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Let G be a finite connected graph. Two players, called cop C and robber R, play a game on 
G according to the following rules. First C then R occupy some vertex of G. After that they move 
alternately along edges of G. The cop C wins if he succeeds in putting himself on top of the robber 
R, otherwise R wins. We review an algorithmic characterization and structural description due 
to Nowakowski and Winkler. Then we consider the general situation where n cops chase the 
robber. It is shown that there are graphs on which arbitrarily many cops are needed to catch the 
robber. In contrast to this result, we prove that for planar graphs 3 cops always suffice to win. 

1. Introduction 

Let G be a finite connected undirected graph. Two players called cop C and 
robber R, play a game on G according to the following rules: First C and then R 
occupy some vertex of G. After that they move alternatively along edges of G. The 
cop C wins if he succeeds in putting himself on top of R (if he ‘catches’ R). If the 
robber R can prevent C from ever catching him, then R wins. It is obvious that for 
every graph G one of the players must win, in fact, if C has a winning strategy, then 
he should succeed in catching R after at most n(n - 1) + 1 moves (n = number of 
vertices in G) since he can avoid repeated positions. 

The game in the form as just described, i.e. with complete information on both 
sides, has also been studied by Nowakowski and Winkler [5], Quilliot [8] and pos- 
sibly others, see also Smith [9]. There are of course, a multitude of interesting varia- 
tions. One could for example, allow complete information only when C and R are 
at most a distance d apart (C and R have ‘eye-contact’). With no information at 
all, we enter the topic of search games, see e.g. Gal [2] and Parsons [6,7]. 

Let us denote by V the class of cop-win graphs (i.e. those graphs on which C has 
a winning strategy) and by 2 the class of robber-win graphs. For all terms which 
are not explained in the text, see Harary [3]. AI! graphs considered are assumed to 
be finite, undirected and connected. 

Examples. (a) An obvious family of cop-win graphs are the trees. The vertex 
occupied by C partitions the tree into 2 components and each time C moves along 
the unique path toward R, the robber-component is reduced by at least one vertex. 
By starting at the center of the tree, C clearly minimizes the number of his moves. 
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(b) A similarly obvious family of robber-win graphs are the cycles of length at 
least 4 since the robber R can always position himself at distance 2 from C. 

(c) The same argument can be used to show that, more generally, every regular 
non-complete graph is in 3’. 

One important distinction has to be made: In the active version of the game the 
robber must move whenever it is his turn, in the passive version he may also stay 
put if he so chooses. The cop must move in either case. We may, of course, subsume 
the passive under the active version by adding a loop to every vertex. Trees, cycles 
and regular graphs are cop-win resp. robber-win under both versions. But, in 
general, a graph may well change its character. The example in Fig. 1 is the smallest 
graph where C wins in the active version (by starting at the top vertex) but loses in 
the passive version. 

In this paper we concentrate solely on the more natural passive version. 
In Sections 2 and 3 we review an algorithm and a structural result concerning Y 

found by Nowakowski and Winkler [5]. In Section 4 we consider the general situa- 
tion where k cops go after the robber. This section includes what we consider the 
prettiest result found so far, namely that in any planar graph 3 cops always suffice 
to catch a robber. Let other people draw the necessary conclusion from this result. 

Fig. 1. 

2. An algorithmic characterization of V 

Suppose G is a cop-win graph. Let us take a look at the situation just before the 
robber’s last move. Since R may sit still and C is supposed to catch him with his 
next move, R and C must be joined by an edge. Since R cannot evade C, allneigh- 
bors of R must also be neighbors of C, N(R) cN(C). Let us call a pair (p,d) of 
vertices a pitfall together with its dominating vertex if N(p) U {p} c N(d). Hence 
if G has no pitfalls, then G is necessarily in 9?. 

Example. The Octahedron of Fig. 2 is in J? since it has no pitfalls. 

Lemma 1. Let p be a pitfall of G and d = G-p the graph with p and all incident 
edges deleted. Then GE F iff d E V. 

Proof. Let d be a dominating vertex to p and suppose G E V. C can then extend his 
winning strategy in G to all of G by pretending R is on d whenever R enters p and 
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Fig. 2. 

moving according to his strategy in C?. If, on the other hand GE 2, then R can 
extend his strategy by the same identification of p with d. q 

Theorem 1. G is a cop-win graph iff by successively removingpitfalls (in any order) 
G can be reduced to a single vertex. 

Proof. The lemma says that the win-character of a graph is not changed by re- 
moving pitfalls. Hence we end up either with a graph with at least two vertices and 
no pitfalls (in which case G is in 2? by the remark before the example) or with a 
single vertex (in which case G is in U). 0 

Example. In Fig. 3 the circled vertices are pitfalls at every stage. By the theorem the 
graph is cop-win. 

Fig. 3. 

Remark. As the search for pitfalls requires only comparison of neighbor lists, the 
algorithm is clearly polynomial in the number of vertices. 
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3. Y is a variety 

Let G and G ‘ be graphs with vertex-sets V and V’ and edge-sets E and E’. By the 
product G x G’ we mean the graph with vertex-set Vx V’ where (u, u’), (w, w’) is an 
edge iff O=W, {o’,w’}~E‘or {o,w)~E, u’=w’or {u,w}~E, {u’,w’}~E‘. 

Lemma 2. 1f G, G’E 5, then G x G’E 8: 

Proof. Since the cop has a winning strategy in each of the graphs he may apply 
them simultaneously to track R down in G x G’. Cl 

Let G be a graph and Ha subgraph. By a retraction from G to H we mean a map 
9: V(G) + V(H) which is the identity on V(H) and for which {u, w) E E(G) implies 

{9(u), 9(w)} g&H). H is called a retract of G if there is a retraction from G to H. 

Lemma 3. If GE F’ and H is a retract of G, then HE V. 

Proof. Let us turn the statement around: HE 2 * GE 2%‘. Let 9: V(G) -;’ V(H) be 

a retraction map. We know R has a winning strategy on H. The following strategy 
extends this to all of G: R stays in Hand pretends the whole game is taking place 
in H by identifying 0=9(u) for all UE V(G). That is, if C moves from u to w, R 
pretends C really moved from 9(o) to 9(w) (the edge {9(0),9(w)} exists by the 
definition of a retraction) and makes his move according to his strategy in H. It is 
easily seen that this works. (In fact, we have used the same argument in Lemma 1, 
since 9: V(G) -, V(d) with 9(p) =d, 9(u) = u, u#p, is a retraction.) 3 

A class of graphs which is closed under the operations finite direct product and 
retraction is called a variety of graphs. Nowakowski and Rival [4] have recently 
demonstrated the usefulness of this structural concept, see also Duffus and Rival 
[l]. By the lemmas we infer: 

Theorem 2. The class of cop-win graphs is a variety. 

It may be a worthwhile (but probably very hard) problem to determine the irre- 
ducible elements in this variety in order to complement the algorithmic characteriza- 
tion of V by a purely structural description. 

4. More cops to come 

As we have seen in Section 1, regular graphs allow the robber a very simple 
evading strategy as do other classes of graphs which contain cycles of length 14. 
Let us then give the cop player C a better chance by allowing him, say, k cops 
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c t, . . . . C,. At every turn C may move any subset of [C,, . . . , C,) but, of course, at 
least one. 

Definition. For a graph G, c(G) denotes the minimal number of cops needed for 
the player C to win. c(G) is called the cop-number. 

c(G) is obviously bounded above by the vertex covering number of G, since by 
placing his cops at a minimal cover C catches R with his next move. 

We now prove three results, one favoring the robber, the other two favoring the 
cop. 

Theorem 3. Let G be a graph with minimum degree 6(G) L n which contains no 3- 
or 4-cycles. Then c(G) L n. 

Proof. Let C have n- 1 cops at his disposal. We show first that the covering 
numberczc(G)rn. Let ~J~,...,o,,_~ beanyn-1 verticesof Gand w~{u~,...,u,,_~}. 
(Such a w exists since G(G)rn.) Suppose the neighborhood of w is N(w) = 

{u ,,..., ukrw ,,..., w[_~} with W~B{U, ,..., u,_r}. Then I?n, kin-I and thus 
/- kz 1. As there are no 3- or 4-cycles we infer N(y) fl N( wi) = {w} for i#j. If 

{u t, . . . , on_,) were a point-cover for G, the N(Wi)‘S would have to contain at least 
one vj, jl: k+ 1, accounting together with ulr . . . , uk for at least Iln vertices uir a 
contradiction. Hence after C makes his opening move, say {c,, . . . , c,,_ 1}, R is able 
to place himself on a vertex r which is not equal to and not adjacent to any of the 
c;‘s. But R can keep up this situation because, after every move of C, at most n- 1 
of R’s neighbors are occupied by cops or immediately adjacent to them (no 3- or 
4-cycles!), thus allowing R to go to the free neighbor. q 

Examples. The Petersen graph P and the Dodecahedron D depicted in Fig. 4 satisfy 
the conditions of the theorem with n = 3. Hence c(P) B 3 and c(D) I 3. That, in fact, 
c(P) = c(D) = 3 is easily seen and will also follow from Theorems 5 and 6. 

Fig. 4. 
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The question naturally arises whether, for any n, there are graphs which will 
satisfy the conditions of Theorem 3. 

Theorem 4. To every n E N there exists an n-regular graph without 3- or 4cycles. 
Hence, for every n, there exists a graph G with c(G) L n. 

Proof. For n = 1 and n = 2, K2 and the S-cycle Cs will do. Also, C’s is 3-colorable. 
Assume, inductively, that we have constructed an n-regular 3-colorable graph G 
without 3- or 4-cycles. Let Gt, Gz, G3 be 3 copies of G and color all four graphs 
isomorphically with 3 colors. We construct a new n + l-regular graph according to 
Fig. 5. The figure means: If, e.g., a vertex in G, is colored by 3, then we join it 
with the corresponding (isomorphic) vertex in Gz. After all vertices have been 
joined (to exactly one other vertex) we interchange the colors 3 and 1 in G,, 2 and 
1 in Gz and 3 and 2 in Gs. The resulting graph now satisfies all requirements. cl 

G2 

Fig. 5. 

There is a complementary result to Theorem 3 bounding the cop-number from 
above. We state it only for degree 53. It can be generalized to arbitrary degree, but 
the conditions become unwieldy. 

Theorem 5. Let G have maximal degree A(G)13 and suppose any two adjacent 
edges are contained in a cycle of length at most 5. Then c(G) 5 3. 

Proof. Suppose after C’s move the cops Ci, C,, C, occupy the vertices cl, c,, c3 and 
the robber vertex r. We choose 3 paths from the Ci’S to r which use all incident edges 
of r (such paths exist by the condition of the theorem) and among all such triples 
of paths we select a triple Pi, P2, P3 whose total length I= I, + lZ + 13, Ii = f(Pi) for 
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i= 1,2,3, is minimal. (Note: Pi, P2,P3 need not be disjoint.) We now show that, 
whatever R does, C has an answering move {ct, c2, cs} 4 {c;, c;, c;} with l’< !. Thus 
after a finite number of moves we must have I<3 which means that R has been 
caught. Suppose r is adjacent to three vertices a,,az,a3 with PI = (cl, . . ..a.,r}, 
Pz= {c*, . . . . a*,r}, P3={q,..., a3, r}. (The cases when deg(r)_(2 are dealt with by 
analogous arguments.) If R keeps still, then each cop moves on his path toward R, 
and we have 1’1 I- 3 <I. Suppose now R moves to a,. If I, = 1 and, in particular, 
if deg(a,) = 1, then Ct sits on al, and we are finished. If deg(at) = 2 and I, 22, then 
again all cops move on their paths toward r and we have 

I’~(,,--2)+1,+1, = l-2<1. 

If deg(a,)=3 and I, 12, let u be the vertex adjacent to a, which is not on PI. By 
hypothesis, the path r,al, u is contained in a cycle of length 55. As this cycle must 
use one of the edges {+,r} or {a,,r} suppose it uses {a2,r} with o being the pos- 
sible 5th vertex (see Fig. 6). Let all cops move toward r to c{,c&c;. By using the 
paths P;={c; ,..., a,}, P;={ci ,..., a2,u,u,al}, P;={c; ,..., a3,r,al) we have 

l’sf(P[)+I(P;)+I(Pj)l(I,-2)+(12+1)+13=1-l<l. II 

/ 
-“\, al 

V. 

\ AL , r 

a3 
,‘a2 ‘. 

I .’ 

7 p2 

P3” -y c3 

Fig. 6. 

Quite possibly, c(G)< 3 holds for any graph with d(G) _( 3 and, more generally, 
c(G)cn, but this is an open question. If so, the n-regular graphs without 3- or 
4-cycles would all have cop-number n. 

After we have seen in Theorem 4 that there are grahs which require arbitrarily 
many cops let us turn to the opposite question whether there is a sufficiently large 
class of graphs where the cop-number is universally bounded. Since by Euler’s rela- 
tion there is no planar graph G with a(G)?4 and without 3- or 4-cycles we may 
venture the guess that c(G)13 for any planar graph, and this is indeed so. 

Theorem 6. We have c(G)53 for any planar graph G. 

The proof of the theorem rests on the following lemma. 
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Lemma4. Let Gbeanygfaph, u,oeV(G), ufoandP={u,o,,...,o,=u} ashor- 
test path between u and v. We assume that at least two cops are in the play. Then 
a single cop C on P can, after a finite number of moves, prevent the robber R from 
entering P. That is, R will be immediately caught if he moves onto P. 

Proof. Denote by d(x, y) the distance (=length of a shortest path) between x and 
y. As is well-known, d satisfies the triangle inequality. For simplicity, let us denote 

the path P={u=O,1,2 ,..., t = u}. Suppose after C’s move the cop is on vertex 
CE V(P) and the robber is on TE V(G) and assume 

d(r, t) I d(c, z) for all z E V(P). (*) 

Claim. No matter what the robber does, the cop, by moving in the appropriate 
direction on P, can preserve condition (a). This of course, means that the robber 
will be caught should he enter P. 

If the robber stays put, then so does the cop. (We assume that there is at least 
one other cop somewhere who now makes some move). Suppose R goes from r to 
s, then 

d(s, z) L d(r, z) - 1 z d(c, z) - 1 for all z E V(P). 

If .zOe V(P) exists with d(s, zo) = d(c, zo) - 1, then C, by moving toward zo, also 
reduces the distance by 1 and (*) still holds. Hence for the robber to be really 
threatening there must be vertices x, YE V(P) with, say, xCc<y and d(s,x) = 
d(c, x) - 1, d(s, y) 5 d(c, y) or d(s, x) I d(c, x), d(s, y) = d(c, y) - 1 (see Fig. 7). This is, 
however, impossible since by the triangle inequality and the minimality of P, 

d(x, y) I d(s,x) + d(s, y) I d(c,x) + d(c, y) - 1 = d(x, y) - 1, 

contradiction. It remains to be shown after a finite number of moves the cop C can 
force condition (*). First, C moves to some CE V(P). By the same argument as 
before d(r, z) < d(c, z) can only hold for z’s on P on one side of c. By moving in the 
direction of z, (*) is clearly eventually forced. 0 

%/ 
#’ a. 

I’ ‘. 
P ,’ -. 

.’ -. 
I -. 

,_-_______ .___-__. -_______ ---._____. 

” x C Y w 

Fig. 7. 

Notice that a cop who controls a path P in the sense of the lemma also controls 
every subpath of P. 

Proof of the Theorem. Let G be embedded in the plane. The idea of the proof is 
to assign at each stage i to R a certain subgraph R;, the robber territory, which 
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contains all vertices which R may still safely enter, and to show that, after a finite 
number of cop-moves, Rj is reduced to R,+l $ Ri. Hence, eventually, there is no 
vertex left for the robber to go. 

At the start the 3 cops C,, C,,C, occupy some vertex e,. After R makes his 
move, say to r,, the robber territory R. is defined to be the graph component of 
G-e, which contains ro. Suppose inductively that at stage i (after R’s move) one 
of the two following situations arise: 

(a) Some cop C is on vertex u, R is on r. and Ri is the component of G - u con- 
taining r (Fig. 8). Note that it is also the opening situation. 

Fig. 8. 

(b) P, and Pz are two u, u-paths of length 1 1, disjoint except for u and u. By 
the planarity of G, P, U Pz partitions G into P, U Pz, an interior and an exterior 
region. Suppose without loss of generality P occupies some vertex r in the exterior 
region E. PI is a shortest u, u-path in P, U P2U E, Pz is a shortest u, u-path in 
P, U PZ U E among all such paths which are disjoint from P, . Cop Ci on cl E V(P,) 
controls PI in the sense of the lemma, and cop C, on c2 E V(P2) controls PI. The 
robber-territory is defined to be Ri = E (Fig. 9). 

.r 

Fig. 9. 

Case (a). Suppose u has only one neighbor u in Rim Let C move to u. If r= u, then 
the game is over. Otherwise, no matter what R does the component Ri+l of G - u 
containing the robber is contained in Ri - u. Hence we are back to case (a) with 
Ri+, 5 Ri. Suppose now u has at least two neighbors a and b in Ri and let P be a 
shortest path in Ri between a and b. By the lemma, one of the two free cops, say D, 
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controls P after a finite number of moves and we arrive at case (b) with P, = {a, u, b}, 
P,=P(or P,=P, Pz={su,b} if {Q,~}EE(G)) and R;+,GR;-V(P)sR,. 

Case (b). Suppose there is no path in Ri UP, U Pz from u to IJ other than P,, Pz. 
Then Ri consists of disjoint components A, B, C, . . . attached to the vertices of 
PI U P2 (see Fig. 10). Let r be contained in A attached to a on, say, PI. The free 
cop C, moves to a (with C,, C, keeping control of P, and P2), and we are back to 
case (a) with u = a, Ri = A whence we may proceed as described there. 

Fig. 10. 

Suppose then that there are further u, u-paths in R, U P, U P2 and let Z be a 
shortest such path. The following notation is useful: If P is a path and x, y E V(P), 
then P(x, y) is the subpath from x to y. 

Let w be the first vertex on Z after u which is also on PI U Pt. If w E V(P,), then 
the path P3 =Z(u, w)U P,(w, o) is, by the minimality of P, also a shortest path 
which is now disjoint from P2. Depending on how P3 partitions Rj we have the two 
cases of Fig. 11. 

;(YJyp3 @ 
p3 

(i) 

Fig. 11. 

(ii) 

Suppose we are in case (i). If r is in A, then the free cop Cs moves to control P3, 
and the pair P2, P3; C,, C, gives rise to situation (b) with Ri+IsRi. (There is at 
least one vertex on P3(u, w) which is in Ri but not in Ri+, .) If r is in B, then C, con- 
trols P,(u, w), C, moves to control P3(u, w) and we are again back to case (b) with 
Ri+ 1 $Ri. Case (ii) is dealt with by an entirely analogous argument. 

Assume, finally, w E V(P2). If Z does not intersect PI (except in u, u), then we may 
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take P3 = Z(u, w) U P2(w, u) as another shortest path and repeat the argument just 
made. Let, otherwise, y be the first intersection of Z with P, and x be the preceding 
intersection of Z with Pz. By the minimality of P, and Pz, P3 = Pz(u,x) U Z(x, y) U 
P,(y,o) is another shortest path (Fig. 12). Now again two situations arise in each 
of the cases depicted in Fig. 12 depending on whether r~,4 or reB, and the rea- 
soning is as before. 0 

(i) (ii) 

Fig. 12. 

The preceding theorem raises the natural question what happens for graphs em- 
bedded in the torus or orientable surfaces of higher genus. It seems likely that one 
has to add two cops when going to the next higher genus. The situation on non- 
orientable surfaces is probably more involved. 
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