European Journal of Operational Research 209 (2011) 63-72

journal homepage: www.elsevier.com/locate/ejor

Contents lists available at ScienceDirect

European Journal of Operational Research

Stochastics and Statistics

Analysis of stochastic dual dynamic programming method

Alexander Shapiro *

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA

ARTICLE INFO ABSTRACT

Article history:

Received 12 January 2010
Accepted 6 August 2010
Available online 15 August 2010

Keywords:

Stochastic programming

Stochastic Dual Dynamic Programming
algorithm

Sample Average Approximation method
Monte Carlo sampling

Risk averse optimization

the risk neutral case.

In this paper we discuss statistical properties and convergence of the Stochastic Dual Dynamic Program-
ming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the
underline data process is stagewise independent and consider the framework where at first a random
sample from the original (true) distribution is generated and consequently the SDDP algorithm is applied
to the constructed Sample Average Approximation (SAA) problem. Then we proceed to analysis of the
SDDP solutions of the SAA problem and their relations to solutions of the “true” problem. Finally we dis-
cuss an extension of the SDDP method to a risk averse formulation of multistage stochastic programs. We
argue that the computational complexity of the corresponding SDDP algorithm is almost the same as in

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to analyze convergence properties of
the Stochastic Dual Dynamic Programming (SDDP) approach to
solve linear multistage stochastic programming problems of the
form

Min c{x;+E| min cx+E|---+E min Xy . (1.1
A1x1=bq Byx1+Ayxy=b; Byxr_1+Arxr=br
X1 =0 X220 xr=0

Components of vectors ¢, b, and matrices A, B; are modeled as ran-
dom variables forming the stochastic data process! & = (c,AsBgby),
t=2,..., T, with & =(cq,A1,bq) being deterministic (not random). By
¢ = (&,...,¢) we denote history of the data process up to time t.
The SDDP method originated in Pereira and Pinto [11], and was ex-
tended and analyzed in several publications (e.g., [2,4,7,12]). It was
assumed in those publications that the number of realizations (sce-
narios) of the data process is finite, and this assumption was essential
in the implementations and analysis of the SDDP type algorithms. In
many applications, however, this assumption is quite unrealistic. In
forecasting models (such as ARIMA) the errors are typically modeled
as having continuous (say normal or log-normal) distributions. So
one of the relevant questions is what is the meaning of the intro-
duced discretizations of the corresponding stochastic process.

* Tel.: +1 404 8946544.
E-mail address: ashapiro@isye.gatech.edu
1 Of course, not all elements of the data vectors &, should be random. For example,
we can model only the right hand side vectors b, as random while all other elements
of ¢ being fixed (known).

0377-2217/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.08.007

Related questions are convergence properties and error analysis of
the method.

We make the basic assumption that the random data process is
stagewise independent, i.e., random vector &, is independent of
¢ig=(&,...,&) for t=1,..., T—1. In some cases across stages
dependence can be dealt with by adding state variables to the
model. For example, suppose that parameters of the data process
& other than b, are stagewise independent (in particular are deter-
ministic) and random vectors b, t = 2,..., T, form a first order auto-
regressive process, i.e., b= ®b,_; + &, with appropriate matrix @
and error vectors &,,. .., &r being independent of each other. Then
the feasibility equations of problem (1.1) can be written as

bi — ®b;_1 =&, BXi-1— Pb +AXr =&, X =0,

Therefore by replacing x, with (x,,b;) and data process with (c;,A¢, B,
&), t=2,..., T, we transform the problem to the stagewise indepen-
dent case. Of course, in this new formulation we do not need to
enforce nonnegativity of the state variables b,.

We also assume that the implementation is performed in two
steps. First, a (finite) scenario tree is generated by randomly sam-
pling from the original distribution and then the constructed prob-
lem is solved by the SDDP algorithm. A current opinion is that the
approach of random generation of scenarios (the so-called Sample
Average Approximation (SAA) method) is computationally intrac-
table for solving multistage stochastic programs because of
the exponential growth of the number of scenarios with increase
of the number of stages (cf., [18,19]). An interesting property of
the SDDP method is that the computational complexity of one
run of the involved backward and forward step procedures is

http://dx.doi.org/10.1016/j.ejor.2010.08.007
mailto:ashapiro@isye.gatech.edu
http://dx.doi.org/10.1016/j.ejor.2010.08.007
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

64 A. Shapiro/European Journal of Operational Research 209 (2011) 63-72

proportional to the sum of sampled data points at every stage and
not to the total number of scenarios given by their product. This
makes it computationally feasible to run several such backward
and forward steps. Of course, this still does not give a proof of com-
putational tractability of the true multistage problem. It also
should be remembered that this nice property holds because of
the stagewise independence assumption.

We also discuss an extension of the SDDP method to a risk
averse formulation of multistage stochastic programs. We argue
that the computational complexity of the corresponding SDDP
algorithm is almost the same as in the risk neutral case.

In order to present some basic ideas we start our analysis in the
next section with two-stage linear stochastic programming prob-
lems. For a discussion of basic theoretical properties of two and
multi-stage stochastic programs we may refer to [21]. In Section 3
we describe the SDDP approach, based on approximation of the dy-
namic programming equations, applied to the SAA problem. A risk
averse extension of this approach is discussed in Section 4. Finally,
Section 5 is devoted to a somewhat informal discussion of this

methodology.
We use the following notations and terminology throughout the
paper. The notation “:=" means “equal by definition”. For a € R,

[a]s:=max{0,a}. By |J| we denote cardinality of a finite set J. By A"
we denote transpose of matrix (vector) A. For a random variable
Z, E[Z] and Var[Z] denote its expectation and variance, respectively.
Pr(-) denotes probability of the corresponding event. Given a con-
vex function Q(x) we denote by 9Q(x) its subdifferential, i.e., the
set of all its subgradients, at point x € R". It is said that an affine
function ¢(x)=a+ b"x is a cutting plane, of Q(x), if Q(x) = ¢(x) for
all x € R". Note that cutting plane ¢(x) can be strictly smaller than
Q(x) for all x € R". If, moreover, Q(X) = ¢(X) for some X € R", it is
said that ¢(x) is a supporting plane of Q(x). This supporting plane
is given by ¢(x) = Q(x) + g" (x — X) for some subgradient g € 9Q(X).

2. Two-stage programs

In this section we discuss a setting of the SDDP method applied
to the following two-stage linear stochastic programming
problem:

i T
I\X@PC X+ 9(x), (2.1)
where X := {x € R™ : Ax = b,x > 0}, Q(x) := E[Q(x,¢)] and Q(x,¢) is
the optimal value of the second stage problem

Min q'y

yeR'2 (2.2)
s.t. Tx+Wy=nh,y > 0.

It is assumed that some/all elements of vectors g, h and matrices T,
W are random. The data vector ¢ is formed from elements of q, h, T,
W, and the expectation in (2.1) is taken with respect to a (known)
probability distribution P of &. In order to emphasize what probabil-
ity distribution is used we sometimes write Ep[Q (x, ¢)] for the corre-
sponding expectation. We use the same notation ¢ to denote
random vector and its particular realization; which one of these
two meanings will be used in a particular situation will be clear
from the context. As it was discussed in the Introduction we do
not restrict our analysis to the case of a finite number of scenarios,
i.e., the distribution P can be continuous. We assume, however, that
we can sample, say by using Monte Carlo techniques, from the dis-
tribution of ¢&.

Problem (2.2) is a linear programming problem. Its dual is the
problem
Max 7' (h—Tx)

T (2.3)
st. W'rn<q

Both problems (2.2) and (2.3) possess optimal solutions provided
that both problems are feasible. We assume that the expectation
function Q(x) is well defined and finite valued. In particular, we as-
sume that the second stage problem (2.2) is feasible for all x € X
and almost every realization of the random data. That is, we assume
that the considered problem has relatively complete recourse. Note
that for every ¢ the function Q(-,¢) is convex, and hence the ex-
pected value function Q(x) is also convex.

Since we do not make the assumption of a finite number of sce-
narios, several strategies are possible. Let us consider the following
approach in the spirit of [11]. A random sample &',.... ¥ of N
(independent) realizations of the random vector ¢ is generated
and consequently the “true” distribution P is replaced by the
(empirical) distribution Py constructed from N scenarios &',..., N
each taken with probability 1/N. This results in replacing the origi-
nal problem (2.1) by the so-called sample average approximation
(SAA) problem

Minc'x + o(x), (2.4)
where

N
Q%) = Ep,[QX,) =N "> Q(x,). (2.5)

=

We use notation Sy := [&!,...,&V] for this sample.

A possible strategy is to apply the SDDP algorithm to the SAA
rather than the original problem. That is, we assume now that
the sample Sy is fixed? and discuss implementation of the SDDP
algorithm to the obtained SAA problem. At the kth iteration the
SDDP algorithm performs the following procedure referred to as
the backward step. Let X, € X be a current first stage solution and
Qu(x) be an approximation of Q(x), given by maximum of a finite
number of its supporting planes. Next a subgradient g, € 99 (%) is
computed and the new supporting plane

Ek(X) = é(xk) +g;(x - Xk) (26)

is constructed. The current approximation is updated by replacing
Qi(x) with Q¢ (x) := max{Qy(x), & (x)}, i.e., the supporting plane
l(x) is added to the collection. Consequently x, is updated by an
optimal solution of the problem

I\X/ggl CTX + Qg (X). (2.7)
In order to ensure that problem (2.7) has an optimal solution we
may assume that the set X is nonempty and bounded. Since O(-)
is greater than or equal to its every supporting plane and Qy(-) is gi-
ven by maximum of a collection of supporting planes, we have that
() = ("), k=1,..., and hence the optimal value of problem (2.7)
is less than or equal to the optimal value of the SAA problem (2.4).
That is, values

i T _
Ok _ig{c X+ QX)) k=1,..., (2.8)
give lower bounds for the optimal value of the SAA problem.

In order to perform the above backward step at each iteration
we need to make the following computations. The second
stage problem (2.2) should be solved for x =X, and each
& = (h,Tj,W;,q), j=1,..., N. Let y,; be an optimal solution of
(2.2) and m; be an optimal solution of its dual (2.3) for ¢ = &,
j=1,...,N. Then

N N
QX)=N">"qyy and g,=-N"'> Tim, (2.9)
j=1

=

2 Since in the discussion below the sample is fixed we do not indicate in the
notation of the function Q(x) dependence on the sample size N.

A. Shapiro/ European Journal of Operational Research 209 (2011) 63-72 65

This procedure requires solving the second stage problem N times.
In order for that to be computationally feasible the sample size N
should be not too large.

It could be noted that in the considered case of two-stage sto-
chastic programming, the “backward step” procedure of the SDDP
algorithm does not involve sampling of scenarios. It also could be
noted that the above “backward step” procedure is the standard
cutting plane algorithm (Kelley’s cutting plane algorithm [6]) ap-
plied to the SAA problem (2.4). Its convergence properties are well
known. It produces a sequence of iterates X, which finds an optimal
solution of problem (2.4) in a finite number of iterations (see, e.g.,
[14, section 2.2]).

Let us discuss now the so-called forward step of the SDDP meth-
od applied to the SAA problem (2.4). A random sample ¢,..., éY
from the empirical distribution Py is generated, i.e., ¢',..., eV is a
subsample of the sample Sy = [¢',...,&"]. This subsample can be
generated with or without replacement. In case of sampling with-
out replacement, all &',..., &M are different from each other and
M < N. If M is much smaller than N, then there is no significant
practical difference between these two methods,’ therefore we as-
sume for the sake of simplicity that the sampling is with replace-
ment. For a current solution x € X, the second stage problem (2.2)
is solved for x =% and each ¢=¢&, j=1,..., M. Let 9= quj/j be the
respective optimal values of the second stage problem. Note that if
X = X;, then these optimal values were computed at the correspond-
ing backward step. Let

§~—12M:19' and 2= XM:(ﬁﬂW
v '_Mj:1 J 19._(1\/171) = J

(2.10)

be the respective sample average and sample variance of the opti-
mal values v;. Conditional on the sample €y, the average 9 is an
unbiased estimate of Q(X), i.e,, E[J|Sy] = Q(X), and

[qﬁza/z(rﬁ/\/zﬁ, q§+zm/26l;/\/l_/l] (2.11)
gives an (approximate®) 100(1 — o)% confidence interval for Q(X).
Here z, denotes the (1 — «)-quantile of the standard normal distribu-
tion. For example, zg 025 = 1.96 corresponds to the 95% confidence
interval.

Remark 1. It was suggested in [11, p. 368] to stop the procedure if
the current lower bound 9, is inside the confidence interval (2.11)
(the same suggestion was made in [4, p.24]). This means that the
procedure is stopped if ¥, becomes greater than J —z,26/ VM.
This, however, does not give any guarantee that the SAA problem
was solved with a reasonable accuracy. The meaning of the
confidence interval (2.11) is that with (approximate) probability
1 — o some number inside this interval gives an upper bound for
the optimal value of the SAA problem. However, this upper bound
could be any point of that interval and this will be too optimistic to
assume that the lower end of the confidence interval gives such an
upper bound. According to that criterion the larger the variance G2
is the sooner we stop. Moreover, increasing the confidence 1 — «
makes the critical value z,,, bigger, and the lower end of the
confidence interval can be made arbitrary small for sufficiently
large confidence 1 — o.. That is, by increasing the confidence 1 — o
the procedure could be stopped at any iteration by this stopping

3 If the sample size M is comparable to N, say N is about 3 times bigger than M, then
in subsampling without replacement this should be taken into account in formulas
(2.10) below (cf., [3]). However, if N is say bigger than M by a factor of 100 or more,
then such corrections become practically negligible. Especially in the multistage case,
discussed in the next section, the number of scenarios N is far bigger than the sample
size M used in the forward step procedure.

4 This confidence interval is based on approximation of the distribution of the
average 9 by the corresponding normal distribution, which could be justified by
application of the Central Limit Theorem.

criterion; this does not make sense. A more meaningful criterion
would be to stop the procedure if the difference between the upper
confidence bound ¥ + z,6/v/M and the lower bound ¥ is less than
a prescribed accuracy level ¢ > 0. This will suggest, with confidence
of about 1 — o, that the SAA problem is solved with accuracy ¢. We
will discuss this further below.

Remark 2. The above SDDP procedure is applied to the SAA prob-
lem (2.4) while actually the true problem (2.1) needs to be solved.
So the natural question is how optimal solutions and the con-
structed optimality bounds of the SAA problem are related to their
counterparts of the true problem. The SAA problem is a function of
the sample Sy = [¢',...,&"] and therefore in itself is random. For a
(fixed) X € X the value Q(X) is random and we have that
E[Q(X)] = Q(X). It follows that

E[] = E{E[9|Sn]} = E[Q()] = Q(x),

i.e., ¥ is an unbiased estimator of Q(X) = E[Q(X, ¢)]. In order to com-
pute variance of 9 we use formula

Var(i)] = E[Var(9|Sy)] + Var[E(W|Sy)], (2.12)

whereVar(J|Sy) = [E{(ﬁ— E(ﬁ\eN))z)\eN] is the conditional vari-
ance of 9 and Var[E(J|Sy)] = [E{[[E(1§|’5N) - [E(m?)}z} is variance of

E[J|Sy] = Q(X). We have that 62/M is an unbiased estimator of
the first term in the right hand side of (2.12), and

Var[E(J|€y)] = Var[Q(X)] = N 'Var[Q(x, &)].

Therefore the second term in the right hand side of (2.12) can be
estimated by

~2 v ¥ ~ _\?2
6% = (ex.@) - o).

N-1¢
i

1 N
N-1 =1
This leads to the following 100(1 — «)% confidence interval for the
“true” expected value Q(X):

[15721/2 G2 /M + 6% /N, + 2,5 &§/M+&2Q/N]. (2.13)

Of course, since Q(X) is an unbiased estimate of Q(¥), it is possible
to construct a confidence interval for Q(x) directly as

[Q®) — 24260/ VN, Q%) + 2260/ VN].

Remark 3. It is not difficult to show and is well known that the
expectation of the optimal value of the SAA problem (2.4) is less
than the optimal value of the true problem (2.1). By estimating
the expectation of the optimal value of the SAA problem, may be
by solving several SAA problems based on independently gener-
ated samples, and using an upper bound discussed in Remarks 1
and 2, one can estimate the optimality gap for the true problem
(cf., [8,10]). Of course, by construction the optimal value 9., of
problem (2.7) is less than the optimal value of the SAA problem
(2.4). Therefore E[Yy] is a lower bound for the optimal value of
the true problem as well.

Rates of convergence of the optimal value and optimal solutions
of the SAA problems to their counterparts of the true problem (2.1)
are well investigated. In short, optimal values of SAA problems
converge to their true counterparts at a rate of Op(N*”Z), which
is typical for Monte Carlo type estimates. In other words in order
to solve the true problem with accuracy ¢ > 0 one needs to solve
the SAA problem with a sample size of order N = O(¢~2). For a de-

66 A. Shapiro/European Journal of Operational Research 209 (2011) 63-72

tailed analysis of rates of convergence and statistical properties of
SAA estimators we may refer to [21, Chapter 5]. Often a reasonably
manageable sample size N is sufficient to approximate the true
problem by an SAA problem with a practically acceptable accuracy.

It should be pointed out that the above cutting plane algorithm
is not an efficient method for solving two-stage linear programs.
The convergence is rather slow and there are much better algo-
rithms for solving such problems® (see, e.g., [14]). We discussed it
here as a preparation for an investigation of the SDDP method ap-
plied to multistage linear problems.

3. Multistage programs

Consider the linear multistage stochastic programming problem
(1.1). Recall that we make the assumption that the data process
&1 .., Eris stagewise independent. Then the dynamic programming
equations for problem (1.1) take the form

Qi(Xc1,&) = xtingf"r {c[% + Qu1 (X)) : Bixe_y + AXe = by, x > 0},
(3.1)

where

Qe1(Xe) = E{Qey1 (X, &) b 32)

t=T,...,2 (with Qr,1(-) = 0 by definition). At the first stage problem

Min = cix; + Q%))
X1 eR™M (33)

s.t. Aixq = b], x; = 0,

should be solved. We assume that the cost-to-go functions 9Q(-) are
finite valued, in particular we assume the relatively complete
recourse.

Recall that a collection of functions X, = x;(¢y), t=1,..., T, is
said to be an (implementable) policy. Such policy gives a decision
rule at every stage t of the problem based on a realization of the
data process up to time t. A policy is feasible if it satisfies the fea-
sibility constraints for almost every realization of the random data.
By the classical result we have that policy X; = X;(¢y) is optimal if it
satisfies the dynamic programming equations, i.e., X; is a solution
of the minimization problem in the right hand side of (3.1) (see,
e.g., [21, section 3.1] for a discussion of these concepts). Note that
here the cost-to-go functions 9;(x; 1) do not depend on the data
process because of the stagewise independence assumption.

We also assume that we can sample from the probability distri-
bution P, of the random vector &, t=2,..., T (recall that &; is deter-
ministic, not random). A sample average approximation (SAA) of
the “true” problem (1.1) is constructed by replacing the true distri-
bution of &, t=2,..., T, by the empirical distribution Py, based on a
random sample
& = (Cy, Ay By, by),

j:17"'>Nt7 (34)

from P, of size N, Consequently the probability distribution
P, x --- x Prof the random process &, . .., éris replaced by (finitely
generated) distribution Py, X --- x Py,. This probability distribution
(of the SAA problem) can be represented by a tree where at stage
t-1 every node of the tree has the same branches corresponding
to &,..., N Note that in that way the stagewise independence of
the orlgmal (true) problem is preserved in the SAA problem.

The total number of scenarios of the constructed SAA problem is
N = []"_,N.. Even with a moderate number of scenarios per stage,
say each N; equals several hundreds, the total number of scenarios
grows exponentially and quickly becomes astronomically large
with increase of the number of stages. This suggests that a scenar-

5> Unfortunately it is not clear how to extend these better algorithms to multistage
programs.

ios-based approach to multistage stochastic programming is com-
putationally intractable (cf., [18]). On the other hand it is known
that (under mild regularity conditions) in order to solve the true
problem with a given accuracy ¢ > 0 the sample sizes N;, t=2,...,
T, used to construct the SAA problem, should be of order O(s2)
(cf., [19],[21, section 5.8.2]). That is, if the SAA problem with rea-
sonable sample sizes N; could be solved in a reasonable time with
a reasonable accuracy, then its solution could give a reasonable
approximation for its counterpart of the true problem.

We discuss now the SDDP method applied to the SAA problem.
The dynamic programming equations for the SAA problem can be
written as

Q1) = inf {E% + Qer(x) : Byxe + Agxe = by, x. > 0},
t

j=1,....N; (3.5)
with
Nt+1 -
Qt+1 Xt) Nt+ Z Qirr1j(xe), (3.6)

t=T,...,2 and Qm (-) = 0. The optimal value of the SAA problem is
given by the optimal value of the first stage problem

Min c]x; + Qa(x:)

X1€R™

s.t. Aixy = b],X] > 0.

(37)

The cost-to-go functions, of the true and SAA problems, are convex
and since the number of scenarios of the SAA problem is finite, the
cost-to-go functions Q,(-) of the SAA problem are piecewise linear.

A backward step of the SDDP algorithm, applied to the SAA
problem, can be described as follows. Let X, € R™ be a trial decision
atstaget=1,...,T— 1 and Q(-) be a current approximation of the
cost-to-go function Q;(-), given by the maximum of a collection of
cutting planes, at stage t=2,..., T. At stage t=T we solve the

problem

Mip e 8
s.t. BrXr 1 + Agxr = by, xr > 0, .
forx;_; =Xr_;andj=1,..., N.. Note that the optimal value of prob-

lem (3.8) is equal to er(xr,1).
Let X;; be an optimal solution of problem (3.8) and 7t7; be an

optimal solution of its dual for x;_; =xr_; and j=1,..., Nr. Then
(r(xr1) = Qr(Xr_1) + 81 (Xr_1 — Xr_1), (3.9
where

Or(Xr 1) chxr, and §r=—— ZBTjnTJ (3.10)

is a supporting plane for Qr(:) at X;_;. This supporting plane is
added to the collection of supporting planes of Qr(-), i.e., Qr(*) is re-
placed by max {Qr(-), 4r(-)}-

Next the updated approximation Qr(-) is used at stage t=T — 1,
where problem

Mllnl E;_]JXT—l + Qr (XT—I)
M €RT (3.11)
s.t. Bro1jXr2 + Ar_1jXr1 = bT—l.jaXT—l > 0,

should be solved for xr_, =Xr_, and j=1,..., Nr_q. Since Qr(-) is
given by maximum of affine functions, problem (3.11) can be for-
mulated as a linear programming problem with additional variables
corresponding to each cutting plane used in construction of Qr().
Consider the optimal value, denoted QT,U(XT,Z), of problem
(3.11), and let

A. Shapiro/ European Journal of Operational Research 209 (2011) 63-72 67

Nr_y

qu(xrfz) = qu ZQT—]J’(XT—Z)-

=1

By consjruction we have that QT—IJ(') < @T,U(A).j =1,...,Nr_q,and
hence Qr 1(-) < Qra ().

By solving (3.11) and its dual for every j=1,..., Nr_;, we can
compute value Or_;(Xr_,) and a subgradient gr_, of Qr_;(x;_,) at
Xr_» = Xr_», and hence construct the supporting plane

lr_q(Xr_2) = qu (Xr_2) + &1 (Xr_2 — X1_2), (3.12)

for QH (xr_2) at Xr_» = Xr_». Then the approximation Qr_;(-) is up-
dated by replacing it with max {Qr_1(-), ¢r_1(-)}. This process is con-
tinued backwards until at the first stage the following problem is
solved

xll\/Elulin cix1 + D (x1)

s.t. Aix; =by,x; = 0.

(3.13)

Of course, the above backward step can be performed simulta-
neously for several values of trial decisions X;, t=1,..., T—1. It
could be also noted that starting from t=T - 1,..., values Q[(XH)
could be strictly smaller than Q,(x,_;) for some/all x,_1, and the con-
structed planes are supporting planes for Qf(A) but could be only
cutting planes for Q,(-).

Similarly to the two-stage case we denote by 9, the optimal va-
lue of problem (3.13) at kth iteration of the backward step proce-
dure. Since Q,(-) < Q,(-) we have that ¥, is less than or equal to
the optimal value of the SAA problem. The value ¥, depends on
the random sample used in the construction of the SAA problem,
and therefore is random. Recall that the expectation of the optimal
value of the SAA problem, and hence E[¢;], is smaller than the opti-
mal value of the true problem. Therefore, on average, ¥, gives a
lower bound for the optimal value of the true problem.

The computed approximations Q,(-), ..., Qr(-) (with Qr,1(-) =0
by definition) and a feasible first stage solution® X, can be used for
constructing an implementable policy as follows. For a realization
&,. .., & of the data process, decisions X;, t=1,..., T, are computed
recursively going forward with x; being the chosen feasible solu-
tion of the first stage problem (3.13), and X; being an optimal solu-
tion of

Min X+ Qe1(Xe)
xicRlt (3.14)
St A[X[= bt - thf,l, Xt 2 0

for t=2,..., T. These optimal solutions can be used as trial deci-
sions in the backward step of the algorithm. Note that X; is a func-
tion of X, and ¢ =(c,AnB,be), ie., X is a function of
¢ =(¢1,...,&), for t=2,..., T. That is, X, = X;(¢y) is an implement-
able policy for the true problem (1.1). Moreover, by the construc-
tion this policy satisfies the feasibility constraints for any
realization of the data process. If we restrict the data process to
the generated sample, i.e., we consider only realizations &,,..., ¢ér
of the data process given by scenarios of the SAA problem, then
X; = X:(¢;y) becomes an implementable and feasible policy for the
corresponding SAA problem.
Since the policy x; = x;(&y) is feasible, the expectation

r

E {Z cht@m)}
t=1

gives an upper bound for the optimal value of the corresponding

multistage problem. If we take this expectation over the true prob-
ability distribution of the random data process, then the above

(3.15)

5 Note that by the construction the first stage solution computed in a backward
step is feasible, i.e., satisfies the constraints A1x; = by, x; > 0.

expectation (3.15) gives an upper bound for the optimal value of
the true problem. On the other hand, if we restrict the data process
to scenarios of the SAA problem, each with equal probability 1/N,
then the expectation (3.15) gives an upper bound for the optimal
value of the SAA problem conditional on the sample used in con-
struction of the SAA problem (compare with Remark 2 of the previ-
ous section).

The forward step of the SDDP algorithm consists in generating M
random realizations (scenarios) of the data process and computing
the respective optimal values ¥; := Zleﬁfj)’ctj,j= 1,..., M. Conse-
quently the sample average ¥ and sample variance 62 are calcu-
lated, by using the same formulas as in (2.10), and the respective
confidence interval (2.11) is constructed. Similarly to the case of
two-stage programming, discussed in Section 2, the random sam-
ple can be constructed as a subsample of the sample used in the
SAA problem or can be generated directly from the original (true)
distribution of the data process. In both cases the average ¥ is an
unbiased estimator of the corresponding expectation (3.15), and
E[9] is an upper bound for the optimal value of the true problem.
In the case of subsampling, J + z,6y/v'M gives an upper bound
for the optimal value of the SAA problem with confidence of about
1 — «. Similarly in the case of direct sampling from the true distri-
bution, 9 + z,6y/v/M gives an upper bound for the optimal value of
the true problem with confidence of about 1 — «.

Remark 4. As it was discussed in Section 2 (see Remark 1) the
stopping criterion of ending the computational procedure the first
time the lower bound ¥, becomes bigger than the lower end
9 — Z“/Zm/\/l\v/l of the confidence interval could be quite mislead-
ing. The larger the variance 62 and the confidence 1 — « are, the
sooner the procedure will be stopped by this criterion. Note that ¢3
is an unbiased estimator of the variance of 3! ,c/%;, and this
variance could be expected to grow with increase of the number of
stages T more or less proportionally to T if the terms ¢/ of that
sum have more or less the same variances and nearly uncorrelated
with each other. It makes more sense to consider the difference
between the upper bound 9 + z,6y/vM and lower bound ¥;. This
difference gives an approximate upper bound for the gap between
the value of the current policy and the optimal value of the SAA
problem. For a further discussion of this issue see Section 5.

Remark 5. The upper bound ub := 9 + z,6,/v/M depends on sam-
pled scenarios and hence is random. The meaning of this upper
bound is that for one run of the forward step procedure the upper
bound ub is bigger than the expected value (3.15) of the considered
policy with probability 1 — «. Suppose that we run the forward
step procedure several, say k, times for the same policy, and hence
compute respective upper bounds uby, ..., ub,. Consider the mini-
mum uby:=min{uby,...,ub;} of these upper bounds. This could be
motivated by desire to pick a “best” of computed upper bounds.
The probability that uby is an upper bound for the expected value
of the considered policy is Pr(nf_,A;), where 4; is the event that
ub; is bigger than the expected value of the considered policy. By
the Bonferroni inequality we have that Pr(n¥ ,A;) > 1 — ko. That
is, if we want uby to give the required upper bound with confidence
1 — o, to be on safe side we need to employ the individual upper
bounds at the confidence level 1 — ok, i.e., to use 9 +Za/k6,,9/\/M.
If the samples used in calculations of the upper bounds are inde-
pendent of each other, and hence the events A; are independent,
then Pr(n* ,A) = (1 - o)*. For small o >0 and not too large k we
have that (1 —)~ 1 — ko, and hence the choice of confidence
level 1 — «/k for the individual upper bounds is not very conserva-
tive. It could be mentioned that the critical values z,, given by the
respective quantiles of the standard normal distribution, are justi-
fied by an application of the Central Limit Theorem. It also should

68 A. Shapiro/European Journal of Operational Research 209 (2011) 63-72

be remembered that for very small probabilities «/k, i.e., for large k,
approximation of the “true” quantiles by using normal distribution
could be poor (this is why the Central Limit Theorem is called
“central”).

Remark 6. It is also possible to compare values of two policies, say
associated with two different sets of the lower approximations
Qy(-),...,Qr(-). That is, let X, = X:(&y) and X, = X(y), t=1,..., T,
be two 1mplementab1e and feasible p011c1es Generate M random
realizations &,...,&, j=1,..., M, of the data process, and for
(&:.-vép) = (&.... &) compute

T
)= xilEy) j=1,...,M. (3.16)
t=1

Note that E[Z;] is equal to the difference between expected values of
these two policies. Therefore we can apply the standard t-test to
Z1,..., Zy to construct a confidence interval for the difference be-
tween these expected values and hence to test” whether this differ-
ence is bigger/smaller than zero.

3.1. Convergence properties of the SDDP method

In this section we discuss convergence properties of the SDDP
algorithm applied to the SAA problem governed by dynamic
programming Eqgs. (3.5)-(3.7). Consider optimization problems
(3.14) used in the forward step procedure with approximations
Q¢,1(+) constructed at kth iteration of the backward step proce-
dure (recall that Qr.()=0). We make the following
assumption.

(A1) Problem (3.13) and problems (3.14), t=2,..., T, have finite
optimal values for all realizations (scenarios) of the data
used in the SAA problem.

Since the functions Q¢ (-) are convex piecewise linear it follows

that if a problem of the form (3.13) or (3.14), t = 2,..., T, has finite
optimal value, then it has an optimal solution.

Now let us consider cutting planes
Le(Xe1) == Qt(xt—l) + & (Xeo1 — Xe1), (3.17)

which were constructed in the backward step procedure. The
required subgradient g; € 8Q[()'<H) is computed by solving the
corresponding dual problems, for j=1,..., N, and averaging their
optimal solutions. These dual problems can be written as linear pro-
gramming problems and because of assumption (A1) have optimal
solutions. If we compute basic feasible solutions of these dual prob-
lems, then we say that basic optimal solutions are used. In that case
the number of such optimal solutions is finite, and hence the
number of cutting planes of the form (3.17) is finite (cf., [14,
section 2.1]).

Proposition 3.1. Suppose that in the forward steps of the SDDP
algorithm the subsampling procedure is used, assumption (A1) holds
and in the backward steps the basic optimal solutions are employed.
Then w.p.1 after a sufficiently large number of backward and forward
steps of the algorithm, the forward step procedure defines an optimal
policy for the SAA problem.

7 The above is a paired t-test since the same sample was used in two terms in the
right hand side of (3.16). It seems that it would be advantageous to use here the
paired t-test since these two terms are expected to be positively correlated.

Proof. Let us first observe that under the specified assumptions
the total number of possible different realizations of functions
Q(), t=2,..., T, and first stage solutions generated by the back-
ward step procedure, is finite. Indeed, let us look at the construc-
tion of Qr(-) at stage t=T, see Eqs. (3.8)-(3.10). As it was
discussed above, since basic optimal solutions are used in the con-
struction of supporting planes of Or we have that there is only a
finite number of different functions Qr(-) that can be constructed
by this procedure. Next for each possible realization of Qr(-) there
is only a finite number of different functions Qr ;(-) that can be
constructed by (3.11) and (3.12), and so on.

Recall that a policy X; = X[(Em), t=1,..., T, is optimal for the SAA
problem if the following (dynamic programming) optimality
conditions

)_(t(g[t]) € arg){l’eléqln]t {E}Txt + éHl (%) - §t)_<t—1 (E)+Atxt bnxt = O},
t

(3.18)
hold for t=1,..., T, and all realizations &, ..., & of the data process
of the SAA problem (recall that Bo =0 and QOr,1(-) =0). Now let

Q(), t=2,..., T, be a current set of constructed approximation
functions, X; be the first stage solution generated by the backward
step procedure and X; = X;(j), t=2,..., T, be the corresponding for-
ward step policy. Suppose that the forward step policy is not opti-
mal for the SAA problem. That is, the optimality conditions (3.18)
do not hold for some t €{2,...,T} and some realization &,,...,&
of the data process. Let t' be the largest such ¢, i.e., consider the
first time going backwards that the optimality conditions (3.18)
do not hold. Then for the trial decision X = X¢ (&), by adding the
corresponding cutting plane ¢, (-) we change (mcrease) the current
function Qy(-). Since the total number of scenarios of the SAA
problem is finite, we have that w.p.1 the realization &,,..., & will
happen in the forward step procedure for a sufficiently large num-
ber of iterations. Since the total number of different realizations of
functions Q(-) is finite, we obtain that w.p.1 after a sufficiently
large number of iterations the optimality conditions (3.18) will hold
for all t and all realizations of the data process of the SAA
problem. O

Some remarks about this proof are now in order. The main argu-
ment of the above proof of finite convergence of the SDDP algo-
rithm is based on finiteness of all possible realizations of the
lower approximation functions. This, in turn, is based on that the
total number of scenarios of the SAA problem is finite and basic
optimal solutions of the dual problems are used in the backward
steps. Another argument of the proof is that the forward step pro-
cedure will generate w.p.1 every possible scenario of the consid-
ered SAA problem for sufficiently large number of runs. This, in
turn, is based on the assumption that the sampled scenarios of
the forward step procedure are generated from the scenarios of
the SAA problem and, more importantly, are generated indepen-
dently of each other. Without this condition of independence of
scenarios generated in the forward steps, there is no guarantee of
convergence even for relatively small problems.

4. Risk averse approach

Let us look again at the two-stage problem (2.1) and (2.2). At
the first stage the value Q(x,¢) is minimized on average. Of course,
for a particular realization of the random vector ¢ the second stage
cost Q(x, &) can be quite bigger than its mean (expected value) Q(x).
Therefore, in order to control this cost one can add the constraint
Q(x, &) < n for some chosen constant # and trying to enforce it for
all realizations of the random vector ¢ However, enforcing such
constraint for all realizations of ¢ could be infeasible for any rea-
sonable value of the parameter #.

A. Shapiro/ European Journal of Operational Research 209 (2011) 63-72 69

A more realistic approach would be to enforce this constraint
with a certain confidence level, i.e., to write it in the following form
of a chance (probabilistic) constraint

Pr{Qx, &) <n} >1-a, (4.1)

where o € (0,1) is a small number (significance level). Equivalently
the above constraint can be written as

V@R,[Q(x, &)l <1, (4.2)
where Value-at-Risk, V@R,[Z], of random variable Z is defined as
V@R, [Z] :=inf{u:Pr(Z<u) > 1-a},

i.e.,, V@R,[Z] is the left-side (1 — «)-quantile of the distribution of Z.

This leads to the following risk averse formulation of the two-stage

program

Min c"x+ Q(x)
xeX (43)

st VAR,[Q(x,)] < 1.

The difficulty with the above risk averse formulation (4.3) is that
the function V@R,[Q(x,¢&)] typically is not convex in x, even if
Q(-,¢) is convex, and is difficult to handle numerically. It was sug-
gested in [13] to replace chance constraint (4.2) by the following
conservative approximation

CQVaR,[Q(x,)l <, (4.4)

where the Conditional Value-at-Risk of a random variable Z is de-
fined as

CVAR,[Z] := inf {u+ o 'EIZ — u], }. (4.5)

The minimum in the right hand side of the above definition is at-
tained at u* = V@R,[Z], and hence

CV@R,[Z] = V@R,[Z] + & 'E[Z — V@R, (Z)

I

That is, CV@R,[Z] is bigger than V@R,[Z] by the nonnegative
amount o 'E[Z — V@R,(Z)],. It follows that (4.4) is indeed a conser-
vative approximation of (4.2) in the sense that the constraint (4.4) is
stricter than (4.2). Note also that convexity of Q(-,¢) is preserved in
the function CV@R,[Q(-,¢)] (cf., [16, Lemma 3.1]).

Replacing chance constraint (4.2) with the constraint (4.4) leads
to the following risk averse formulation

l}(@ap c'x +E[Q(x,)]

(4.6)
s.t. CV@R,[Q(x,&)] < n.

Note again that the feasible set of problem (4.6) is contained in the
feasible set of problem (4.3). It could be convenient to move the
constraint (4.4) into the objective function. That is, consider

p,(2) = (1 - DEZ) + ICVaR,Z),

viewed as a real valued function defined on the space L,(Q, 7, P) of
integrable random variables Z. Consider further the problem

MincTx + p,[Q(x,)] (4.7)

The parameter /€ [0,1] can be tuned for a compromise between
optimizing on average and risk control. The function p,(-) is an
example of the so-called coherent risk measures (cf., [1]). An advan-
tage of formulation (4.7) over (4.6) is that the constraint (4.4) can
make the problem (4.6) infeasible, even in the case of relatively
complete recourse, while problem (4.7) does not have this draw-
back. On the other hand the parameter # has a more intuitive expla-
nation in formulation (4.6) than parameter A in formulation (4.7).
By using definition (4.5) of CV@R,, we can write problem (4.7)
as
Min[R cTX+u+E{(1-2)Q(x,&) + 2007 [Q(x, &) —ul, }. (4.8)

XeX,ue

Consequently we can write problem (4.7) as the following two-
stage problem (cf,, [21, pp. 294-295]):
Min_ X+ u+EV(x,u,d), (4.9)

XeX,ue
where V(x,u,¢) is the optimal value of the second stage problem

Min (1-2)q"y+ ' [q"y —u],
yer'2 (4.10)
s.t. Tx+Wy=hy > 0.

Note that problem (4.10) can be written as the linear program:
Min (1-2q"y+ia v

yeR™ veR

s.t. qy-u<uvv

>0 (4.11)
Tx +Wy=hy > 0.

)

Problem (4.9) can be viewed as a linear two-stage stochastic
program with (first stage) decision variables x € R™ and u € R,
and second stage problem (4.11) with (second stage) decision vari-
ables y € R™ and v € R. Consequently the methodology discussed
in Section 2 can be applied in a straightforward way.

The above approach can be extended to a multistage setting.
That is, an extension of the two-stage risk averse formulation
(4.7) to the multistage setting® is obtained by replacing in Eq.
(3.2) the expectation operators with the (conditional) risk measures

Puey 2] = (1= JE[Z|E 1] + 2 CVOR, [Z|E], (4.12)

with 4, € [0,1] and o, € (0,1) being chosen parameters (see [21, sec-
tion 6.7.3]). The corresponding dynamic programming equations for
t=T,....2 take the form

Qi(Xe1,&) = xigg;t {CrTXt + Qrr1(Xe) : BeXe—1 + Axe = by, % > 0}7
t

(4.13)
where
Qer1(Xe) = Praajey [Qea (X, Cean)] (4.14)
with Qr 1(-) = 0. At the first stage problem
Xll\/nggq C1x1 + Qa(X1) 415)

s.t. A]X] = bl,Xl = 0,

should be solved. Note that because of the stagewise independence
condition, the cost-to-go functions Q,;(x;) do not depend on the
random data process.

These dynamic programming equations correspond to the fol-
lowing nested formulation of the risk averse problem (cf., [17])

A1x1=bq
X1 =0 X220

Min clx; + p,. min = cIxy+ -+ pp. min clxr||.
1%1F Py Boxy +Ayxp<by 22 Prigry, Byxr g HApxr<by T

xr=0

(4.16)

An intuitive explanation of this approach is that at tth stage of the
process one tries to control an upper limit of the corresponding
cost-to-go function Q.1(X, &) for different realizations of the data
process. By using definition (4.5) of Conditional Value-at-Risk we
can write formula (4.14) in the form

Qri1(X) = i{lltf E{(1 = Ze21)Qei1 (Xe, Eesn) + Aot (Ue + 06 [Qept (Xe, Eear)
—u,)}- (4.17)
As it was mentioned earlier the minimum in the right hand side of

(4.17) is attained at

8 It is also possible to extend formulation (4.6) to a multistage setting in a similar
way.

70 A. Shapiro/European Journal of Operational Research 209 (2011) 63-72

u}‘ = V@Ra[_] [QH] (X[7 ft+1)]

A balance between optimizing on average and risk aversion can be
controlled by tuning the parameters /. and «, at different stages of
the process. It also could be noted that the above formulation (4.16)
satisfies a condition of time consistency (cf., [15,20]).

By using formula (4.17) we can proceed in writing dynamic pro-
gramming Eqs. (4.13) and (4.14) as follows. At last stage t=T we
have that Q{xr_1,¢7) is equal to the optimal value of problem

Min cJxr
xreRNT (4.18)
s.t. Brxr_1 + Arxr = bT, xr =0
and
Or(xr_1) = lll?f E{(1 — 21r)Qr(Xr_1, &r) + ArlUr_4
+)~TOC¥1 Qr(Xr-1,¢7) — Urqh} (4.19)

At stage t=T — 1 we have that Qr_;(xr_»,¢r_1) is equal to the opti-
mal value of problem

Min ¢f ;Xr_1 + Qr(Xr_1)
xr_1 €RNT-1

s.t. Br_1Xr_3 +Ar_1Xr_1 = br_1,

(4.20)
Xr1 = 0.

By using (4.19) and (4.20) we can write that Qr_1(Xr_2, 1) is equal
to the optimal value of problem

Min C¥,1XT—1 + ArUr_q + Qr(Xr_1,Ur-_1)
Xr_1€RYT-1 ur_1€R
s.t. Br_iXr_y + Ar_1Xr_1 = brq, X4 2 0,
4.21)
where
Or(xr_1,ur_1) = E{(1 = 21)Qq(Xr_1, 1) + Aroz ' [Qr (Xp—1, &) — Ur_1], }.
(4.22)

By continuing this process backward we can write dynamic pro-
gramming Eqgs. (4.13) and (4.14) for t=T,...,2 as

Qe(Xe-1, &) = ipf {C;’rxf + AeplUe + Q1 (Xe, Ur) = BeXeq
Xt €RM ueR
JrA[Xt = b[,X[> O}, (423)
where

Ori1 (X, Uup) = [E{(l = 2e01) Q1 (X, Epp1) + Aes 05;11 [Qei1 (Xe, Epr) — Ut]+}7

(4.24)
with Or,1(-) = 0 and Ar.q:=0. At the first stage problem
Min CIX1 + Aol + Qa(X1,U7)
x1€R™M Uy €R (425)
s.t. Awxi=b1, % 20,

should be solved. Note that in this formulation decision variables at
tth stage are x, € R™ and u,; € R, and with some abuse of notation
we denote the cost-to-go functions in (4.24) by Q.1 (X, u;) while
these functions are different from the cost-to-go functions
O:.1(x;) defined in (4.17). Note also that functions Q.1 (¢, u;) are
convex.

Now consider the corresponding SAA problem based on random
samples (3.4). For the SAA problem dynamic programming Egs.
(4.23) and (4.24) can be written, going backwards in time, as fol-
lows. Starting with Or.4 (,)=0,fort=T,...2, compute
Qy(xc1) = inf

Xt €RM ucR

{ErTth + 2eialle + Qe (Xe, Ue) < ByXe
+Agx = by, x: > 0}, (4.26)

forj=1,..., N, and set

Nt - -
ét(xH,uH):NlZ{a—zt)Qg(xtil)Hta;l Q1) — ti 1] }
t +
(4.27)

At the first stage solve problem of the form (4.25) with Q,(;,-)
replaced by Q,(.,-).

By the chain rule for subdifferentials we have that the subdiffer-
ential of the (convex) function ¢(x;_1,u; 1) := [étj(x(,l) —Urq], ata
point (X;_1,ur 1) = (X1, U;1) can be written as

[0,0] if Qy(%e1) < Ui,
U [g-1] if étj()_(t—l)>ﬁt—17
0P (Re_1,Ue_1) = { $<9Qj(e) (4.28)
U ltg -t if QuRe1) =t
8€0Q (X 1)
te[0,1]

Consequently, if g, € 9Q(%_1), j=1,..., N, then a subgradient of
Q¢(Xe_1,Ue1) at (X¢_1,U_1) is given by

1 o I
N [(1 =)D &+ oy g~y ! |Jr|] (4.29)
j=1

JjeT:
where
Tt = {] Qtj(xt—]) >leq, Jj= 1:---7Nt}-

One can proceed now in backward steps of the SDDP algorithm in a
way similar to the risk neutral case by adding cutting planes of the
cost-to-go functions ét(xf,l JUp_1).

Let us consider now construction of the corresponding forward
step procedure. Given a feasible first stage solution (x1,1;) and a
current set of piecewise linear lower approximations
Q¢ (xe_1,Ur 1) of cost-to-go functions éf(x[,l,ut,l), t=2,..., T, we
can proceed iteratively forward by solving problems

Min C e + A1l + Qerr (Xe, Ug)

Xt €R™M u €R

s.t. AXe = by — Bixe_q,

(4.30)
X =0,

for a (randomly) generated scenario ¢&,. .., ér. Let (e, i), t=1,..., T,
be respective optimal solutions. These solutions can be used in con-
structions of cutting planes in the backward step procedure.

We have that X, = X(y) and @, = 0 (&), t=1,..., T, are func-
tions of the data process, and x.(¢y) gives a feasible and imple-
mentable policy. Value of this policy can be computed by using
nested formulation (4.16). At the last stage t = T we need to com-
pute value Priey, [cTXr]. This value is given by

vr = [E{(l - j.]‘)C}’XT + ;*TﬂT +).TOC¥1 [C;XT — ﬂT]Jr'é[T,]] }

Note that the (conditional) Value-at-Risk of cfxr(y) is replaced
here by its estimate i, given by the considered policy, and
oy = or(&r_y)) is a function &r_q. At stage t =T — 1 we need to com-
pute pr_y, [c_1Xr_1 + vr], which is given by

or_1 == E{(1 — 27_1)(C]_1Rr—1 + v1) + Ar_qlir_1 + Ar_105 4[] 1 X71
+or — ir], [&r_o }-

Note that vr_; = vr_1(&r_2)) is a function of), and so on going
backwards in time.

In order to estimate value of this policy by sampling, and hence
to construct a respective upper bound, one would need to employ a
conditional sampling. To simplify the presentation let us assume
for the moment that T=3. Generate independent samples &g,
i=1,..., M, from respective random vectors &, t=2,3. For every
& i=1,..., My, we can estimate vs3(&y;) by

1 R I P
D3 = E ; {(] — ;,3)C-3I—J~X3j +)~3U3j + /L3(X3I[C;X3j - U3j}+},

A. Shapiro/European Journal of Operational Research 209 (2011) 63-72 71

where the optimal values (X3, ii5;) correspond to scenarios (&2, ¢35),
j=1,..., Ms. Note that 93; is a function of &; i=1,..., M,. Conse-
quently v, is estimated by

R 1
Dy = M_2
M,
X Z {(1 - ;LZ)(Cgi)_(zi + D3;) + Aol + 1206271 [Cg)_(z,' + 03 — ﬂz,']Jr}.
i=1

Finally, the policy value is estimated by c]X; + b;.

For T-stage programs this estimation procedure requires solving
M= HtT,th linear programs and for a large number of stages could
be impractical. Anyway for a large number of stages the considered
sample based upper bounds typically are too loose and practically
are not very useful. We will discuss this further at the end of next
section.

5. Discussion

One run of the backward step procedure requires solving
1+ N, + .-+ Nrlinear programming problems. Each of these prob-
lems has a fixed number of decision variables and constraints with
additional variables and constraints corresponding to cutting
planes of the approximate functions Q.(-). That is, complexity of
one run of the backward step procedure is more or less propor-
tional to the sum of the sample sizes, while the total number of
scenarios is given by the product of the sample sizes. Therefore
for a not too large number 31 ,N; one can run a reasonable num-
ber of backward steps of the algorithm, while the total number of
scenarios N = HLer could be astronomically large. Similarly, one
run of the forward step procedure involves solving T — 1 linear pro-
gramming problems and could be run for a reasonably large num-
ber of repetitions M.

The proof of finite convergence of the SDDP algorithm, given in
Section 3.1, is based on that the SAA problem has a finite number of
scenarios. The finiteness arguments used in that proof are typical
for proofs of that type (cf., [12]). Although correct from a mathe-
matical point of view, such proofs can be misleading. If the number
of possible cuts is huge and the number of scenarios is astronom-
ically large, and hence the probability of randomly generating a
particular scenario is practically negligible, then an unrealistically
large time could be required for such an algorithm to converge to
the true optimum. Moreover, as it was pointed out, for two-stage
programming the SDDP algorithm becomes the classical Kelley’s
cutting plane algorithm [6]. Worst case analysis of Kelley’s algo-
rithm is discussed in [9, pp.158-160], with an example of a prob-
lem where an e¢-optimal solution cannot be obtained by this
algorithm in less than (;15)1.15" " In(¢~!) calls of the oracle, i.e.,
the number of oracle calls grows exponentially with increase of
the dimension n of the problem. It was also observed empirically
that Kelley’s algorithm could behave quite poorly in practice.
Unfortunately it is not clear how more efficient, bundle type algo-
rithms, can be extended to a multistage setting. Of course, in the
multistage setting it can only become worse. So the bottom line
is that it could be impossible to solve the SAA problem to optimal-
ity and the true problem can be computationally intractable (cf.,
[18]). However, with a reasonable computational effort the SDDP
algorithm could produce a practically acceptable and implement-
able policy. Moreover, although it could be impossible to solve
the multistage problem to optimality, one can compare perfor-
mance of different competing policies by sampling (see Remark 6).

It was argued (see Remark 4) that the stopping criterion sug-
gested in [11] could be too optimistic. A more realistic approach
could be to stop the SDDP algorithm when the lower bounds ¥
start to stabilize (cf,, [5]). It could be possible to test statistically

whether further runs of the SDDP algorithm significantly improve
the associated policy by employing a t-test type methodology dis-
cussed in Remark 6. It also should be pointed out that stabilization
of the lower bounds ¥, does not mean that the SAA problem is
solved to optimality. It simply means that further runs of the SDDP
algorithm do not significantly improve the constructed policy.

One can try to make various improvements in a practical imple-
mentation of the SDDP method. One obvious improvement could be
a procedure of removing some “redundant” cutting planes in the
computational process. This should be done with a care since such
procedure could alter statistical properties of computed upper and
lower bounds on which a stopping criterion could be based.

We discussed here the SDDP method applied to the SAA rather
than the original (true) problem. This has an advantage of separat-
ing the study of statistical properties of sample average approxi-
mations and computational properties of the SDDP algorithm
applied to a finitely generated problem. It is also possible to con-
sider a version of the SDDP method applied directly to the true
problem. This would require a further investigation.

The risk averse approach, discussed in Section 4, aims at finding
a compromise between optimizing (minimizing) the average cost
and trying to control the upper limit of cost-to-go functions at
every stage of the process. The corresponding parameters /A, and
o, allow to tune this compromise. The computational complexity
of the backward steps of the SDDP method, adjusted to the consid-
ered risk averse approach, is almost the same as in the risk neutral
case. The forward step of the SDDP method has two goals. It pro-
vides trial decisions for the backward steps and allows a construc-
tion of an upper bound for value of the considered policy.
Unfortunately, it is not easy and straightforward to construct
respective upper bounds in the considered risk averse procedure.
On the other hand, for large multistage programs such upper
bounds typically are too loose to be practically useful anyway even
in the risk neutral case. What could be more meaningful is to com-
pare the expected values of constructed risk averse and risk neutral
policies, say by using the statistical t-test discussed in Remark 6.

Acknowledgment

This research was partly supported by the NSF award DMS-
0914785 and ONR award N000140811104.

References

[1] P. Artzner, F. Delbaen,]J.-M. Eber, D. Heath, Coherent measures of risk,
Mathematical Finance 9 (1999) 203-228.

[2] ZL. Chen, W.B. Powell, Convergent cutting plane and partialsampling
algorithm for multistage stochastic linear programs with recourse, Journal of
Optimization Theory and Applications 102 (1999) 497-524.

[3] W.G. Cochran, Sampling Techniques, third ed., John Wiley & Sons, New York,
1977.

[4] CJ. Donohue, J.R. Birge, The abridged nested decomposition method for
multistage stochastic linear programs with relatively complete recourse,
Algorithmic Operations Research 1 (2006) 20-30.

[5] M. Hindsberger, A.B. Philpott, Stopping criteria in sampling strategies for
multistage SLP-problems, presented at the conference “Applied Mathematical
Programming and Modelling”, Varenna, Italy, June 2002.

[6] J.E. Kelley, The cutting-plane method for solving convex programs, Journal of
the Society for Industrial and Applied Mathematics 8 (1960) 703-712.

[7] K. Linowsky, A.B. Philpott, On the convergence of sampling based
decomposition algorithms for multistage stochastic programs, Journal of
Optimization Theory and Applications 125 (2005) 349-366.

[8] W.K. Mak, D.P. Morton, RK. Wood, Monte Carlo bounding techniques for
determining solution quality in stochastic programs, Operations Research
Letters 24 (1999) 47-56.

[9] Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, Boston,
2004.

[10] V.I. Norkin, G.Ch. Pflug, A. Ruszczyfiski, A branch and bound method for
stochastic global optimization, Mathematical Programming 83 (1998) 425-
450.

[11] M.V.E. Pereira, LM.V.G. Pinto, Multi-stage stochastic optimization applied to
energy planning, Mathematical Programming 52 (1991) 359-375.

72 A. Shapiro/European Journal of Operational Research 209 (2011) 63-72

[12] A.B. Philpott, Z. Guan, On the convergence of stochastic dual dynamic
programming and related methods, Operations Research Letters 36 (2008)
450-455.

[13] R.T. Rockafellar, S.P. Uryasev, Optimization of conditional value-at-risk, The
Journal of Risk 2 (2000) 21-41.

[14] A. Ruszczynski, Decomposition methods, in: A. Ruszczyiski, A. Shapiro (Eds.),
Stochastic Programming, Handbook in OR & MS, vol. 10, North-Holland
Publishing Company, Amsterdam, 2003.

[15] A. Ruszczyfiski, Risk-averse dynamic programming for Markov decision
processes, Mathematical Programming, Series B, in press.

[16] A.Ruszczyiski, A. Shapiro, Optimization of convex risk functions, Mathematics
of Operations Research 31 (2006) 433-452.

[17] A. Ruszczynski, A. Shapiro, Conditional risk mappings, Mathematics of
Operations Research 31 (2006) 544-561.

[18] A. Shapiro, A. Nemirovski, On complexity of stochastic programming
problems, in: V. Jeyakumar, A.M. Rubinov (Eds.), Continuous Optimization:
Current Trends and Applications, Springer, 2005, pp. 111-144.

[19] A. Shapiro, On complexity of multistage stochastic programs, Operations
Research Letters 34 (2006) 1-8.

[20] A. Shapiro, On a time consistency concept in risk averse multi-stage stochastic
programming, Operations Research Letters 37 (2009) 143-147.

[21] A. Shapiro, D. Dentcheva, A. Ruszczyfiski, Lectures on Stochastic Programming:
Modeling and Theory, SIAM, Philadelphia, 2009.

	Analysis of stochastic dual dynamic programming method
	Introduction
	Two-stage programs
	Multistage programs
	Convergence properties of the SDDP method

	Risk averse approach
	Discussion
	Acknowledgment
	References

