
M i c r o p r o g r a m m i n g revisited*

by MICHAEL J. FLYNN and M. DONALD MacLAREN
Argonne National Laboratory
Argonne, Illinois

INTRODUCTION
Microprogramming was one of the first of the quasi
mystical computer term (being joined by multipro-
cessing, parallel processing, real time, etc.). The term
originated in 1951 with M. V. Wilkes [24]* in the
context of a machine whose operation code would
not be fixed but could rather be chosen at will by the
programmer. Wilkes astutely observed then that there
was probably no real requirement for such a machine
and subsequently [25], in 1958, observed that 'events
have confirmed this view,' It is difficult to know
whether Wilkes' observation is still true since the term
microprogramming lacks (despite many attempts) a
universally accepted definition.

It is the objective of this paper to briefly trace the
history of the idea and the difficulties involved with
defining or implementing it. In doing this, we first
consider the general control problem and instruc-
tion formats. Next, storage implementations of the
control function are considered and a restricted def-
inition of microprogramming is proposed. This is
then evaluated from a technological, architectural'
and programming point of view. We hope to show that
our (demanding) definition of microprogramming is
now technologically feasible and attractive from sys-
tems considerations.

The control problem

Figure 1 shows an idealized processor from the
control point of view. The raw resources of the cen-
tral processor consists of execution logic and im-
mediate or operand storage (registers). The alloca-
tion and definition of these resources is appropriately
designated as the control function, with basic opera-
tional control being invested in the "instruction."

*Work performed under the auspices of the U. S. Atomic Energy
Commission. Copyright privileges reserved to The University of
Chicago for assignment to the General Manager, U. S. Atomic
Energy Commission.
*Numbers in square brackets refer to the references at the end
of this paper.

INSTRUCTION
l

I-oP IxlAooR I

I

I CONTROL
FUNCTION !

INDEX MEMORY AODR
STORAGE I |

t.°°. I CALC.
EXECUTION

LOGIC

T

OP(R&NO
STORAGE
I I

, , io..,o. I | EXECUTION
J LOGIC

1 T

Figure ! - Idealized processor

The execution logic, consisting of combinatorial
circuitry only (at least in this view), represents the
ordinary logical and arithmetic microfunctions of the
machine: compare operations, shift, primitive "add"
operations (or possibly only a part of such opera-
tions). The immediate storage represents sufficient
storage capacity for the operands of any operation to
be performed by the processor. There is usually a
minimum of 3 full words (parallel operation being
assumed) of operand storage for any reasolaable
processor (two is a lower bound, three required to
collect double size results). The immediate storage
units are loaded from, and return their information to,
main memory or higher level storage. All transfers
to and from the immediate storage, whether to main
memory or to the execution logic, are accomplished
by opening the logical gates which activate that partic-
ular path. Similarly, embedded within the execution
logic are the first level gates which specify (com-
pletely) the activity of the execution logic on the
operands that will be presented to it. Since the ex-
ecution logic is purely combinatorial (i.e., time inde-
pendent and without storage function of its own) it

457

458 Proceedings A.C.M. National Meeting, 1967

performs a "truth table like" or fundamental opera-
tion on the operand.

The instruction specifies the central function by
providing

1. operation specification,
2. operand location specification,
3. next instruction location specification.

These specifications may be implicit or explicit
(giving rise to stack machines and 1, 2, and 3 address
computers). The location (address) specification
(indexing, etc.) function may properly be placed in
either the control area or in the execution area. For
our purposes we will consider it to be a separate ex-
ecution function with its own operand storage and
execution logic, as well as its own gating require-
ments. From the point of view of microprogramming
the critical part of the control problem is the opera-
tion specification. The operation field specifies the
interesting functions or vocabulary that can be per-
formed by the processor.

Assume that gating for operand storage and execu-
tion logic represents a total of M individual gates. Let
N be the number of similarly defined gates for the
addressing function. Then at any one time M + N
gates must be completely specified for an elementary
operation to occur. Typically, the sum M + N varies
between 100 and 6000, with a 7090 class processor
having about 1000 gates. However, this specification
of the gates is not done independently. Typically,
if the i th bit of an operand storage is being trans-
ferred or presented to the execution logic, then so is
the (i+l) th bit; exceptions might include the highest
and lowest positions. The intermediate positions could
be treated as a common entry. This allows substantial
reduction in M + N. Normally, the 1000 positions are
reduced to 100 gating descriptions (as they may now
be referred to). In order to conserve space in memory,
these 100 bit wide gating descriptions are further en-
coded into a more closely packed binary code format,
since the 100 bit patterns have 21°° possible combina-
tions, of which perhaps only 21° have any obvious
usefulness.

So far we have merely specified one gating descrip-
tion. Such a description may be termed a micro-opera-
tion but it is not usually regarded as a useful member
of the processor vocabulary since several of these
operations are required on a particular operand set
before any familiar logical and/or arithmetic operation
can be fully executed. Thus the operation code por-
tion of the instruction format must contain a packed
embodiment of the gating descriptors together with
appropriate sequencing information to perform some
useful function. The sequencing information usually
consists of a count. The decoding of the packed gating

description is called the combinatorial logic decoding
problem, while the sequencing of gating descriptors
to perform one instruction is called the sequential
control problem. The operation code is clearly a com-
posite of combinatorialand sequential information
which is decomposed matrix fashion, with each
count operating on the residue of the operation code
field to produce new gating descriptions Typical pro-
cessors have between 20 and 3000 instructions in
their repertoire, with between 4 and 10 gating se-
quences or micro-operations (each equivalent to one
clock pulse) performing one instruction.

Storage implementation of the control function
(microprogramming)

Putting practical considerations such as cost and
performance aside for the moment, coordinate ad-
dress storage is an excellent vehicle for the im-
plementation of the control function. In proceeding
from the coordinate address of the retrieved data
word a natural combinatorial decoding is achieved;
further sequencing is merely a progression of memory
addresses. Figure 2 shows several possible control

I I TEST] ALTERNATE] GATIN~G DESCRIPTION MASK ADDRESS

FORMAT A

GATING DESCRIPTION I

I TEST
MASK

ALTERNATE I ALTERNATE I ADDRESS ADDRESS
NO. I NO.2

FORMAT B

Figure 2- Micro instruction formats

memory word formats. The gating description forms
the bulk of the word, if no further decoding is to be
allowed. The remainder of the word must include test
specification information and (either explicitly or
implicitly) primary and alternate next address infor-
mation for sequencing. Format A might be considered
a typical format. The test portion of the work contains
explicit identification of each of the possible test
combinations that may be performed in the machine.
While this may be a packed format, for purposes of
our discussion we will consider this to be an expanded
format: i.e. one bit per gate (or chain of gates) to be

Microprogramming Revisited 459

tested. If only one test is allowed to be made in any
clock pulse, then sequencing can be handled by knowl-
edge of the primary next address if the test proves
zero, and alternately, the alternate next address if the
test proves one. Since one of these is normally im-
plied as being simply the contents of the next address
in the sequence, the other is explicitly stated in the
word as shown. Alternately, this address field might
contain merely an increment to be added to the pres-
ent contents of the micro instruction-counter or pres-
ent address. B is an alternate format showing only
a gating description in a word, that description being
followed by a test word. The test word must contain
the test specification (or test mask) plus the alter-
nate addresses (or alternate increments), and the last
gating descriptor must remain active until the test is
performed. The selection between format A and for-
mat B or some other alternative is principally depen-
dent upon the relative costs of storage (word size vs.
number of words). If test conditions are exclusive
they can be mapped directly to one of the alternate
address fields. If they are non-exclusive, multiple
test words must be used.

Of course, additonal features could be considered,
such as micro indexing, etc. With the addition of such
features one might question the requirement for the
conventional instruction stream at all. This point will
be taken up in a later section. Even without micro
indexing, nested subroutines still could be considered
as part of the micro program storage possibilities.
The addition of several dynamically alterable add-
resses or pointer words might be required to keep
track of present status. As one left successive stages of
nesting, there would be a push up replacement of
micro instruction counter contents.

What we have discussed thus far is microprogram-
ming in a narrow sense. While it satisfies all the
requirements proposed for microprogramming (e.g.
see [8,23]) it represents an ideal implementation that
in the past has not been considered a practical reality.
Early discussions limited storage implementations to
the read only [6,7,10,14,20,21] or non-alterable
variety. Normally diode arrays were considered for
the function (see Wilkes [24,26,27] and Mercer
[17]), although other "read-only" memory imple-
mentations followed. In its most degenerate form
microprogramming became nothing more than a diode
decoder. There were attempts to define the term
as being "stored logic" [1,20] or a similar notion
but without success. [22] The great promise of al-
tering the "structure" of the computer was never
realized (in any general sense) since the contents of
such storage were difficult or impossible to change.
Microprogramming thus became more a mystical than

practical abstraction. Several attempts at imple-
menting a quasi-alterable storage for the control
function were attempted. Grasselli [33] in particular
produced an interesting variation in which a per-
manent or non-alterable storage contained what we
term "gating descriptors" and a dynamically change-
able "path finder memory" which traced through
string sequences. However, he did not consider the
gating descriptors to be already decoded but rather
to be packed and decoded on retrieval. Other micro-
programming attempts [15] were microprogrammed
in the sense of the instruction operation code per-
forming little or no sequencing (for some or all of the
instructions). Thus the instruction stream could be-
come a micro-instruction stream. While this allows
flexibility, there would be a basic system inefficiency
caused by the mismatch between the instruction and
data access time and the execution time. Viz., execu-
tion would be such a small fraction of time used that
the machine generally would be in a state waiting for
data or next instructions. Also, such schemes require
more instructions to be performed for a given "useful"
function (except for special purpose situations [2]).
As a practical matter such restrictive implementations
of "microprogramming" became merely exercises in
semantics, as pointed out by Wilkes [25] and Teager
[22].

In order to avoid some of these difficulties we
will use the word in the remainder of the paper to
mean only the use of dynamically alterable storage
(comparable read & write performance) to perform
the combinatorial and sequential decoding functions
of machine control. While this definition may be an
improvement in defining the nature of micropro-
gramming, it also remains inexact because the term
"gate" to which the combinatorial output is ref-
erenced is inexact. In other words, when is the gate
doing a control function (controlling information)
and when is it actively engaged in a sub part of the
decoding operation? To this question we have no
quick answer.

Technological implications

In order for our previous definition to be mean-
ingful, practical implementation must exist. While
implementations in the past were restricted to read
only storage; integrated micro-electronics or mono-
lithic circuitry promises to favorably alter the cost
performance equation so as to make our definition
workable. With monolithic circuitry, costs are not
determined by the number of circuits on a physical
logical unit, but rather [24] upon the number of dif-
ferent types of circuit arrays used and [27] the num-

460 Proceedings A.C.M. National Meeting, 1967

ber of external connections required to be made to
each array [11,19]• Presently, monolithic circuit
arrays have upwards of 20 to 50 circuits. At least two
orders of magnitude improvement are seen in this
number over the next decade• Notice that a con-
ventional implementation using a decoding network
is particularly unsuited to monlithic implementation
because of its lack of regularity for array replication.
Exactly the opposite is the case with the storage im-
plementation. Also connectivity to the array goes up
only logarithmically as the number of circuits is
increased, satisfying the second constraint. Other
advantages of the monolithic implementation include
the alterability of storage, speeds competitive with
the execution logic, and physical compatability (pack-
aging, voltage distribution, etc.) with the rest of the
machine.

To quantify the speed requirements for such a sto-
rage, Boland [5] has shown that in a conventional
parallel machine typically 35% of a clock pulse time is
spent decoding and setting up the gates for the opera-
tion to be performed. The remaining 65% is spent in
executing the elementary operation. Thus an access
of 35% of the clock pulse or a ratio of about 1/2 of
the execute time of an elemental operation would be
sufficient for our microprogram storage. Insofar as
size and capacity are concerned successful read only
storage implementations use between I000 and 2000
words with about 100 bits per word, totalling approxi-
mately 200,000 bits.

Costs of 10 cents per bit using integrated circuits
[14b] appear imminent for the memory ($20,000
total for the memory) and an order of magnitude im-
provement in the not too distant future appearing
assured if present trends continue. Expected micro-
storage performance using integrated circuits would
include access time of 25-50 n sec. A broader cost-
performance trade-off can be considered with a film
storage technology, but it is doubtful that the per-
formance level offered (100- 200 n sec. [16b]) would
be interesting for the micro storage application• Film
storage would seem more suitable for the main mem-
ory application, at least for intermediate and large
scale processors.

Architectural implications

Given the existence of such a storage for imple-
mentation of the control function, how would it be
incorporated in a central processing unit; what would
the CPU's characteristics be? Figure 3 shows a pos-
sible organization for the CPU of a simple machine,
peripheral devices being neglected. The principal
components are

DATA
ADDRESS

~INSTR.
COUNTER

F-

J STORAGE
iNSTR.

1 SCRATCIH PAO

MAIN ~tr~-GATES; EACH CONTROLLED
MEMORY / [~ BY BIT IN /.IlNSTR. REG. MEMORY, i ,Y.l\

BUFFER

EXECUTION
LOGIC

±k~.x 'T2
.LIL j . j . IT=t
t I T 4

~INSTR.
REGISTER: ONE BIT/GATE CONTROL

FUNCTION

Figure 3 - Simplex microprogrammed processor

1) The execution unit, which carries out arithmetic,
logical, and shifting operations.

2) Immediate storage containing four registers
T1, Tz, T3, T4, any one of which could be used to hold
partially decoded macro-instructions while they are
being processed.

3) Main memory buffer register, which holds oper-
ands going to, or coming from, the computer's main
core memory, and its control, which accepts store
and fetch addresses.

4) The control memory, which is also used as a
scratch pad memory.

5) The micro-instruction counter, a register con-
taining the address of the next micro-instruction to be
executed.

6) The data address register, containing the loca-
tion of an operand.

7) The micro instruction register, which stores
micro instructions from the control memory and sets
the gates.

The basic sequential operation of the machine is
shown in Figure 4. First the micro instruction counter
is incremented, then its contents are fetched. This is
overlapped with the execution of the previous micro
instruction. The operands are assumed to be in one of
the immediate registers•

There are three general classes of instructions:
1) Normal instructions, which control all gates,

both to registers and within the execution unit.
(Figure 4, example 1 .)

2) Control memory fetch and store instructions,
which transfer data between a register and a selected
location in the control memory, the address being in
either in the micro instruction or a register. (Ex-
ample 2.)

3) Test instructions, which execute a branch in
the micro program conditional upon the value of one
or more test indicators in the execution unit. (Ex-
ample 2a.)

Microprogramming Revisited 461

I N C R E M E N T

~INSTR
COUNTER

FETCH
N E X T

~INSTR

e.g.:
I. EXECUTE

2.LOAD/STORE

~STORAGE - - ~ T i

2G BRANCH

M I N O R C Y C L E
t t I

NO.O NO.I NO.2

GEN
I I I I
NO.I N O . E
ADDR

FETCH
I ! I
NO. I NO.2 I

A O D R

SET UP GATES
I !

! I
NO.S

I I
NO.3

a EXECUTE NO.I NO.2

FETCH
DATA

INO.II GATE a tNo~l
I I

LOAD T i
FETCH

J~ INSTR COUNTER

GATE 8
) I

L O A D ~ IoC.
(DEPENDS ON TEST)

FETCH NEXT INSTR
I I

Figure 4 - Simplex timing chart

A 30-n-sec micro-storage access would seem to be
well within the present state of the art, thus indicating
minor cycles of 100 n sec.

In the simple organization sketched in Figure 3 the
only additional synchronization involves operand
fetches or stores in main memory. If the main memory
is busy (or if the referenced memory module in an
overlapped memory is busy), the execution of further
micro instructions is simply delayed. Thus, as far as
the,micro program is concerned, a requested operand
is always available in the memory buffer register a
fixed time after the address is transmitted to the
memory control.

Additional systems' sophistication might include the
flexibility of splitting the gates apart so that data path
control could be carried out (optionally) on an every-
bit basis (chained together), on an every-other-bit
basis, or in two-, four-, or eight-bit blocks, etc. While
increasing the word size somewhat this would give
such desired options as altering the number base of
the arithmetic. Further, careful correlation between
the gate label and the gate function (by label we mean
the corresponding bit location in the control storage
word), would allow the execution logic to calculate
the various gating descriptions and thus optimize its
own gating patterns. This optimization could be done
on any of a number of criteria such as precision re-
quirements, significance, or data queues. Of course
this is done dynamically now at the instruction level;
what is being proposed here allows one further degree
of refinement on the process.

Certain features of even the simplex organization
are quite remarkable when compared with a conven-

tional machine. First, there are no hidden registers;
all may be used as operand sources or for storage of
results. Thus, for example, a computed micropro-
gram branch may be effected simply by gating the
computed address to the micro-instruction counter
register. Second, multiple registers for temporary
results are not needed because the control memory
is also a scratch pad memory whose speed is like that
of the execution logic. Finally, and perhaps most
surprising, no distinction is made in the architecture,
between macro-instructions and other data in main
memory. Whenever appropriate, the micro-program
simply fetches a new macro-instruction in the same
way any operand is fetched, partially decodes it using
the execution unit, and then branches to the section
of the microprogram that executes that macro-in-
struction.

The micro-computer is especially efficient in com-
plicated operations, such as number base conversion,
which normally require a loop of several macro-in-
structions but may be performed by a single micro-
program. If certain conversion operations are espe-
cially important, the associated tables may be kept in
the control memory, which would provide a significant
further increase in speed. Notice that although some
conventional machines have similar instructions, they
are very rigid. With microprogramming, the con-
version could easily be from pounds, shillings, and
pence to binary dollars. Even a computation as size-
able as a matrix conversion might be performed by a
single microprogram. This would eliminate all in-
struction fetching and decoding, and in many in-
stances the effect would be to replace a macro-
instruction by a single micro-instruction.

Software design for microprogramming computers

The process of designing software for a micro-
programmed computer will differ significantly from
that for a conventional machine. Aspects of de-
sign which up to now have been in the province
of architecture will come under the programmer's
control. The most obvious benefit of this is the soft-
ware designer's freedom to choose his own macro-
instruction repertoire. (Note that there are no "ma-
chine instructions" and hence all instruction refer-
ences to memory are "macro.") For example, he
could choose the type of normalization for arithmetic
operations and the possible actions to be taken on
overflow, underflow, etc. However, the software
designer's freedom will go farther than this. He can
consider the computer as a stack machine, a one-,
two-, or three-address machine, or a variable word
length machine. Core addresses within macro instruc-
tions can be complete or can be specified by a dis-

462 Proceedings A.C.M. National Meeting, 1967

placement and a 'register' (control memory word).
In the latter case, the size of the displacement might
be made dependent on the total size of core memory.

The microprogrammed computer's architecture will
allow the programmer to, in effect, tailor the ma-
chine's structure to his particular problem. The same
structure does not have to be imposed on all programs.
This flexibility should make software not only easier
to write but also more efficient. For example, the IBM
7090 FORTRAN compiler generated object code
using only 19 of the more than 200 instructions in the
7090 repertoire. Thus 90% of the instruction reper-
toire was wasted. In a microprogrammed computer
these unused instructions would be eliminated and the
control memory space used for scratch storage or
microprograms of special value in FORTRAN ob-
ject code. For example, a single macro instruction
might be used for the three-way branch arising from a
FORTRAN " I F " statement. Such an instruction
would probably take only two more cycles (minor)
than a normal branch.

Efficiency of software will also be improved by the
capability of implementing complicated functions by
a single microprogram. Opler [18], in discussing fast-
read-slow-write control memories, has pointed out
the value of this in implementing the more important
control functions of a computer's operating system.
The possibilities in a true microprogrammed computer
are much greater. The operating system and principal
programming systems may have libraries of micro-
programs going far beyond what the control memory
will hold at one time. The less frequently used micro-
programs would be loaded and executed only when
needed. Thus the microprogrammed part of the entire
software system could adjust quickly to changing
conditions and could be easily modified in the light
of experience.

So far we have avoided one important question: how
will the basic software (that is programs normally
written in assembly language) be written? Since there
is no fixed macro instruction repertoire or even a fixed
set of instruction formats, a conventional, assembler
would not be of much value. A reasonable approach
would be a macro-language, similar in many respects
to a meta assembler. Simple macro-definitions would
define a single object program-macro instruction;
more complicated definitions would involve con-
ditional expressions, sequence of expressions, and
nested macro-expressions. With such a language, the
macro-instruction set used in a program could be
easily modified and extended as the program develops.

Compilers themselves should be organized in a way
that makes changing the object code format easy.
Fortunately the code generating part of a compiler

is not the major part of a compiler and is easily iso-
lated. For a compiler with a proper overall design it
should be easy to effect changes, say from three ad-
dress object code to a stack organization or from
compiling array operations as loops of macro instruc-
tions to effecting them by special microprograms. In
the long run compilers should also be able to optimize
inner loops and frequently used subroutines by com-
piling them directly into microprograms.

Although simple assemblers should disappear as a
tool for writing object programs [programs held in
core], the assembler still has a use: namely, for
writing microprograms. For a computer designed with
this in mind it will be easy to construct a micro-
program assembler. It would accept instructions like
"Add, l,2,1" standing for gate registers 1 and 2 to the
adder, set the adder gates for simple addition, and
gate the result to register 1.

Now it is the authors' view that the macro language,
the micro-instruction assembler, and a high level lan-
guage might all be combined in one system. The micro-
language would be a special part of the macro-lan-
guage, which would also allow macros defined using
the high level language. This high level language would
be chosen for its usefulness in general (as opposed to
numerical or commercial) programming, especially
system programming and compiler writing. It might,
for example, be a subset of PL/I. The compiler would
be written in this language and inplemented first
on an existing computer.

Elaborations

The simplex central processing unit shown in Fig-
ure 3 is essentially a von Neumann machine, whose
normal memory is the control memory, and which has
core memory as fast auxiliary storage. Looked at in
this way it appears overly simple by present-day
standards, and it should be possible to improve on it
while retaining the basic microprogrammed structure.
The improvements would be aimed at two things:
making the CPU faster through parallelism and other
sophistications in its structure, and adapting it to
the complicated operating conditions present in mod-
ern computing systems, especially multiprogrammed
operations.

Figure 5 shows a system variation where multiple
execution units are employed. As shown, the micro
storage is partitioned among each of the execution
units: they are independent processors enslaved to the
major micro storage. While one could refer to this
arrangement as "parallel" or "concurrent" opera-
tion, actually at one time only a single micro-instruc-
tion (however complex) is being executed. Notice
that the minor storage units could be combined into

Microprogramming Revisited 463

the major unit, but with increased total capacity re-
quirements. In order to provide the required main
memory band width, multiple units are used, thus
necessitating a small number of memory buffers.
These buffers serve the "immediate" or way station
function since the micro-storage is the true buffer.

MAJOR
~STORAGE

i

/LINSTR
REG. (MAJOR)

¢'T;..II ~ l ExEcu.,o.~., [
t , MEMORY I"° 'v"" '=l
, , OUFFER T ' T
I ~ REGISTERS

- I
= Gus ~ " I , ,~.2
- \ I - I

MULTIPLEX MICROPROGRAMMED
PROCESSOR

Figure 5 - Multiplex microprogrammed processor

The two principal problems in multiprogramming
are protection and resource sharing. Protection in a
micro computer would be handled by protecting gates
rather than instructions. Certain gates could be acti-
vated only in the supervisor mode, which ould be
entered only by a micro-branch to a fixed location.
By keys associated with suitable sized memory blocks
and each active program, data within the control
memory could be protected against modification.
Naturally, keys could be changed only in the monitor
mode. Read protection could also be provided if
necessary.

Some protection would also have to be provided in
connection with interrupt handling. We envision the
individual microprograms testing for interrupt con-
ditions at the most convenient points in their ex-
ecution. A sentinel unit could seize control if aT.
interrupt was not recognized in the maximum accept-
able time. Such seizure would completely disrupt
the particular program being executed (it might, for
example, occur in the middle of a multiply operation),
and it would be the individual microprogrammer's
responsibility to insure that interrupt testing occurs
with the required frequency.

A resource sharing problem might arise in the cen-
tral processing unit of the micro computer. For
example it might be desirable to switch the CPU
back and forth between several programs in order

to make most efficient use of core storage or the CPU
execution logic. Since the control memory contains
a large amount of data, completely changing it would
not be practical. Therefore the control memory must
be shared between programs. Fortunately this is not
as severe a problem as the sharing of main memory.
A large part of the control memory will be occupied
by microprograms used by many programs, and com-
plete switching need occur only in rare instances.

In our opinion a rather simple allocation scheme for
the control memory would work well. The first part
of the memory would be occupied by macro instruc-
tions used by the basic system software (and by all
other programs that need them), the second part by
macro instructions used by important programming
systems (FORTRAN, PL/I, COBOL, etc)., the third
by micro programs and operands for individual
programs. It would seem reasonable to make the
memory large enough to hold the microprograms
(macro instructions) for all the large programming
systems in use at the installation. Also, if any reason-
able coordination exists between the system designers,
many macro-instructions and hence segments of the
microprograms will be common to two or more
systems.

Each object program, while controlling the CPU,
would have a block of storage in the third part of the
control memory. For short jobs this would probably
be a small block used only for temporary results.
Large programs in which efficient code is very im-
portant might be compiled so as to use almost all the
available scratch memory. This block would be treated
as being relocatable, with the relocation of addresses
perhaps being assisted by special hardware. The
operating system would presumably avoid running
several large programs simultaneously, aiming for
little or no swapping of the control memory. If too
much swapping occurred in practice the control
memory size would be increased.

Of course if the. cost of control memory were low,
enough would be provided to accommodate all jobs
simultaneously. Status switching in such a system
would require only fractions of a microsecond. The
possibilities of this sort of computer in a multipro-
cessor configuration are also very interesting, for the
individual processors could be restructured in re-
sponse to changing job loads and operating conditions.

R E F E R E N C E S

1 D A M D A H L
Microprogramming and stored logic
Datamat ion 10 2 February 1964 24-26

2 L B E C K a n d F K E E L E R
The C-8401 data processor
Datamat ion 10 2 February 1964 33-35

464 Proceedings A.C.M. National Meeting, 1967

3 H BILLING and W HOPMANN
Mikroprogramm-Steuerwerk
Electronische Rundschau Berlin-Borsigwalde Vol 9 1955
pp 349-53

4 J V BLANKENBAKER
Logically micro-programmed computers
Transactions Professional Group on Electronic Computers
Institute of Radio Engineers Vol EC-7 June 1958 pp 103-09

5 L BOLAND
Control memory
Thesis for MSEE degree Dept of Elect Engr Syracuse Univ
Syracuse N Y Submitted June 1963

6 E O BOUTWELLJR
The PB 440 computer
Datamation 10 2 February 1964 30-32

7 E BOUTWELL and E HOSKINSON
The logical organization o f the PB 440 microprogrammable
computer
Proc. AFIPS Vol 25 FJCC November 1963 pp 201-213

8 E D CONROY
M icroprogramming
Preprints of papers presented at the 16th National Meeting
of the ACM Los Angeles September 5-8 1961 ACM New
York N.Y.

9 E D CONROY and R M MEADE
.4 microinstruction system
Preprints of papers presented at the 16th National Meeting
of the ACM Los Angeles September 5-8 1961 New York N. Y.

10 C H DEVONALD and J A FOTHERINGHAM
The atlas computer
Datamation 7 5 May 1961 23-27

11 J J FLYNN
.4 prospectus on integrated electronics and computer ar-
chitecture
Proc AFIPS Vo129 FJCC 1966 pp 97-103

12 H T GLANTZ
A note on microprogramming
Journal of the association for computing machinery Vol 3
April 1956 pp 78-84

13 A GRASSELLI
The design o f program-modifiable micro-programmed control
units
IRE Transactions on Electronic Computers June 1962
p 336-339

14 H HAGIWARA
The K T Pilot computer-a microprogrammed computer with
a phototransistorfixed memory
Proc IFIPS Cong 62 Munich 1962 North Holland Pub Co
Amsterdam 318-321

14b R A HENLEand L O HILL
Integrated computer circuits--past present and future
Proc I EEE Vo154 No 12 (Dec 1966) pp 1849-1860

15 W C McBEE
The TRW-133 computer
Datamation 10 2 February 1964 pp 27-29

16 R M MEADE
a discussion o f machine-interpreted macroinstructions
Preprints of papers presented at the 16th National Meeting
of the ACM Los Angeles September 5-8 1961 ACM New
York N Y

16b S A M E D D A U G H and K L PEARSON
A 200-manosecond thinfilm main memory system
AFIPS Vol 29 FJCC-66 pp 281-292

17 RJ MERCER
Micro-programming
Journal of the Association for Computing Machinery Vol 4
April 1957 pp 157-171

18 A OPLER
Fourth Generation software
Datamation 13 1 January 1967

19 R L PETRITZ
Technological foundations & future directions o f large-scale
integrated electronics
Proc AFIPS Vo129 FJCC 1966 pp 65-87

20 H M SEMARNE and R E PORTER
.4 stored logic computer
Datamation 7 5 May 1961 33-36

21 F H SUMMER
The central processing unit o f the atlas computer
Proc IFIPS August 1962 Munich North Holland Pub Co
Amsterdam pp 291-296

22 H M T E A G E R
A discussion o f machine-interpreted macroinstructions
Preprints of papers presented at the 16th National Meeting

23 W L V A N D E R P O E L
Microprogramming and trickology
Digitale lnformations-wanderler, Hoffman Ed. F Viewag
Publisher 1962

24 M V WILKES
The best way to design an automatic calculating machine
Manchester University Computer Inaugural Conference
Manchester July 1951 pp 16-18

25 M V W l L K E S
M icroprogramming
Proc AFIPS Vo112 EJCC 1958 pp 18-19

26 M V W l L K E S W R E N W l C K and D J W H E E L E R
The design o f the control unit o f an electronic digital computer
Proceedings of the Institution of Electrical Engingeers London
Vol 105 ptb March 1958pp 121-28

27 M V WILKES and J B STRINGER
Micro-programming and the design o f the control circuits in
an electronic digital computer
Proceedings of the Institution of Electrical Engineers London
Vo1105 pt B March 1958 pp 121-28

