can also the integrated as an extensible Access
Control facility on classical Windows station. Our frame-
work provides a generic and extensible solution. It can feet
to the MAC approach has a robust security service. But,
it can also be useful as a flexible Access Control that ex-
tend or wrap classical DAC solutions. Thus the framework
is a common environment that can be projected onto vari-
ous station and network components located at the customer
place.

A modification policy enables updates during a discon-
nection phase. For example, an autonomous agent can learn
the standard behavior of the local machine in order to com-
pute updates for the protection policy (see Figure 2). That
autonomous agent will submit a policy update query to the
control agent in order to modify the protection policy ac-
cording to the modification policy. One can imagine an au-
tonomous agent react locally to specific attacks. It can be
useful to react to some worm that start to close the Internet
connection in order to prevent eradication from the network.
In that case, the autonomous agent will learn which Security
Context normally close the Internet connection and in case
of any change, it will remove an irrelevant Security Context
from the protection rule authorizing the connection closure.
The removed SC has thus high probability to be a malicious
code trying to close abnormally the Internet connection.

4 FORMAL MODEL AND VERIFI-
CATION

Fixed protection rules are represented by a protection
matrix similar to that of SLAT for SELinux [14]. From this
protection matrix, we compute a so-called flow matrix con-
taining information flow data. This transformation is based
on an ad hoc interpretation of the operating system’s ker-
nel. Of course this is an approximation of the real infor-
mation flow because the behavior of particular agents is not
modelized. However reachability in the corresponding in-
formation flow graph (matrix product) provides sufficient

information to detect the possible failure of usual security
properties.

Dynamic protection rules raise a more difficult verifica-
tion problem. In particular it is not sufficient to compute
information flow from a set of fixed protection matrices. In-
deed protection rules may changeat any time during the
information flows. We define the graph nodes as pairs of a
security context x with the current protection matrix R. The
graph’s (forward information flow) edges are the following:

(x,R) → (y,R) if Flow(R)(x,y), whereFlow(R) is the
information flow matrix ofR.

(x,R) → (x,R′) if Meta(R,R′) where theMeta predicate
implements the static meta-policy rules.

From the point of view of information flow verification,
this graph has two more issues compared to the static case:

Firstly, steps of the second kind can occur at any time,
there can be arbitrarily many such steps. To deal with this
issue, we make the same kind of approximation (at meta
protection level) as in verification of static policies: ev-
erything than can be allowed is effectively allowed. More
formally, we will consider the following information flow
graph, whereR is not anymore in the nodes:

x →maxy i f Flow(Rmax)(x,y)

WhereRmaxcontains all allowable information flow:

p ∈ Rmax(x,y) iff (∃R ∈ reachable(Rinit,Meta),R(x,y))

wherereachable(Rinit,Meta) is the set of reachable pro-
tection matrices from the initial one following the static
rules of Meta. This set is not trivial to characterize be-
cause of the possibility to add new security contexts dynam-
ically. Is is easy to see that→max is such that(x,Rinit) →

∗

(x′,R′)⇒ x →∗
maxx′. So verification on this relation is cor-

rect with respect to→.

The second issue is that steps of the second kind may cre-
ate (infinitely many) new security contexts. This makes dif-
ficult the computation ofreachable(Rinit,Meta) andRmax
in general. One important point is that security contexts
having the same permissions and meta permissions will
generate the same transitions in→max. In other words
(meta-)permissions define equivalence classes over secu-
rity contexts. Therefore we focus on theFlow(Rmax) over
equivalence classes, which again is not computable in gen-
eral. In practice however it will be finite or regular, because
there is a finite number of meta protection rules and there-
fore the set of reachableRs is finite or regular depending on
the expressive power of the meta-protection language.

We plan to solve the reachability problem either by theo-
rem proving or application of well chosen reachability algo-
rithms over the relation→maxover equivalence classes. A
preliminary computation ofFlow(Rmax)(x,y) over equiv-
alence classes is necessary.
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5 FUTURE WORKS

Currently, the language to express the meta-protection
rules as been designed. The development is still to be com-
pleted. Also, different communication systems are still un-
der evaluation to carry out the meta-policy transmission for
the meta-policy. For the moment the meta-protection must
be copied manually on each machine.

Regarding the verification system, we still have to define
an underlying communicating process model for the proto-
cols implemented by the kernel for every interaction type.
This will allow 1) the mechanical derivation of the informa-
tion flow matrix from the protection matrix and 2) define
a matrix of interaction protocols with appropriate composi-
tion on which the reflexive-transitive closure would express
concrete scenarios for information flow.
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