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INTRODUCTION 
Microprogramming was one of the first of the quasi 
mystical computer term (being joined by multipro- 
cessing, parallel processing, real time, etc.). The term 
originated in 1951 with M. V. Wilkes [24]* in the 
context of a machine whose operation code would 
not be fixed but could rather be chosen at will by the 
programmer. Wilkes astutely observed then that there 
was probably no real requirement for such a machine 
and subsequently [25], in 1958, observed that 'events 
have confirmed this view,' It is difficult to know 
whether Wilkes' observation is still true since the term 
microprogramming lacks (despite many attempts) a 
universally accepted definition. 

It is the objective of this paper to briefly trace the 
history of the idea and the difficulties involved with 
defining or implementing it. In doing this, we first 
consider the general control problem and instruc- 
tion formats. Next, storage implementations of the 
control function are considered and a restricted def- 
inition of microprogramming is proposed. This is 
then evaluated from a technological, architectural' 
and programming point of view. We hope to show that 
our (demanding) definition of microprogramming is 
now technologically feasible and attractive from sys- 
tems considerations. 

The control problem 

Figure 1 shows an idealized processor from the 
control point of view. The raw resources of the cen- 
tral processor consists of execution logic and im- 
mediate or operand storage (registers). The alloca- 
tion and definition of these resources is appropriately 
designated as the control function, with basic opera- 
tional control being invested in the "instruction." 

*Work performed under the auspices of the U. S. Atomic Energy 
Commission. Copyright privileges reserved to The University of 
Chicago for assignment to the General Manager, U. S. Atomic 
Energy Commission. 
*Numbers in square brackets refer to the references at the end 
of this paper. 
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Figure ! - Idealized processor 

The execution logic, consisting of combinatorial 
circuitry only (at least in this view), represents the 
ordinary logical and arithmetic microfunctions of the 
machine: compare operations, shift, primitive "add" 
operations (or possibly only a part of such opera- 
tions). The immediate storage represents sufficient 
storage capacity for the operands of any operation to 
be performed by the processor. There is usually a 
minimum of 3 full words (parallel operation being 
assumed) of operand storage for any reasolaable 
processor (two is a lower bound, three required to 
collect double size results). The immediate storage 
units are loaded from, and return their information to, 
main memory or higher level storage. All transfers 
to and from the immediate storage, whether to main 
memory or to the execution logic, are accomplished 
by opening the logical gates which activate that partic- 
ular path. Similarly, embedded within the execution 
logic are the first level gates which specify (com- 
pletely) the activity of the execution logic on the 
operands that will be presented to it. Since the ex- 
ecution logic is purely combinatorial (i.e., time inde- 
pendent and without storage function of its own) it 
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performs a "truth table like" or fundamental opera- 
tion on the operand. 

The instruction specifies the central function by 
providing 

1. operation specification, 
2. operand location specification, 
3. next instruction location specification. 

These specifications may be implicit or explicit 
(giving rise to stack machines and 1, 2, and 3 address 
computers). The location (address) specification 
(indexing, etc.) function may properly be placed in 
either the control area or in the execution area. For 
our purposes we will consider it to be a separate ex- 
ecution function with its own operand storage and 
execution logic, as well as its own gating require- 
ments. From the point of view of microprogramming 
the critical part of the control problem is the opera- 
tion specification. The operation field specifies the 
interesting functions or vocabulary that can be per- 
formed by the processor. 

Assume that gating for operand storage and execu- 
tion logic represents a total of M individual gates. Let 
N be the number of similarly defined gates for the 
addressing function. Then at any one time M + N 
gates must be completely specified for an elementary 
operation to occur. Typically, the sum M + N varies 
between 100 and 6000, with a 7090 class processor 
having about 1000 gates. However, this specification 
of the gates is not done independently. Typically, 
if the i th bit of an operand storage is being trans- 
ferred or presented to the execution logic, then so is 
the (i+l) th bit; exceptions might include the highest 
and lowest positions. The intermediate positions could 
be treated as a common entry. This allows substantial 
reduction in M + N. Normally, the 1000 positions are 
reduced to 100 gating descriptions (as they may now 
be referred to). In order to conserve space in memory, 
these 100 bit wide gating descriptions are further en- 
coded into a more closely packed binary code format, 
since the 100 bit patterns have 21°° possible combina- 
tions, of which perhaps only 21° have any obvious 
usefulness. 

So far we have merely specified one gating descrip- 
tion. Such a description may be termed a micro-opera- 
tion but it is not usually regarded as a useful member 
of the processor vocabulary since several of these 
operations are required on a particular operand set 
before any familiar logical and/or arithmetic operation 
can be fully executed. Thus the operation code por- 
tion of the instruction format must contain a packed 
embodiment of the gating descriptors together with 
appropriate sequencing information to perform some 
useful function. The sequencing information usually 
consists of a count. The decoding of the packed gating 

description is called the combinatorial logic decoding 
problem, while the sequencing of gating descriptors 
to perform one instruction is called the sequential 
control problem. The operation code is clearly a com- 
posite of combinatorialand sequential information 
which is decomposed matrix fashion, with each 
count operating on the residue of the operation code 
field to produce new gating descriptions Typical pro- 
cessors have between 20 and 3000 instructions in 
their repertoire, with between 4 and 10 gating se- 
quences or micro-operations (each equivalent to one 
clock pulse) performing one instruction. 

Storage implementation of the control function 
( microprogramming ) 

Putting practical considerations such as cost and 
performance aside for the moment, coordinate ad- 
dress storage is an excellent vehicle for the im- 
plementation of the control function. In proceeding 
from the coordinate address of the retrieved data 
word a natural combinatorial decoding is achieved; 
further sequencing is merely a progression of memory 
addresses. Figure 2 shows several possible control 
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Figure 2-  Micro instruction formats 

memory word formats. The gating description forms 
the bulk of the word, if no further decoding is to be 
allowed. The remainder of the word must include test 
specification information and (either explicitly or 
implicitly) primary and alternate next address infor- 
mation for sequencing. Format A might be considered 
a typical format. The test portion of the work contains 
explicit identification of each of the possible test 
combinations that may be performed in the machine. 
While this may be a packed format, for purposes of 
our discussion we will consider this to be an expanded 
format: i.e. one bit per gate (or chain of gates) to be 
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tested. If only one test is allowed to be made in any 
clock pulse, then sequencing can be handled by knowl- 
edge of the primary next address if the test proves 
zero, and alternately, the alternate next address if the 
test proves one. Since one of these is normally im- 
plied as being simply the contents of the next address 
in the sequence, the other is explicitly stated in the 
word as shown. Alternately, this address field might 
contain merely an increment to be added to the pres- 
ent contents of the micro instruction-counter or pres- 
ent address. B is an alternate format showing only 
a gating description in a word, that description being 
followed by a test word. The test word must contain 
the test specification (or test mask) plus the alter- 
nate addresses (or alternate increments), and the last 
gating descriptor must remain active until the test is 
performed. The selection between format A and for- 
mat B or some other alternative is principally depen- 
dent upon the relative costs of storage (word size vs. 
number of words). If test conditions are exclusive 
they can be mapped directly to one of the alternate 
address fields. If they are non-exclusive, multiple 
test words must be used. 

Of course, additonal features could be considered, 
such as micro indexing, etc. With the addition of such 
features one might question the requirement for the 
conventional instruction stream at all. This point will 
be taken up in a later section. Even without micro 
indexing, nested subroutines still could be considered 
as part of the micro program storage possibilities. 
The addition of several dynamically alterable add- 
resses or pointer words might be required to keep 
track of present status. As one left successive stages of 
nesting, there would be a push up replacement of 
micro instruction counter contents. 

What we have discussed thus far is microprogram- 
ming in a narrow sense. While it satisfies all the 
requirements proposed for microprogramming (e.g. 
see [8,23]) it represents an ideal implementation that 
in the past has not been considered a practical reality. 
Early discussions limited storage implementations to 
the read only [6,7,10,14,20,21] or non-alterable 
variety. Normally diode arrays were considered for 
the function (see Wilkes [24,26,27] and Mercer 
[17]), although other "read-only" memory imple- 
mentations followed. In its most degenerate form 
microprogramming became nothing more than a diode 
decoder. There were attempts to define the term 
as being "stored logic" [1,20] or a similar notion 
but without success. [22] The great promise of al- 
tering the "structure" of the computer was never 
realized (in any general sense) since the contents of 
such storage were difficult or impossible to change. 
Microprogramming thus became more a mystical than 

practical abstraction. Several attempts at imple- 
menting a quasi-alterable storage for the control 
function were attempted. Grasselli [33] in particular 
produced an interesting variation in which a per- 
manent or non-alterable storage contained what we 
term "gating descriptors" and a dynamically change- 
able "path finder memory" which traced through 
string sequences. However, he did not consider the 
gating descriptors to be already decoded but rather 
to be packed and decoded on retrieval. Other micro- 
programming attempts [15] were microprogrammed 
in the sense of the instruction operation code per- 
forming little or no sequencing (for some or all of the 
instructions). Thus the instruction stream could be- 
come a micro-instruction stream. While this allows 
flexibility, there would be a basic system inefficiency 
caused by the mismatch between the instruction and 
data access time and the execution time. Viz., execu- 
tion would be such a small fraction of time used that 
the machine generally would be in a state waiting for 
data or next instructions. Also, such schemes require 
more instructions to be performed for a given "useful" 
function (except for special purpose situations [2]). 
As a practical matter such restrictive implementations 
of "microprogramming" became merely exercises in 
semantics, as pointed out by Wilkes [25] and Teager 
[22]. 

In order to avoid some of these difficulties we 
will use the word in the remainder of the paper to 
mean only the use of dynamically alterable storage 
(comparable read & write performance) to perform 
the combinatorial and sequential decoding functions 
of machine control. While this definition may be an 
improvement in defining the nature of micropro- 
gramming, it also remains inexact because the term 
"gate" to which the combinatorial output is ref- 
erenced is inexact. In other words, when is the gate 
doing a control function (controlling information) 
and when is it actively engaged in a sub part of the 
decoding operation? To this question we have no 
quick answer. 

Technological implications 

In order for our previous definition to be mean- 
ingful, practical implementation must exist. While 
implementations in the past were restricted to read 
only storage; integrated micro-electronics or mono- 
lithic circuitry promises to favorably alter the cost 
performance equation so as to make our definition 
workable. With monolithic circuitry, costs are not 
determined by the number of circuits on a physical 
logical unit, but rather [24] upon the number of dif- 
ferent types of circuit arrays used and [27] the num- 
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ber of external connections required to be made to 
each array [11,19]• Presently, monolithic circuit 
arrays have upwards of 20 to 50 circuits. At least two 
orders of magnitude improvement are seen in this 
number over the next decade• Notice that a con- 
ventional implementation using a decoding network 
is particularly unsuited to monlithic implementation 
because of its lack of regularity for array replication. 
Exactly the opposite is the case with the storage im- 
plementation. Also connectivity to the array goes up 
only logarithmically as the number of circuits is 
increased, satisfying the second constraint. Other 
advantages of the monolithic implementation include 
the alterability of storage, speeds competitive with 
the execution logic, and physical compatability (pack- 
aging, voltage distribution, etc.) with the rest of the 
machine. 

To quantify the speed requirements for such a sto- 
rage, Boland [5] has shown that in a conventional 
parallel machine typically 35% of a clock pulse time is 
spent decoding and setting up the gates for the opera- 
tion to be performed. The remaining 65% is spent in 
executing the elementary operation. Thus an access 
of 35% of the clock pulse or a ratio of about 1/2 of 
the execute time of an elemental operation would be 
sufficient for our microprogram storage. Insofar as 
size and capacity are concerned successful read only 
storage implementations use between I000 and 2000 
words with about 100 bits per word, totalling approxi- 
mately 200,000 bits. 

Costs of 10 cents per bit using integrated circuits 
[14b] appear imminent for the memory ($20,000 
total for the memory) and an order of magnitude im- 
provement in the not too distant future appearing 
assured if present trends continue. Expected micro- 
storage performance using integrated circuits would 
include access time of 25-50 n sec. A broader cost- 
performance trade-off can be considered with a film 
storage technology, but it is doubtful that the per- 
formance level offered (100-  200 n sec. [ 16b]) would 
be interesting for the micro storage application• Film 
storage would seem more suitable for the main mem- 
ory application, at least for intermediate and large 
scale processors. 

Architectural implications 

Given the existence of such a storage for imple- 
mentation of the control function, how would it be 
incorporated in a central processing unit; what would 
the CPU's characteristics be? Figure 3 shows a pos- 
sible organization for the CPU of a simple machine, 
peripheral devices being neglected. The principal 
components are 
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Figure 3 - Simplex microprogrammed processor  

1) The execution unit, which carries out arithmetic, 
logical, and shifting operations. 

2) Immediate storage containing four registers 
T1, Tz, T3, T4, any one of which could be used to hold 
partially decoded macro-instructions while they are 
being processed. 

3) Main memory buffer register, which holds oper- 
ands going to, or coming from, the computer's main 
core memory, and its control, which accepts store 
and fetch addresses. 

4) The control memory, which is also used as a 
scratch pad memory. 

5) The micro-instruction counter, a register con- 
taining the address of the next micro-instruction to be 
executed. 

6) The data address register, containing the loca- 
tion of an operand. 

7) The micro instruction register, which stores 
micro instructions from the control memory and sets 
the gates. 

The basic sequential operation of the machine is 
shown in Figure 4. First the micro instruction counter 
is incremented, then its contents are fetched. This is 
overlapped with the execution of the previous micro 
instruction. The operands are assumed to be in one of 
the immediate registers• 

There are three general classes of instructions: 
1) Normal instructions, which control all gates, 

both to registers and within the execution unit. 
(Figure 4, example 1 .) 

2) Control memory fetch and store instructions, 
which transfer data between a register and a selected 
location in the control memory, the address being in 
either in the micro instruction or a register. (Ex- 
ample 2.) 

3) Test instructions, which execute a branch in 
the micro program conditional upon the value of one 
or more test indicators in the execution unit. (Ex- 
ample 2a.) 
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Figure 4 - Simplex timing chart 

A 30-n-sec micro-storage access would seem to be 
well within the present state of the art, thus indicating 
minor cycles of 100 n sec. 

In the simple organization sketched in Figure 3 the 
only additional synchronization involves operand 
fetches or stores in main memory. If the main memory 
is busy (or if the referenced memory module in an 
overlapped memory is busy), the execution of further 
micro instructions is simply delayed. Thus, as far as 
the,micro program is concerned, a requested operand 
is always available in the memory buffer register a 
fixed time after the address is transmitted to the 
memory control. 

Additional systems' sophistication might include the 
flexibility of splitting the gates apart so that data path 
control could be carried out (optionally) on an every- 
bit basis (chained together), on an every-other-bit 
basis, or in two-, four-, or eight-bit blocks, etc. While 
increasing the word size somewhat this would give 
such desired options as altering the number base of 
the arithmetic. Further, careful correlation between 
the gate label and the gate function (by label we mean 
the corresponding bit location in the control storage 
word), would allow the execution logic to calculate 
the various gating descriptions and thus optimize its 
own gating patterns. This optimization could be done 
on any of a number of criteria such as precision re- 
quirements, significance, or data queues. Of course 
this is done dynamically now at the instruction level; 
what is being proposed here allows one further degree 
of refinement on the process. 

Certain features of even the simplex organization 
are quite remarkable when compared with a conven- 

tional machine. First, there are no hidden registers; 
all may be used as operand sources or for storage of 
results. Thus, for example, a computed micropro- 
gram branch may be effected simply by gating the 
computed address to the micro-instruction counter 
register. Second, multiple registers for temporary 
results are not needed because the control memory 
is also a scratch pad memory whose speed is like that 
of the execution logic. Finally, and perhaps most 
surprising, no distinction is made in the architecture, 
between macro-instructions and other data in main 
memory. Whenever appropriate, the micro-program 
simply fetches a new macro-instruction in the same 
way any operand is fetched, partially decodes it using 
the execution unit, and then branches to the section 
of the microprogram that executes that macro-in- 
struction. 

The micro-computer is especially efficient in com- 
plicated operations, such as number base conversion, 
which normally require a loop of several macro-in- 
structions but may be performed by a single micro- 
program. If certain conversion operations are espe- 
cially important, the associated tables may be kept in 
the control memory, which would provide a significant 
further increase in speed. Notice that although some 
conventional machines have similar instructions, they 
are very rigid. With microprogramming, the con- 
version could easily be from pounds, shillings, and 
pence to binary dollars. Even a computation as size- 
able as a matrix conversion might be performed by a 
single microprogram. This would eliminate all in- 
struction fetching and decoding, and in many in- 
stances the effect would be to replace a macro- 
instruction by a single micro-instruction. 

Software design for microprogramming computers 

The process of designing software for a micro- 
programmed computer will differ significantly from 
that for a conventional machine. Aspects of de- 
sign which up to now have been in the province 
of architecture will come under the programmer's 
control. The most obvious benefit of this is the soft- 
ware designer's freedom to choose his own macro- 
instruction repertoire. (Note that there are no "ma- 
chine instructions" and hence all instruction refer- 
ences to memory are "macro.") For example, he 
could choose the type of normalization for arithmetic 
operations and the possible actions to be taken on 
overflow, underflow, etc. However, the software 
designer's freedom will go farther than this. He can 
consider the computer as a stack machine, a one-, 
two-, or three-address machine, or a variable word 
length machine. Core addresses within macro instruc- 
tions can be complete or can be specified by a dis- 
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placement and a 'register' (control memory word). 
In the latter case, the size of the displacement might 
be made dependent on the total size of core memory. 

The microprogrammed computer's architecture will 
allow the programmer to, in effect, tailor the ma- 
chine's structure to his particular problem. The same 
structure does not have to be imposed on all programs. 
This flexibility should make software not only easier 
to write but also more efficient. For example, the IBM 
7090 FORTRAN compiler generated object code 
using only 19 of the more than 200 instructions in the 
7090 repertoire. Thus 90% of the instruction reper- 
toire was wasted. In a microprogrammed computer 
these unused instructions would be eliminated and the 
control memory space used for scratch storage or 
microprograms of special value in FORTRAN ob- 
ject code. For example, a single macro instruction 
might be used for the three-way branch arising from a 
FORTRAN " I F "  statement. Such an instruction 
would probably take only two more cycles (minor) 
than a normal branch. 

Efficiency of software will also be improved by the 
capability of implementing complicated functions by 
a single microprogram. Opler [ 18], in discussing fast- 
read-slow-write control memories, has pointed out 
the value of this in implementing the more important 
control functions of a computer's operating system. 
The possibilities in a true microprogrammed computer 
are much greater. The operating system and principal 
programming systems may have libraries of micro- 
programs going far beyond what the control memory 
will hold at one time. The less frequently used micro- 
programs would be loaded and executed only when 
needed. Thus the microprogrammed part of the entire 
software system could adjust quickly to changing 
conditions and could be easily modified in the light 
of experience. 

So far we have avoided one important question: how 
will the basic software (that is programs normally 
written in assembly language) be written? Since there 
is no fixed macro instruction repertoire or even a fixed 
set of instruction formats, a conventional, assembler 
would not be of much value. A reasonable approach 
would be a macro-language, similar in many respects 
to a meta assembler. Simple macro-definitions would 
define a single object program-macro instruction; 
more complicated definitions would involve con- 
ditional expressions, sequence of expressions, and 
nested macro-expressions. With such a language, the 
macro-instruction set used in a program could be 
easily modified and extended as the program develops. 

Compilers themselves should be organized in a way 
that makes changing the object code format easy. 
Fortunately the code generating part of a compiler 

is not the major part of a compiler and is easily iso- 
lated. For a compiler with a proper overall design it 
should be easy to effect changes, say from three ad- 
dress object code to a stack organization or from 
compiling array operations as loops of macro instruc- 
tions to effecting them by special microprograms. In 
the long run compilers should also be able to optimize 
inner loops and frequently used subroutines by com- 
piling them directly into microprograms. 

Although simple assemblers should disappear as a 
tool for writing object programs [programs held in 
core], the assembler still has a use: namely, for 
writing microprograms. For a computer designed with 
this in mind it will be easy to construct a micro- 
program assembler. It would accept instructions like 
"Add, l,2,1" standing for gate registers 1 and 2 to the 
adder, set the adder gates for simple addition, and 
gate the result to register 1. 

Now it is the authors' view that the macro language, 
the micro-instruction assembler, and a high level lan- 
guage might all be combined in one system. The micro- 
language would be a special part of the macro-lan- 
guage, which would also allow macros defined using 
the high level language. This high level language would 
be chosen for its usefulness in general (as opposed to 
numerical or commercial) programming, especially 
system programming and compiler writing. It might, 
for example, be a subset of PL/I. The compiler would 
be written in this language and inplemented first 
on an existing computer. 

Elaborations 

The simplex central processing unit shown in Fig- 
ure 3 is essentially a von Neumann machine, whose 
normal memory is the control memory, and which has 
core memory as fast auxiliary storage. Looked at in 
this way it appears overly simple by present-day 
standards, and it should be possible to improve on it 
while retaining the basic microprogrammed structure. 
The improvements would be aimed at two things: 
making the CPU faster through parallelism and other 
sophistications in its structure, and adapting it to 
the complicated operating conditions present in mod- 
ern computing systems, especially multiprogrammed 
operations. 

Figure 5 shows a system variation where multiple 
execution units are employed. As shown, the micro 
storage is partitioned among each of the execution 
units: they are independent processors enslaved to the 
major micro storage. While one could refer to this 
arrangement as "parallel" or "concurrent" opera- 
tion, actually at one time only a single micro-instruc- 
tion (however complex) is being executed. Notice 
that the minor storage units could be combined into 
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the major unit, but with increased total capacity re- 
quirements. In order to provide the required main 
memory band width, multiple units are used, thus 
necessitating a small number of memory buffers. 
These buffers serve the "immediate" or way station 
function since the micro-storage is the true buffer. 
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Figure 5 - Multiplex microprogrammed processor  

The two principal problems in multiprogramming 
are protection and resource sharing. Protection in a 
micro computer would be handled by protecting gates 
rather than instructions. Certain gates could be acti- 
vated only in the supervisor mode, which ould be 
entered only by a micro-branch to a fixed location. 
By keys associated with suitable sized memory blocks 
and each active program, data within the control 
memory could be protected against modification. 
Naturally, keys could be changed only in the monitor 
mode. Read protection could also be provided if 
necessary. 

Some protection would also have to be provided in 
connection with interrupt handling. We envision the 
individual microprograms testing for interrupt con- 
ditions at the most convenient points in their ex- 
ecution. A sentinel unit could seize control if aT. 
interrupt was not recognized in the maximum accept- 
able time. Such seizure would completely disrupt 
the particular program being executed (it might, for 
example, occur in the middle of a multiply operation), 
and it would be the individual microprogrammer's 
responsibility to insure that interrupt testing occurs 
with the required frequency. 

A resource sharing problem might arise in the cen- 
tral processing unit of the micro computer. For 
example it might be desirable to switch the CPU 
back and forth between several programs in order 

to make most efficient use of core storage or the CPU 
execution logic. Since the control memory contains 
a large amount of data, completely changing it would 
not be practical. Therefore the control memory must 
be shared between programs. Fortunately this is not 
as severe a problem as the sharing of main memory. 
A large part of the control memory will be occupied 
by microprograms used by many programs, and com- 
plete switching need occur only in rare instances. 

In our opinion a rather simple allocation scheme for 
the control memory would work well. The first part 
of the memory would be occupied by macro instruc- 
tions used by the basic system software (and by all 
other programs that need them), the second part by 
macro instructions used by important programming 
systems (FORTRAN, PL/I, COBOL, etc)., the third 
by micro programs and operands for individual 
programs. It would seem reasonable to make the 
memory large enough to hold the microprograms 
(macro instructions) for all the large programming 
systems in use at the installation. Also, if any reason- 
able coordination exists between the system designers, 
many macro-instructions and hence segments of the 
microprograms will be common to two or more 
systems. 

Each object program, while controlling the CPU, 
would have a block of storage in the third part of the 
control memory. For short jobs this would probably 
be a small block used only for temporary results. 
Large programs in which efficient code is very im- 
portant might be compiled so as to use almost all the 
available scratch memory. This block would be treated 
as being relocatable, with the relocation of addresses 
perhaps being assisted by special hardware. The 
operating system would presumably avoid running 
several large programs simultaneously, aiming for 
little or no swapping of the control memory. If too 
much swapping occurred in practice the control 
memory size would be increased. 

Of course if the. cost of control memory were low, 
enough would be provided to accommodate all jobs 
simultaneously. Status switching in such a system 
would require only fractions of a microsecond. The 
possibilities of this sort of computer in a multipro- 
cessor configuration are also very interesting, for the 
individual processors could be restructured in re- 
sponse to changing job loads and operating conditions. 
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