
Structural Analysis of Narratives with the Coq
Proof Assistant

Anne-Gwenn Bosser1, Pierre Courtieu2, Julien Forest3, and Marc Cavazza1

1 University of Teesside, School of Computing
http://ive.scm.tees.ac.uk/

2 Conservatoire National des Arts et Métiers, Laboratoire CEDRIC, Equipe CPR
http://cedric.cnam.fr/

3 École nationale supérieure d’informatique pour l’industrie et l’entreprise,
Laboratoire CEDRIC, Equipe CPR

http://cedric.cnam.fr/

Abstract. This paper proposes a novel application of Interactive Proof
Assistants for studying the formal properties of Narratives, building on
recent work demonstrating the suitability of Intuitionistic Linear Logic
as a conceptual model. More specifically, we describe a method for mod-
elling narrative resources and actions, together with constraints on the
story endings in the form of an ILL sequent. We describe how well-formed
narratives can be interpreted from cut-free proof trees of the sequent ob-
tained using Coq. We finally describe how to reason about narratives at
the structural level using Coq: by allowing one to prove 2nd order prop-
erties on the set of all the proofs generated by a sequent, Coq assists
the verification of structural narrative properties traversing all possible
variants of a given plot.

Keywords: Applications of Theorem Provers, Linear Logic, Formal Mod-
els of Narratives

1 Introduction

The formalisation of narratives has attracted interest from researchers from
many disciplines, not solely for their role as knowledge structures [24], but also
for the challenges that their structural properties pose to logical representa-
tions [15, 17]. Narratives extend the logic of actions to provide a framework
in which causal, temporal and resource consumption aspects are intertwined.
Whilst the logical formalisation of actions has become a standard topic in philo-
sophical logic and formal semantics, comparatively little work has addressed the
structure of narratives. Initial hopes of developing computational narratology on
the same basis as computational linguistics using narrative models developed in
the field of humanities [2, 13] have failed due to narratology’s formalisms being
mostly content ontologies rather than logical or computational formalisms [3].

Addressing this problem from a new perspective, we have recently described
in [1] how Linear Logic (LL) [10], and in particular Intuitionistic Linear Logic

2 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

(ILL) [11] can provide a suitable conceptual model for Narratives on a structural
basis. Narratives are modelled as proofs of a sequent written in Linear Logic
which describes initial resources and possible narrative actions. This allows one
to naturally express key properties for Narratives (generation of a variety of sto-
ries, variability in an open-world assumption, and narrative drive with regards
to goals and actions execution) while supporting a return to first principles of
narrative action representation (causality and competition for resources). This
was not merely an attempt at logically encoding a given narrative: on the con-
trary the logical formulation supports the description of possible variants of the
narrative, including alternative endings, which would be logically consistent. In
other words, the ILL formalisation captures the essence of the narrative logic,
not simply the accidentality of a given story. Since the manual exploration of
proofs to discover story variants can be both tedious and error prone, we decided
to support this exploration with proof assistants.

Expanding these early results, we propose here a first step towards the au-
tomation of the structural analysis of narratives using the Coq Proof Assistant.
We describe how to specify narratives on a structural basis only (causality and
resource consumption) in the form of an ILL sequent, and a dedicated ILL en-
coding into Coq4, with tactics allowing the discovery of proofs of such a sequent.
We also describe how such proofs are interpreted as well-formed narratives. Our
encoding of ILL into Coq supports, as has previous work, the assisted generation
of ILL proofs, but also assists reasoning about the properties of proofs and on
all the possible proofs of an ILL sequent. This allows us to explore second order
structural properties, traversing all the narratives which can be generated from
a description of initial and atomic narrative actions and resources.

2 Related Works

2.1 Logical Approaches to Narratology

While most of the research in computational narratology has developed empiri-
cally, there have been a few logical and formal approaches to narratology, some
of which are reviewed here.

A formal grammar for describing narratives has been proposed by [17], sup-
porting the implementation of a system generating linear narratives and relying
on temporal logic. While such generated narratives are not able to support an
open-world assumption or to take into account the point of view of more than one
protagonist, the approach shares with ours the emphasis on narrative causality
description which is here embedded in the heart of the formalism.

Grasbon and Braun [12] have used standard logic programming to support
the generation of narratives. However their system still relied on a narrative
ontology (inspired from Vladimir Propp’s narrative functions [23]), rather than
on logical properties as first principles. Logic Programming has also been used

4 Source available:
http://cedric.cnam.fr/~courtiep/downloads/ill_narrative_coq.tgz

Structural Analysis of Narratives with the Coq Proof Assistant 3

in [26] for the generation of logically consistent stories. This character-based
approach relies on argumentation models developed for autonomous agent sys-
tems for resolving the conflicts experienced by protagonists. Our more generic
approach relies only on the description of narratives on the structural funda-
mentals which are action representation and competition for resources.

The concept of narrative action and its impact on the narrative environment
is generally considered by narrative theories as the fundamental building block.
Therefore AI formalisms dedicated to action semantic representation have been
used previously for narrative action description, such as the situation calcu-
lus [21]. Linear Logic provides a very elegant solution to the frame problem by
allowing the description of narrative actions using an action-reaction paradigm,
avoiding the need to specify additional frame axioms for representing actions’
non-effects.

The only previous use of LL in a closely related application has first been
reported by [4], where the multiplicative fragment of LL is used for scenario
validation. Their approach aims at a priori game/scenario design validation,
through compilation into Petri Nets, with an emphasis on evidencing reachable
states and dead-ends. While providing a relatively friendly computational model,
such a fragment is not expressive enough for our purpose.

2.2 Related Applications of Linear Logic

Recent research in computational models of narratives has converged on the use
of planning systems: typically, a planner is used to generate a sequence of actions
which will constitute the backbone of the narrative [27]. On the other hand,
Linear Logic has typically been used for action representation, and Masseron et
al. [19, 20] have established how LL formalisation could support planning and
how the fundamental properties of LL allows a proof in LL to be equated to a
plan. While the Intuitionistic fragment of Linear Logic is undecidable, Dixon et
al. [8,9] use proof-assistant technologies to build and validate plans for dialogues
between agents in a Multi-Agents System. The approach we propose here goes,
however, beyond the generation of a course of actions as we are interested in
studying and verifying second order structural properties, transcending all the
narratives which can be generated from a given specification relying on ILL.

While the computational properties of the fragment of Linear Logic we con-
sider are an obstacle for the automation or semi-automation of proof-search
(see [18] for a survey of decidability and complexity results for various frag-
ments), the subset-language we use provides some restrictions and additional
properties. This is similar to previous use of LL in the field of computational
linguistics: [14] identifies usage patterns of LL in meaning assembly analysis [7]
ensuring better complexity results than the full considered fragment.

2.3 Proof Assistants Support for LL

Previous work has proposed various encodings of fragments and variants of Lin-
ear Logic for proof assistants. In [22], the authors present a shallow embedding

4 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

of ILL in Coq and perform some simple generic proofs using induction. In [25],
the authors present a shallow embedding of the sequent calculus of classical
modal linear logic and perform some epistemic proofs. In [16] an efficient and
easy to use implementation of ILL rules in the Isabelle framework is presented.
However our development focuses on properties of proofs (interpreted as narra-
tives) themselves, not just on provability of sequents. As in these previous works
we provide some (limited) automation for proving closed sequents, but we also
provide reasoning lemmas and tactics for reasoning on properties of proofs and
even on all possible proofs of a sequent.

More recently, Dixon et al. [8] have proposed a formalisation of ILL in Isabelle
focusing on the generation of verified plans. This is certainly the approach that is
closest to ours, as it allows reasoning on plans themselves. A notable difference,
due to the use of Isabelle, is that plans appear explicitly in the judgments as
“extracted proof terms”. We do not need this artefact in our formalisation:
narratives are pure ILL proof-terms. The relation between the shape of a proof
and the properties of the corresponding narrative is, to our knowledge an original
use of the proof-as-term paradigm.

3 ILL as a Representational Theory for Narratology

Our approach is based on a formal specification of narrative resources (including
narrative actions), initial conditions, and possible ending states in the form of
an ILL sequent. We then interpret a given proof of such a sequent as a narrative
taking place in an open-world assumption. A sequent may have multiple proofs.
It may therefore specify multiple narratives sharing the same initial resources
and narrative actions. When interpreting the proof as a narrative, we look for a
trace of the use of the (left rule. This rule is interpreted as the execution of a
narrative action. Other rules have an interpretation reflecting the structure of the
narrative, such as an external branching choice in an open-world assumption (for
instance, end-user interaction), or a concurrency relationship between different
subsets of the narrative with independent resource requirements.

3.1 Modelling of Narratives Specification through an ILL Sequent

The subset language of ILL we use for this paper allows the description of the
initial resources of the narrative, the available narrative actions, and constraints
on the possible ending states of the narrative. Key to our interpretation, narrative
actions are modelled using (which allows a precise description of their impact
on the narrative environment. As we work in an open world assumption, external
impact on the narrative (for instance user interaction) is modelled by using the
⊕ connector for describing choices between possible narrative actions, and by
using & for describing a choice between two possible ending states.

Such a specification of narratives encompasses the description of the available
resources and states of the narratives, the description of the semantics of narra-
tive actions through their impact on the context of execution, and the possible

Structural Analysis of Narratives with the Coq Proof Assistant 5

ending states of the narrative. The initial sequent, which models this specifi-
cation, thus takes the form R,A ` Goal, where R is a multiset representing
resources and initial conditions, A is a multiset representing the possible nar-
rative actions, and Goal a formula representing the possible ending state of the
narrative. A sequent thus provides the knowledge representation base of a set of
narratives.

We refer the reader to [11] for a description of ILL sequent calculus and to [1]
for a more detailed description of the use of ILL operators for our purpose, which
served as a base for the subset narrative specification language defined in this
paper (Figure 1). These restrictions on the structure of the initial sequent will
enforce properties on the possible proofs, which can be verified using Coq.

We use here an extract of Flaubert’s classical Madame Bovary novel5 as a
running example: facing public humiliation, Emma is unsucessfully looking for
the help of Guillaumin, Binet and Rodolphe, before ingesting the poison she has
previously located. We start from an identification of atomic resources and simple
narrative actions: we add alternatives to some of the narrative actions occurring
in the novel, inspired by each of the character’s possible choices and introduce
the possibility of two different endings (in one of those Emma survives). Based
on this identification, we model narrative context and goals as an ILL sequent.

Res ::= 1 | atom | Res & Res | Res ⊗ Res | ! Res
Act ::= 1 | CRes (Context | Act ⊕ Act | Act & Act | ! Act
Goal ::= 1 | atom | Goal ⊗ Goal | Goal ⊕ Goal | Goal & Goal

CRes ::= 1 | atom | CRes ⊗ CRes

Context ::= Res | Act | Context ⊗ Context

Fig. 1. Syntactic categories for narrative sequents.

Resources of a Narrative Res specifies the syntactic category for R. The
formula Res1 & Res2, expresses the availability of one of the resources. One only
of Resi will be used and the choice depends on the proof found, and can vary
depending on the branches of the proof. This allows us to describe how the
initial conditions can adapt to a given unfolding of the story. The formula Res1⊗
Res2 allows one to express the availability of both resources. The formula ! Res
allows one to express the unbounded availability of the resource Res. The atomic
resources in our example are P for poison, R for a discussion with Rodolphe, B
for a discussion with Binet, and G for a discussion with Guillaumin. We chose
to not enforce the consumption of the resources P and B in our example, and
therefore model R = P & 1, R,G,B& 1.

Narrative Actions Representation Act specifies the syntactic category forA.
A simple narrative action is of the form CRes (Context, where CRes is a finite

5 The plot of Madame Bovary is one naturally inclined to contain key decisions and
prone to suggest what-if analyses

6 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

resource description and Context a multiplicative conjunction of resources and
actions. Its semantics is thus precisely defined in terms of how it affects the
execution environment: to the execution of a narrative action in the narrative
corresponds the application of the (left rule in the proof, consuming the finite
amount of resources modelled by CRes (in the subset-language we use for this
paper, actions only consume resources) and introducing in the sequent context
the formula Context which models resources and actions made available by this
execution.

For our example, we model the following simple narrative actions:
S(A Emma sells herself which saves her life.
E(A Emma escapes with Rodolphe (which saves her life).
P(D Emma ingests poison and dies.
R(1 Emma has a conversation with Rodolphe. This does not alter her situation

(non productive).
R(E Emma talks to Rodolphe. They agree to escape together.
G(1 Emma has a conversation with Guillaumin. This does not alter her situ-

ation (non productive).
G(S Emma discusses her situation with Guillaumin. As a result, Emma accepts

to sell herself in exchange for Guillaumin’s help.
B(1 Emma has a conversation with Binet. This does not alter her situation

(non productive).
B(S Emma discusses her situation with Binet. As a result, Emma accepts to

sell herself in exchange for Binet’s help.

Narrative actions can be composed. In particular, they can be combined for
offering two types of choices. A composed action Act1 ⊕ Act2 corresponds to
a choice between two possible actions, with both possibilities leading to well-
formed alternative narratives. This is used for modelling the impact of events
external to the narrative in an open-world assumption (for instance, user interac-
tion). When such a formula is decomposed using the ⊕ rule, the two sub-proofs,
which require proving the sequent with each of the sub-formula replacing the
composed action, are interpreted as the two possible unfoldings of the story.
The proof thus ensures that each possible subsequent narrative is well-formed.
A composed action Act1 & Act2 corresponds to a choice depending on the proof
found. If both choices successfully produce a different proof of the sequent, this
will be interpreted as two different narratives.

In our example, we model:
A =! (S (A), (E (A) & 1, (P (D) & 1, (R (1) & (R (E), (G (1) ⊕
(G(S), 1⊕ ((B (S) & (B (1))

The composed action (G(1)⊕ (G(S) reflects branching narrative possi-
bilities depending on the impact of external events in an open-world assumption,
while (E (A) & 1 can potentially generate a narrative where the narrative ac-
tion corresponding to E (A occurs, or not.

Narrative Ending States Goal specifies the syntactic category for ending
state. Goal1 ⊗ Goal2 expresses that both Goali states are accessible at the end

Structural Analysis of Narratives with the Coq Proof Assistant 7

of the narrative. Goal1 ⊕ Goal2 expresses that either Goali state is accessible,
and the choice depends on the proof found and might differ depending on the un-
folding branch of the narrative. Goal1 & Goal2 expresses that either state should
be accessible, and this choice depends on an event external to the narrative, such
as user interaction for instance.

In our example, we model that a given narrative could possibly provide two
different endings: from the atomic goals A (for Emma is alive) and D (for Emma
is dead), we specify the right-hand side formula A ⊕ D. This concludes the
specification of our example of narrative into an ILL sequent.

Stability of the Representation Given an ILL sequent respecting the gram-
mar described in Figure 1, all the sequents appearing in the proof will be of the
form Γ ` G, where ∀F ∈ Γ , F is a Context formula and G is a Goal formula.
In other words all the sequents appearing in such a proof will be composed of a
context describing resources and actions of a narrative, and of a right-hand side
formula representing constraints on the ending state of the narrative.

More formally, we define the following properties on sequents and proofs:

Definition 1. Let s be a sequent of the form Γ ` G, we say that s is well formed
if G ∈ Goal and ∀F ∈ Γ, f ∈ Context. We shall write WF(s).

Definition 2. A property P on sequents is said to hold for a proof h of a sequent
s if it holds for all sequents of the proof h above s. We shall note WF(h).

Lemma 1. WF is stable for ILL, that is for any sequent s such that WF(s) and
any proof h of s, WF(h).

The proof of this property in Coq is described later in section 4.4.

3.2 Interpreting a Proof as a Narrative

Narratives are interpreted from proofs, from a structured trace of execution of the
(left rule. Other ILL rules of particular significance for this interpretation are
the ⊕ left, and ⊗ and & right rules (we refer the reader to [11] for a description of
ILL sequent calculus). Narratives are obtained from proofs using the ν function
described in Figure 2. Narrative are thus described using simple narrative actions
(modelled in the initial sequent using the (connector), and the following list
of operators:

� is a precedence relationship, defining a partial order on the execution of
narrative actions: ν = ν1 � νaction � ν2 is a narrative where the narrative
ν1 precedes the narrative action νaction which precedes the narrative ν2.

O is a branching of the narrative in an open-world assumption: ν = ν1Oν2 is
a narrative where both sub-narratives ν1 and ν2 are possible, but only one
will actually be unfolded, depending on an external event in an open-world
assumption (such as user interaction for instance).

8 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

Γ ` A : ν1 ∆,B ` C : ν2
((left)

Γ,∆,A(B ` C : ν1 � νA(B � ν2
(Leaf rules)

Γ ` A : ∅

Γ ` A : ν1 ∆ ` B : ν2 (⊗right)
Γ,∆ ` A⊗B : ν1‖ν2

Γ ` A : ν (Unary rules)
Γ ′ ` A′ : ν

Γ,A ` C : ν1 Γ,B ` C : ν2
(⊕left)

Γ,A⊕B ` C : ν1Oν2

Γ ` A : ν1 Γ ` B : ν2 (& right)
Γ ` A&B : ν1Oν2

Fig. 2. Proof to Narrative Interpretation Function ν: the function is defined recursively
on sub-proofs from the last applied ILL rule. νA(B is the narrative action initially
specified using the formula A(B

‖ represents a concurrency relationship between two narratives: ν = ν1‖ν2 is
a narrative consisting of both ν1 and ν2 where the two sub-narratives will
be unfolded concurrently and independently.

Using Coq with simple tactics, we can generate a proof of the sequent R,A `
A⊕D specified in Section 3.1. Such a proof can then be interpreted as a given
narrative (Figure 3): depending on the impact of an external event (for instance,
end-user interaction), the story can first take two different paths. In one of them
(right sub-proof tree), the discussion with Guillaumin leads to an offer to help
Emma, and to two different paths both ending with Emma’s survival. In the
second one (left sub-proof tree), the discussion leads to another two paths, one
of which ending with Emma’s suicide depending on the impact of an external
event on the choice of course of action corresponding to the discussion with
Rodolphe.

4 Using the Coq Proof Assistant for Narrative Properties
Analysis

In this section, we will first describe how, based on our interpretation of proofs
as narratives and our ILL encoding into Coq, a proof assistant supports the
building of coherent narratives from initial specifications.

This naturally leads one to wonder, given an initial specification, what are
the characteristics of a well-formed narrative. In order to answer this, we need
to be able to express properties regarding the set of all possible proofs of a given
sequent, and to formally evidence structural properties which are verified by all
the narratives generated by a given specification: we need to be able to express
and prove properties by reasoning about proofs and sets of proofs.

We thus discuss in this section how we have been taking advantage of this
proof-as-term paradigm in order to verify properties regarding all the proofs
corresponding to narrative specifications as defined in Figure 1, and to verify an
example of structural property on the set of all the narratives generated by a
given sequent specification.

Structural Analysis of Narratives with the Coq Proof Assistant 9

1. Sequent Description
Initial Resources R P & 1, R,G,B& 1

Narrative actions A ! (S (A), (E (A) & 1, (P (D) & 1, (R(1) & (R(E),
(G(1)⊕ (G(S), 1⊕ ((B (S) & (B (1))

2. Sketch of the proof:

(left: P (D

(left: R(1

(left: B (1

(left: E (A

(left: R(E

⊕left : 1⊕ ((B (S) & (B (1))

(left: G(1

(left: S (A

(left: S (A

(left: B (1

⊕left : 1⊕ ((B (S) & (B (1))

(left: R(1

(left: G(S

⊕left : (G(1)⊕ (G(S)

R,A ` A⊕D

3. Interpreted narrative:
(νG(1 � ((νB(1 � νR(1 � νP(D)O(νR(E � νE(A)))O
(νG(S � νR(1 � (νS(AO(νB(1 � ν(A))

Fig. 3. ILL specification of the end of Emma Bovary

4.1 ILL Encoding into Coq

Formulae, proofs and corresponding convenient (Unicode) notations are defined
as follows. Type env is an instance of multisets equipped with an (setoid) equality
relation == and Vars.t (type of atomic propositions) is implemented6 as N in the
following:

Inductive formula : Type :=

| Proposition : Vars.t→ formula | Implies : formula→ formula→ formula

| Otimes : formula→ formula→ formula | One : formula

| Oplus : formula→ formula→ formula | Zero : formula | Top : formula

| Bang : formula→ formula | And : formula→ formula → formula.

Notation "A (B" := (Implies A B).

(* ...Other connectives... *)

Notation "x :: Γ" := (add x G). (* Environment operation *)

Notation "x \ Γ" := (remove x G). (* Environment operation *)

Notation "x ∈ Γ" := (mem x G). (* Environment operation *)

Inductive ILL_proof: env→ formula→ Prop:=

|Id: ∀ Γ p, Γ== {p}→Γ` p
|Impl_R: ∀ Γ p q, p::Γ` q → Γ` p(q

|Impl_L: ∀ Γ ∆ ∆' p q r, (p(q)∈Γ → (Γ\(p(q)) ==∆ ∪ ∆' → ∆` p
→ q:: ∆'` r → Γ` r

|Times_R: ∀ Γ ∆∆’ p q, Γ==∆ ∪∆’ → ∆` p → ∆’` q → Γ` p ⊗ q

|Times_L: ∀ Γ p q r, (p ⊗ q)∈Γ → q::p::(Γ\(p ⊗ q))` r → Γ` r

6 By functorial application

10 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

|One_R: ∀ Γ, Γ== ∅ → Γ` 1
|One_L: ∀ Γ p, 1∈Γ → (Γ\1)` p → Γ` p
|And_R: ∀ Γ p q, Γ` p → Γ` q → Γ` (p & q)

|And_L1: ∀ Γ p q r, (p & q)∈Γ → p::(Γ\(p&q))` r → Γ` r
|And_L2: ∀ Γ p q r, (p & q)∈Γ → q::(Γ\(p&q))` r → Γ` r
|Oplus_L: ∀ Γ p q r, (p ⊕ q)∈Γ → p::(Γ\(p ⊕ q))` r → q::(Γ\(p ⊕ q))` r

→ Γ` r
|Oplus_R1: ∀ Γ p q, Γ` p → Γ` p ⊕ q

|Oplus_R2: ∀ Γ p q, Γ` q → Γ` p ⊕ q

|T_: ∀ Γ, Γ`>
|Zero_: ∀ Γ p, 0∈Γ → Γ` p
|Bang_D: ∀ Γ p q, !p∈Γ → p::(Γ\(!p))` q → Γ` q
|Bang_C: ∀ Γ p q, !p∈Γ → !p::Γ` q → Γ` q
|Bang_W: ∀ Γ p q, !p∈Γ → Γ\(!p)` q → Γ` q
where " x` y ":= (ILL_proof x y).

Notice the use of the form “φ ∈ Γ → Γ ` . . . ” instead of “φ, Γ ` . . . ”. This
formulation avoids tedious manipulations on the environment to match rules.
Simple tactics allow one to apply rules and premisses of the form φ ∈ Γ are dis-
charged automatically (on closed environments) by reduction. As we are looking
for a trace of the execution of the narrative actions through the application of
the (left rule, we are only searching for cut-free proofs and thus do not provide
the Cut rule.

The Coq command Program Fixpoint allows one to define rather easily
dependently typed fixpoints and pattern matchings on terms of type x ` y. For
instance one can define the ν function described in section 3.2 as follows:

Program Fixpoint ν Γ φ (h: Γ ` φ) {struct h}: narrative :=

match h with

|Id _ _ p⇒∅
|Impl_L Γ ∆ ∆' p q r _ _ x x0⇒ (ν ∆ p x) � [Implies p q] � (ν (q::∆') r x0)

|And_R Γ p q x x0⇒ (ν _ _ x) 5 (ν _ _ x0)

|Times_R Γ ∆ ∆' p q heq x x0⇒ (ν ∆ p x) || (ν ∆' q x0)

...

end.

4.2 Well-Formed Narrative Generation: Proving an ILL Sequent in
Coq

Our encoding of ILL into Coq can be used simply with the aim of generating
a well-formed story, from a sequent specification. We provide a set of simple
tactics assisting the user in unfolding a proof, thus constructing a proof-term
which will subsequently be interpreted as a narrative.

As an example, let us consider the sequent given below presented in Figure 3,
corresponding to the end of Emma Bovary.

Goal Emma: {P&1, R, G, B&1, !(S(A), (E(A)&1, (P(D)&1,

(R(1)&(R(E), (G(1) ⊕ (G(S), 1⊕(B(S)&(B(1)} ` A ⊕ D.

One can, for example, apply the ⊕L rule to consider the alternative offered by
external choice (G(1) ⊕(G(S). This is achieved by tactic: oplus_l (G(1)

Structural Analysis of Narratives with the Coq Proof Assistant 11

(G(S) that leaves with two subgoals. The first one is {G(1, P&1, R, G, ... }

` A ⊕D and allows for rule (left rule to perform a narrative action consuming
G using tactic: impl_l G 1.

The succesful proof of this sequent unravels the narrative structure by only
producing the set of alternative actions consistent with the baseline plot descrip-
tion.

4.3 Stability of an ILL Narrative Sequent: Well-Formed Sequents

As we have briefly mentioned in section 3.1, the subset of ILL (Figure 1) we
consider is stable.This is an important property as it allows one to disregard the
use of certain ILL rules (for instance (right). It can thus simplify the verification
of narrative properties.

In order to use this fact, we provide a proof of stability of WF for ILL
(property 1). To this end, we prove the stability of WF for each rule as follows:
first the grammar of Figure 1 is defined by the following (mutual) inductive
properties:

Inductive Act : formula→ Prop := (* Act *)

| A1: Act 1

| A2:∀ φ1 φ2, CRes φ1→ Context φ2→ Act (φ1 (φ2)

| A3: ∀ φ1 φ2, Act φ1→ Act φ2→ Act (φ1 ⊕ φ2)

| A4: ∀ φ1 φ2, Act φ1→ Act φ2→ Act (φ1 & φ2)

| A5: ∀ φ, Act φ→ Act (!φ)
with CRes: formula→ Prop:= (* CRes *)

| CRes1: CRes 1

| CRes2: ∀ n, CRes (Proposition n)

| CRes3: ∀ φ1 φ2, CRes φ1→ CRes φ2→ CRes (φ1 ⊗ φ2)

with Context: formula→ Prop:= (* Context *)

| Context1:∀ φ, Act φ→ Context φ
| Context2:∀ φ, Res φ→ Context φ
| Context3: ∀ φ1 φ2, Context φ1→ Context φ2→ Context (φ1 ⊗ φ2)

with Res: formula→ Prop:= (* Res *)

R1: Res 1

| R2: ∀ n, Res (Proposition n)

| R3: ∀ φ, Res φ→ Res (!φ)
| R4: ∀ φ1 φ2, Res φ1→ Res φ2→ Res (φ1 ⊗ φ2)

| R5: ∀ φ1 φ2, Res φ1→ Res φ2→ Res (φ1 & φ2).

Inductive Goal : formula→ Prop :=

| G1: Goal 1

| G2: ∀ n, Goal (Proposition n)

| G3: ∀ φ1 φ2, Goal φ1→ Goal φ2→ Goal (φ1 ⊗ φ2)

| G4: ∀ φ1 φ2, Goal φ1→ Goal φ2→ Goal (φ1 ⊕ φ2)

| G5: ∀ φ1 φ2, Goal φ1→ Goal φ2→ Goal (φ1 & φ2).

Definition WF Γ f (h:Γ` f):= Goal f∧∀ g:formula, g∈Γ→ Context g.

Notice that well-formedness (WF) of a sequent (Γ`f) is stated as a property of a
proof h of such a sequent (see lemma Grammar_Stable below). Then the stability

12 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

for each rule is given by an inductive property Istable mirroring the type of
proofs, stating that a property pred holds for all premisses sequents of all rules.

Istable e f h is true when pred holds for all nodes above the root of h
(it does not have to hold for the root itself). Notice that e and f are declared
implicit (using {.}) and can therefore be omitted.

Inductive Istable: ∀ {e} {f} (h: e ` f) , Prop :=

| IId: ∀ Γ p heq, Istable (Id Γ p heq)

| IImpl_R: ∀ Γ p q h, pred h → Istable h → Istable (Impl_R Γ p q h)

| IImpl_L: ∀ Γ ∆ ∆' p q r hin heq h h’, pred h → pred h’

→ Istable h → Istable h’ → Istable (Impl_L Γ ∆ ∆' p q r hin heq h h’)

| ...

The stability of the grammar is proved by the following lemma, stating that any
proof h of a well-formed sequent is necessarily well-formed itself:

Lemma Grammar_Stable: ∀ Γ φ (h:Γ ` φ), WF h → Istable WF h.

It is proved by induction on h.

4.4 Second Order Analysis of Narratives Specification

We consider in this section the reachability of a given ending state regardless of
the impact of external events in an open-world assumption, as an example of an
interesting structural property. When considering a given proof (and narrative),
this property is not difficult to check. We build a (dependently typed) function
(check) which decides this property for a closed proof. That is, it returns trueP
if at least one branch contains an application of the ⊕R1 rule with φl ` φr on
the right premise. We then test it on the proof we found of lemma Emma above
and the sequent A ` D. boolP stands for Prop-sorted booleans and ?= is the
equality decision over formulae.

Program Fixpoint check φl φr {e} {f} (h: e ` f) {struct h}: boolP :=

match h with

| One_R _ _⇒ falseP

| One_L Γ p _ x⇒ check φl φr x

| Oplus_R1 Γ p q x⇒
if andP (p ?= φl) (q ?= φr) then trueP else check φl φr x ...

end.

Eval vm_compute in check A D Emma. (* true *)

What would be much more interesting from a structural analysis point of view
would be to prove that this property is valid regardless of the proof of the se-
quent (check should return trueP for any proof of Emma). In our interpretation,
this would mean that for every narrative possibly generated by the initial specifi-
cation, a given end state is reachable. This is much more difficult to prove using
Coq as there is a potentially infinite set of such proofs. We tackle this prob-
lem using a variety of means. First, we define a notion of equivalence between
proofs. Second, we define an incremental method to avoid proving several times
the same property. A description of these two techniques follows.

Structural Analysis of Narratives with the Coq Proof Assistant 13

Identify Proofs Corresponding to the Same Tree We identify proofs that
differ only by the way side premisses (like p ∈ Γ or Γ ∈ ∆ ∪∆') are proven. We
then prove that check and other definitions are compatible with this equivalence.

Inductive eq: ∀ Γ Γ’ f, (Γ ` f)→ (Γ’ ` f)→ Prop :=

| EQId: ∀ Γ1 Γ2 f heq heq’, eq (Id Γ1 f heq) (Id Γ2 f heq’)

| EQImpl_R:∀ Γ1 Γ2 p q h h’, eq h h’ → eq (Impl_R Γ1 p q h) (Impl_R Γ2 p q h’)

| EQTimes_R: ∀ Γ1 ∆1 ∆3 Γ2 ∆2 ∆4 p q heq heq’ h1 h3 h2 h4,

eq h1 h3 → eq h2 h4
→ eq (Times_R Γ1 ∆1 ∆3 p q heq h1 h2) (Times_R Γ2 ∆2 ∆4 p q heq’ h3 h4)

| ...

Lemma eq_compat_check : ∀ f1 f2 Γ Γ’ φ (h1:Γ`φ) (h2:Γ’`φ),
eq h1 h2 → check f1 f2 h1 = check f1 f2 h2.

An interesting consequence is that one can substitute an environment with a
provably equal one in our proofs:

Lemma eq_env_compat_check : ∀ f1 f2 Γ Γ’ φ (h1:Γ`φ) (h2:Γ’`φ),
eq Γ Γ’ → check f1 f2 h1 = check f1 f2 h2.

This lemma is heavily used in our automated tactics described in the next sec-
tion.

Property Validation on All the Proofs of a Sequent We can also prove
that some property holds for all proofs of a given closed sequent. We developed
a method for this kind of proofs which can be automated using an external tool.
This method should work for properties than one can define as a boolean func-
tion over ILL proofs (i.e. of type ∀Γφ, Γ ` φ → boolP). This method involves
intricate lemmas and tactics allowing one to explore all possible proofs of a se-
quent. This amounts in particular to detect unprovable goals as soon as possible.
This is made possible in some cases by generic lemmas about the unprovability
of a sequent Γ ` φ. For instance the following (meta) unprovability result is
proved and used:

Lemma 2. If a variable v ∈ Γ does not appear in the left-hand side of a (in
any (sub-)formula of Γ and do not appear in φ, then Γ ` φ has no proof.

Our tactics detect such patterns in the hypothesis of a goal g and discharge g by
absurdity. The proof strategy applies to a goal G of the form: ∀h :Γ ` φ,f h =
trueP and proceeds by building a database of previously proved lemmas as
described in algorithm 1. The use of the lemmas database prevents proving
the same lemma twice. The application of previous lemmas is eased by the
use of eq_env_compat_check (described in previous section). Using this method
we manage to prove several non-trivial properties, including the reachability
property mentioned earlier.

We have modelled the following simple narrative actions, which give another
perspective on the end of Madame Bovary:
B(S A discussion with Binet: Emma accepts the idea of selling herself
B(R A discussion with Binet: Emma decides to go and see Rodolphe
G(B A discussion with Guillaumin: Emma decides to go and see Binet
G(S A discussion with Guillaumin: Emma accepts the idea of selling herself

14 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

M(Γ ` φ):
foreach rule r applicable to Γ ` φ do

foreach sequent ∆ ` ψ of the premisses of r do
if f h = trueP then OK;
else if ∆ ` ψ ∈DB then apply DB(∆ ` ψ) and OK;
else if unprovability tactics applies on ∆ ` ψ then OK by absurdity;
else

prove new lemma l : ∀h :∆ ` ψ,f h = trueP using M(∆ ` ψ);
store l in DB; apply l;

end

end

end
Algorithm 1: Proof method for properties of the form: ∀h :Γ ` φ,f h = trueP.

These actions, together with initial resources, can be used to model the fol-
lowing narrative specification: the outcome of the discussion with Binet will be
determined by the proof found, while an external event (in an open-world as-
sumption) which decides between the two possible outcomes of the discussion
with Guillaumin.

Two possible ending states are specified for this narrative: Emma is ready
to sell herself to improve her situation (S) or prepared to have a discussion
with Rodolphe. We want to prove that whatever the narrative generated by
this specification, there is always a possible sub-narrative in the open-world
assumption which allows for the ending state S to be reached. The corresponding
sequent modelled in Coq is:

s ={G,((B(S)&(B(R))&1,(G(B)⊕(G(S)`S⊕R}
We have proved that this sequent is such that ∀ (h:s), check _ _ h = trueP.
This proof uses 47 auxiliary lemmas, while the sequent only offers a low-level
of generativity. Each lemma is proved automatically but currently the lemmas
are stated by hand. We discuss briefly how we plan to automate the lemmas
generation in the conclusion of this paper.

In order to show that provided adequate automation our technique can scale
on sequents offering a high level of generativity, we proved a similar reachabil-
ity property on the following sequent which uses narrative actions described in
Figure 3:

s1 ={P&1,(S(A)&1,(E(A)&1,(P(D)&1,S}) ` (A⊕D)
As the sequent is more generative, this proof uses 283 auxiliary lemmas.

5 Conclusion

In this paper, we have shown that the Coq proof assistant is a powerful tool
for studying and verifying structural properties of narratives modelled using
Intuitionistic Linear Logic.

We have provided a method for encoding narratives specifications into an
ILL sequent, encompassing narrative actions and initial resources description,

Structural Analysis of Narratives with the Coq Proof Assistant 15

and described an encoding of ILL into Coq which allows one to build well-formed
narratives from proofs of such a sequent.

The encoding we have proposed makes use of the proof-as-term paradigm and
allows one to verify structural properties of narratives transcending all narratives
generated by such a specification. This allows one to study resource-sensitive and
causality relationships emerging from the initial specification. From a low-level
description of the semantics of narrative actions, we are thus able to obtain
high-level semantics properties regarding the narrative.

Now that we have shown that our encoding and our proof method allows for
automated heuristics, we plan to implement certifying external procedures in a
similar fashion than previous work of authors [5,6]. More precisely we plan to 1)
implement a Coq script generator that will generate the lemmas statements and
proof following ideas of section 4.4 and 2) prove more unprovability results, like
lemma 2, in order to tame a bit more the combinatorial explosion of ILL proofs.
The need to prove properties on proofs themselves forces the use of dependently
typed programming style, which happens to be uncommon, especially on sort
Prop on which elimination is limited. The experience was however successful.

This work therefore opens new perspectives on the design and understanding
of computational models of narratives. A particularly interesting avenue to ex-
plore concerns the search for normalised forms of narratives, for instance offering
the highest possible degree of sub-narratives parallelism relying on resource in-
dependence. Such normalisation procedures can rely on dedicated proof-search
algorithms, complementing our existing encoding. This work is also a first step
towards the assessment of story variance on a structural and formal basis: based
on the definition of equivalence relationships between proofs, and further, be-
tween their narrative interpretations, we plan to investigate formally what makes
stories differ and propose metrics which would allow one to evaluate narrative
specifications.

Acknowledgments This work has been partly funded by the European Comis-
sion under grant agreement IRIS (FP7-ICT-231824).

References

1. Bosser, A.G., Cavazza, M., Champagnat, R.: Linear logic for non-linear story-
telling. In: ECAI 2010. Frontiers in Artificial Intelligence and Applications, vol.
215. IOS Press (2010)

2. Brémond, C.: Logique du Récit. Seuil (1973)

3. Cavazza, M., Pizzi, D.: Narratology for interactive storytelling: A critical introduc-
tion. In: Proceedings of the Third International Conference on the Technologies
for Interactive Digital Storytelling and Entertainment (TIDSE). Lecture Notes in
Computer Science, Springer (2006)

4. Collé, F., Champagnat, R., Prigent, A.: Scenario analysis based on linear logic. In:
ACM SIGCHI Advances in Computer Entertainment Technology (ACE). ACM
press (2005)

16 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza

5. Contejean, É., Courtieu, P., Forest, J., Paskevich, A., Pons, O., Urbain, X.: A3PAT,
an Approach for Certified Automated Termination Proofs. In: ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM 10). pp. 63–
72. ACM (2010)

6. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: The CiME Rewriting
Toolbox, Version 3, http://cime.lri.fr

7. Dalrymple, M., Lamping, J., Pereira, F.: Linear logic for meaning assembly. In:
Proceedings of the Workshop on Computational Logic for Natural Language Pro-
cessing (1995)

8. Dixon, L., Smaill, A., Bundy, A.: Verified planning by deductive synthesis in in-
tuitionistic linear logic. In: ICAPS Workshop on Verification and Validation of
Planning and Scheduling Systems (2009)

9. Dixon, L., Smaill, A., Tsang, T.: Plans, actions and dialogues using linear logic.
Journal of Logic, Language and Information 18(2), 251–289 (2009)

10. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
11. Girard, J.Y., Lafont, Y.: Linear logic and lazy computation. In: Ehrig, H., Kowalski,

R., Levi, G., Montanari, U. (eds.) TAPSOFT ’87, LNCS, vol. 250, pp. 52–66.
Springer Berlin / Heidelberg (1987)

12. Grasbon, D., Braun, N.: A morphological approach to interactive storytelling. In:
Proceedings of the Conference on Artistic, Cultural and Scientific Aspects of Ex-
perimental Media Spaces (cast01) (2001)

13. Greimas, A.J.: Sémantique structurale: recherche et méthode. Larousse (1966)
14. Gupta, V., Lamping, J.: Efficient linear logic meaning assembly. In: Proceedings

of the 17th international conference on Computational linguistics. Association for
Computational Linguistics (1998)

15. Kakas, A., Miller, R.: A simple declarative language for describing narratives with
actions. Journal of Logic Programming 31, 157–200 (1997)

16. Kalvala, S., Paiva, V.D.: Mechanizing linear logic in isabelle. In: In 10th Interna-
tional Congress of Logic, Philosophy and Methodology of Science (1995)

17. Lang, R.R.: A declarative model for simple narratives. In: Narrative Intelligence:
Papers from the AAAI Fall Symposium. AAAI Press (1999)

18. Lincoln, P.: Deciding provability of linear logic formulas. In: Advances in Linear
Logic. pp. 109–122. Cambridge University Press (1994)

19. Masseron, M.: Generating plans in linear logic: I i. a geometry of conjunctive
actions. Theoretical Computer Science 113(2), 371–375 (1993)

20. Masseron, M., Tollu, C., Vauzeilles, J.: Generating plans in linear logic: I. actions
as proofs. Theoretical Computer Science 113(2), 349–370 (1993)

21. Miller, R., Shanahan, M.: Narratives in the situation calculus. Journal of Logic
and Computation 4, 513–530 (1994)

22. Power, J., Webster, C.: Working with linear logic in coq. In: Emerging Trends, 12th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs)
(1999)

23. Propp, V.: Morphology of the Folktale. University of Texas Press (1968)
24. Reiter, R.: Narratives as programs. In: KR. Morgan Kaufmann Publishers (2000)
25. Sadrzadeh, M.: Modal linear logic in higher order logic: An experiment with coq.

In: In Emerging Trends TPHOLS ’03. pp. 75–93 (2003)
26. Schroeder, M.: How to tell a logical story. In: Narrative Intelligence: Papers from

the AAAI Fall Symposium. AAAI Press (1999)
27. Young, R.M.: Notes on the use of plan structures in the creation of interactive

plot. In: Narrative Intelligence: Papers from the AAAI Fall Symposium. AAAI
Press (1999)

