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THE NULL SPACE PROBLEM 1. COMPLEXITY*
THOMAS F. COLEMANYt AND ALEX POTHEN#

Abstract. The Null Space Problem (NSP) is the following: Given a ¢ X n matrix A with t<n, find a
sparsest basis for its null space (a null basis). We show that columns in a sparsest null basis correspond to
minimal dependent sets of columns of A. Sparsest null bases are characterized by a greedy algorithm that
augments a partial basis by a sparsest null vector. Despite this result, (NSP) is NP-hard since finding a
sparsest null vector of A is NP-complete. We prove that the related problem of finding a sparsest null basis
with an embedded identity matrix is NP-hard too. Finally, we study the zero-nonzero structure of sparsest
null bases.
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1. Introduction and overview. The development of practical algorithms for the
Linear Equality Problem (LEP) is a fundamental concern in numerical optimization.
(LEP) can be expressed as

minimize f(x)
subject to Ax = b.

Here f(x) is a nonlinear “objective” function f:R" >R, and we assume that f is
twice-continuously differentiable. The matrix A has ¢ rows and n columns, t <n, and
rank (A)=r.

Efficient algorithms to solve this problem are needed for two reasons: First, (LEP)s
result from mathematical models of several practical optimization problems. Second,
(LEP)s occur as subproblems of more general optimization problems. Nonlinearly
constrained optimization problems are often solved by linearizing the constraints and
solving a succession of resulting (LEP)s. Thus the generalized gradient method, the
augmented Lagrangian method, and the projected Lagrangian method to solve these
problems are based on efficient algorithms to solve (LEP)s.

One strategy for solving (LEP), the null space method, involves two phases: In
phase 1, a “feasible” vector y is determined that satisfies Ay =b. In phase 2, y is
corrected by a vector z in the null space of A that decreases the value of f; that is,
Az=0,and f(y+z) <f(y). We set y = y + z, and repeat phase 2 until f is small enough
in value, or no further reduction in its value can be made.

The correction z can often be chosen so that the algorithm converges at a quadratic
rate to a stationary point of f. Let N be a basis for the (n —r)-dimensional null space
of A (a null basis), g(y)eR" the gradient of f at y, and H(y)eR"*" the Hessian
matrix of f at y. We model f about the point y by a quadratic function, and choose
y + z to be the minimizer of this model function. This results in the system of equations

NTH(y)Np=—-NTg(y),
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which is solved for the vector p, and then the correction z is computed from the
equation z = Np.

The system of equations may be solved by computing a factorization of the
projected Hessian NTHN when n—r is small. For problems where n—r is large, an
iterative technique such as the conjugate gradient method may be used. This is a
simplified discussion which ignores several practical issues; Gill, Murray, and Wright
(1981) contains a more detailed discussion of (LEP).

Our concern will be with large-scale (LEP). In such problems, the constraint
matrix A has a large number of rows and columns. Fortunately, however, most of the
matrix elements of A are usually zeros and do not need to be stored. This redeeming
feature results from each equation being involved with only a few variables, and each
variable occurring only in a small number of equations. Only nonzero elements are
stored, allowing large matrices to be processed without exceeding storage capacities
of computers. Such matrices, whose zero-nonzero structure can be used to advantage,
are sparse. Coleman (1984) discusses the various issues that arise in large sparse
numerical optimization.

Sparsity in A is good, but is not enough. The null space algorithm needs a
representation of a null basis N of A. Such a basis, being a set of n—r vectors that
span the null space of A, is not unique, and care needs to be taken to make it as sparse
as possible.

With the above discussion to motivate us, we study the Sparse Null Space Basis
Problem:

(NSP) A t X n matrix A with ¢ <n and rank r is given. Find a matrix N
with the fewest nonzeros, whose columns span the null space of A.

Hereafter we will abbreviate this to the Null Space Problem. Such an n X (n — r) matrix
N is a sparsest null basis.

This paper has four additional sections. We characterize sparsest null bases in § 2
by means of conformal decompositions and matroid theory. The computational com-
plexity of (NSP) and some variants are discussed in § 3. The zero-nonzero structure
of sparsest null bases is studied in § 4. In the last section we summarize our results,
discuss related work by other researchers, and indicate future research directions. We
adopt the notational convention that a term is in italic font when it is being defined.

In a second paper, Coleman and Pothen (1985), we will describe our algorithms
for computing sparse null bases. These algorithms have two phases: in the first
combinatorial phase, a maximum matching in the bipartite graph of A is used to
identify the nonzero elements in the null basis. In the second numeric phase, systems
of equations are solved to compute numerical values of the nonzeros in the basis. This
two-phase strategy makes it possible to efficiently compute sparse null bases. Our
computational experience with these algorithms will also be included.

2. A characterization of sparsest null bases. In this section we characterize sparsest
null bases by means of a “greedy” algorithm which chooses, at each step, a sparsest
possible null vector to be in the basis.

An important concept in what follows is that of a circuit. A linearly dependent
set of columns of the matrix A will be called a dependent set. A null vector of the
matrix A can be obtained from the coefficients of the linear combination. A circuit C
is a minimal dependent set—i.e., C is dependent, but all proper subsets of C are
linearly independent. We will call the null vector associated with a minimal dependent
set also a circuit.
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ALGORITHM 2.1 (Greedy Algorithm). Given a tXn matrix A with rank(A)=r,
find a sparsest null basis N.

N=9

fori=1,...,n—r-
find a sparsest null vector n;
such that rank (n,,...,n;)=1i
N = N u n; rof.

THEOREM 2.1 (Optimality Theorem). The matrix N is a sparsest null basis of A if
and only if it can be constructed by the greedy algorithm.

Algorithm 2.1 is greedy, since it augments the partial null basis at each step by a
sparsest null vector linearly independent of those previously chosen. To us Theorem
2.1 is a surprising result; locally greedy strategies seldom lead to globally optimal
solutions to optimization problems. We now develop the results needed for its proof.

Let the jth component of a vector x be denoted by (x); (This should not be
confused with the notation for a vector, say n.) We define the support of x, S(x), to be

S(x)={j: (x); #0}.

By definition, if ¢ is a circuit, there cannot exist a null vector x with S(x)< S(c).

LeMmMA 2.2. If ¢, d are circuits of A, and S(c) = S(d), then ¢ is a scalar multiple
of d.

Proof. Suppose the lemma is false. Then we can pick a scalar A such that
(¢)i—A(d); =0, for some i€ S(c). But then S(¢c—Ad)< S(c), and c is not minimal. 0O

Hence circuits of A are unique to within a multiplicative constant. We now
introduce a linear algebraic concept from network flow theory, conformal decomposi-
tion, studied first by Camion (1968), Fulkerson (1968), and Rockefellar (1969). Lemmas
2.2 through 2.4 follow immediately from their work.

A vector x conforms to a vector y if

(x); #0=>((y); # 0, and sgn {(x);} =sgn{(y),;})
where sgn denotes the sign function. For example, let
sgn (x)=(+0-0+0), sgn (y)=(++-0+-),

then x conforms to y, but y does not conform to x. Note that if x conforms to y, then
S(x)e S(y).
LeEmMMA 2.3. Given a null vector n, there exists a circuit ¢ that conforms to it.
Proof. Again, the proof is by contradiction. Choose a null vector x with the
smallest | S(x)| such that no circuit of A conforms toit. Let ¢ be a circuit with S(c) = S(x).
Define the set

J={j:(c); #0,and (c), and (x); disagree in sign}.

J is not the empty set, else ¢ would conform to x. Let

a=min— @
jes (€);

Consider the vector z = x + ac. By construction, z conforms to x, and S(z) < S(x). By
the selection of x there is a circuit d that conforms to z. But then d conforms to x. 0
We can now apply Lemma 2.3 repeatedly to get
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LEMMA 2.4. A null vector x can be expanded in a sum of distinct circuits
x=c¢+ -+,

where each circuit c; conforms to x.

The above expansion is the conformal decomposition of a null vector of A; it is
not necessarily unique. A more general decomposition exists for a vector of any
subspace of R”, and is discussed by Camion, Fulkerson and Rockefellar. We can now
use Lemma 2.4 to prove that we need concern ourselves only with circuits to solve (NSP).

THEOREM 2.5. Each sparsest null vector n; chosen by the greedy algorithm is a circuit.

Proof. The proof is by induction on i. The result is clearly true for n,. By the
inductive hypothesis, assume that the theorem is true for all n;, where 1<j <i.

Suppose that n; is not a circuit. Conformally decompose n; into a sum of circuits.
At least one of the circuits in this sum, say ¢, must be linearly independent of

(ny, -+, n;_y) since n; is independent of them. Since n; is not a circuit, S(c) = S(n;),
and c is a sparser null vector than n; which the algorithm could have chosen at this
step. O

A similar argument can be used to prove

THEOREM 2.6. Each column of a sparsest null basis N is a circuit.

Theorem 2.6 states that the only dependent sets of interest in (NSP) are circuits.
Since the greedy algorithm chooses only circuits by Theorem 2.5, the possibility now
looms that it could find a sparsest null basis. As Theorem 2.1 states, this suspicion is
correct; and a stronger result holds, namely, every sparsest null basis can be found by
the greedy algorithm.

We now introduce the matroid concepts used to prove Theorem 2.1. Let E be a
finite set. Some of the subsets of E are defined to be independent; a subset of E that
is not independent is dependent. Let

H={Ic E: I is independent}.

We consider the situation when the independent sets satisfy the following two
properties:

(M1) All subsets of an independent set are independent. (The empty set is
independent by this property if H is not empty.)

(M2) Let I, and I,., be independent sets with p and p+1 elements respectively.
Then there is an element e € I,,,\I, such that I, + e is independent.

Let the family of independent sets H satisfy (M1) and (M2). Then the tuple
M =(C, H) is defined to be a matroid (Welsh (1976)).

The reader may find it convenient to think of E as the set of columns of a matrix.
An independent subset of E has linearly independent columns. By linear algebra, one
can establish that both (M1) and (M2) hold. Hence M is a matroid, and we call it the
matroid generated by the columns of the matrix.

A minimal dependent set of a matroid is called a circuit. Thus far we have used
the word circuit to denote a minimal linearly dependent set of columns of a matrix.
This usage is consistent with the definition of a circuit of a matroid. What we call a
circuit of a matrix is indeed a circuit of the matroid generated by the columns of the
matrix.

A maximal independent set is an independent set all supersets of which are
dependent. We call such a set a basis of M. Every basis of M has the same size, which
is called its rank.

Proof of Theorem 2.1. By Theorems 2.5 and 2.6 we can restrict our attention to
circuits of A. Since A has n columns, it has only a finite number of circuits. Let C be
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the circuit matrix whose columns are all the circuits of A. Thus
C=(Ch' : '9cq)'

Let M be the matroid generated by the columns of C. To each circuit ¢;, assign the
positive integer weight |S(¢;)|. Algorithm 2.1 is equivalent to choosing a basis of
minimum weight for the circuit matroid M. Theorem 2.1 now follows from two
well-known results on matroids:

(1) The matroid greedy algorithm constructs a basis of minimum weight.

(2) The weight of the kth smallest element of such a basis is no bigger than the
kth smallest element of any other independent set (Lawler (1976)). O

Unfortunately, the proof of Theorem 2.1 does not lead immediately to a polynomial
time algorithm to solve (NSP). The difficulty is that a matrix A of n columns and ¢
rows might have O(n') circuits.

3. The complexity of (NSP) and its variants. In the previous section, we showed
that a sparsest null basis can be constructed by a greedy algorithm. Hence we consider
the following strategy to solve (NSP): design a polynomial time algorithm for one step
of the greedy algorithm. This latter algorithm would choose a sparsest circuit linearly
independent of circuits chosen in previous steps. If we could design such an algorithm,
then n—r applications of it to the matrix A will solve (NSP).

Unfortunately, such a happy prospect is unlikely; we now discuss the reason why.
The greedy algorithm chooses a circuit of minimum cardinality in its first step. We
call such a circuit a minimum circuit. Theorem 3.1 states that the minimum circuit
problem is NP-complete. Hence it is as hard as any of the problems in the class NP.
For the reader unfamiliar with this terrain, Garey and Johnson (1979) is an excellent
introduction to the theory of NP-completeness. Theorems 3.1 and 3.2 were proved
independently by L. J. Stockmeyer, and his proofs may be found in McCormick (1983).

THEOREM 3.1 (Minimum Circuit Theorem). Given a positive integer k, it is NP-
complete to find a circuit of A of cardinality k or less.

We omit our proof since our reduction is similar to Stockmeyer’s. Theorem 3.1
leads to an easy proof that (NSP) is NP-hard. We do not know if (NSP) is in NP.

THEOREM 3.2 (Sparsest Null Basis Theorem). Given a positive integer k, it is
NP-hard to find a null basis of A with k or fewer nonzeros.

Proof. By Theorem 2.1, every sparsest null basis contains a minimum circuit. By
Theorem 3.1, it is NP-complete to find a minimum circuit. 0O

If A is restricted to be the vertex-edge incidence matrix of a graph G=(V, E), a
minimum circuit can be found in O(|V||E|) time by an algorithm of Itai and Rodeh
(1978). In this situation, a minimum circuit corresponds to a cycle in the graph with
the minimum number of edges. Matroids generated by vertex-edge incidence matrices
of graphs are called graphic matroids.

Every matroid has a dual defined on the same ground set C. A basis of the dual
matroid is the complement of a basis of the primal matroid. A matroid dual to a
graphic matroid is cographic. Minimum circuits of cographic matroids correspond to
minimum cuts in the graph; these can also be found in polynomial time.

A matrix A is totally unimodular if every subdeterminant of A is either +1, —1,
or 0. The matroid generated by such a matrix is called a totally unimodular matroid.
Seymour (1980) has shown that any totally unimodular matroid can be decomposed
by a polynomial time algorithm into a matroid sum of graphic matroids, cographic
matroids, and copies of a special matroid on ten elements. It follows that minimum
circuits of totally unimodular matroids can be determined in polynomial time.
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We have shown that constructing a null basis of a matrix A with the maximum
number of nonzeros is also NP-hard when the columns in the basis are circuits of A.

THEOREM 3.3. Given a positive integer k, it is NP-hard to find null basis of A with
k or more nonzeros, if each column in the basis is a circuit.

The proof is by the restriction of A to vertex-edge incidence matrices of graphs,
and uses the result that finding a basis with the maximum number of edges for the
cycle space of a graph is NP-complete. A proof is presented in Pothen (1984).

Since (NSP) is NP-hard, we cannot expect to construct sparsest null bases by a
polynomial time algorithm. Hence we lower our sights in terms of sparsity, and ask
how hard it is to construct a sparsest null basis with a prescribed zero-nonzero structure.

Current null space algorithms for (LEP) use the variable-reduction technique
proposed by Wolfe (1962) to construct null bases. Let A, denote any r linearly
independent rows of A. The matrix A, is partitioned (after possible column permuta-
tions) as

A =(M U),

where M is a r X r nonsingular matrix. Then we construct the matrix

-1
N= (-M U)’
In—-r
where I,,_, is the identity matrix of dimension n—r. Since AN =0, the columns of N
are null vectors of A. Each of the last n —r rows of N has only one nonzero in it, and
so linear combinations of the columns of N cannot produce the zero vector. Hence
N is a null basis. We call a basis with an embedded identity submatrix a fundamental

null basis.
We formally state the Fundamental Null Space Problem:

(FNSP) Given a t X n matrix A of rank r and a positive integer k, find a
fundamental null basis N with k or fewer nonzeros.

THEOREM 3.4. (FNSP) is NP-hard.

The proof of this theorem uses a result on spanning trees of graphs. We now
develop the concepts needed for the proof.

Let G=(V, E) be a connected graph on » vertices and & edges with vertex-edge
incidence matrix M(G). A cycle in G is a sequence of distinct vertices v, ..., Ug_y, U =
v,, where (v;,_,, v;)€ E for i=2, ..., k. Denote the edge incidence vector of a cycle by
I', with component y; equal to 1 if ¢; is an edge of the cycle, and 0 otherwise. Since
each vertex in the cycle is an endpoint of exactly two edges, we have

M(G)I'T =0,

over the binary field GF (2). Thus I is a null vector of M(G). Further, since the
omission of any edge in the cycle will violate the equation, I is a circuit of M(G).
Since every circuit of M has zero or two edges incident on each vertex of G, there is
a one-to-one correspondence between a cycle of G and a circuit of M(G) over GF (2).

However, our interest is with circuits over the real field. But the restriction to
arithmetic over GF(2) is easily removed. Let D be a directed graph obtained by
arbitrarily directing the edges of G. The vertex-edge incidence matrix of D, M (D) has
in the column of the directed edge {u, v} the entry +1 in the row of v, —1 in the row
of u, and 0 in all other rows. A cycle in D is defined to be a cycle in G with an arbitrary
orientation. Let I'(D) be the edge incidence vector of a cycle in D, with component
v; equal to +1 if ¢; is an edge in the cycle and the orientations of the cycle and ¢;
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agree, —1 if ¢; is an edge in the cycle and the orientations disagree, and 0 if e; is not
an edge in the cycle. We have

M(D)T(D)T =0,

where the arithmetic is now over the real field. Further, there is a one-to-one correspon-
dence between a cycle of D and a circuit of M (D).

We now extend this correspondence to one between a fundamental null basis of
M(D) and an appropriate graph concept. A spanning tree T of an undirected graph
G is a connected subgraph with » vertices and » —1 edges. Each nontree edge e creates
a unique cycle C(T, e) in the subgraph T+ e. We call C(T, e) the fundamental cycle
created by e with respect to T. Since T has v—1 edges, there are w(G)=¢e¢—v+1
nontree edges. Hence there are w(G) fundamental cycles with respect to T. The
fundamental cycle matrix ®(G) has w(G) rows and € columns, with element ¢;; equal
to 1 if ¢; is an edge of the cycle @, and 0 otherwise. If the edges of T are numbered
from 1 to »—1, and the nontree edges from » to & then ®(G) has the structure
®(G)= (P, I).

Let D be a directed graph obtained from G as before. A spanning tree of D is
defined to be a spanning tree of G. The fundamental cycle matrix of D, ®(D), has
element ¢; equal to +1 if ¢ is an edge of ®; and their orientations agree, —1 if ¢; is
an edge of ®; and their orientations disagree, and 0 if ¢; is not an edge of ®; Thus
for any spanning tree T, ®(G) and ®(D) have the same structure. Since each row of
®(D) corresponds to a cycle in D, we have

M(D)®(D)" =0,

where the arithmetic is over the real field. Hence ®(D)” is a fundamental null basis
for M(D).

Proof of Theorem 3.4. Restrict A to vertex-edge incidence matrices of directed
graphs. A sparsest fundamental null basis of A now corresponds to a sparsest funda-
mental cycle matrix of the associated directed graph. The latter is equivalent to finding
a sparsest fundamental cycle matrix of the undirected graph obtained by ignoring the
directions of the edges. This last problem is that of finding a spanning-tree that
minimizes the total number of edges in the set of fundamental cycles with respect to
it. This problem is NP-complete; proofs may be found in Deo, Prabhu, and
Krishnamoorthy (1982) and Pothen (1984). O

A fundamental basis for the row space of A has the structure (I, B) and corre-
sponds to a fundamental null basis

(")
In—r

with only a constant change in the number of nonzeros. Hence we have
CoOROLLARY 3.5. Given a positive integer k, it is NP-hard to find a fundamental
row space basis of A with k or fewer nonzeros.
In contrast, finding a (nonfundamental) sparsest row space basis can be done in
polynomial time (Hoffman and McCormick (1984)) when the matrix A satisfies a
nondegeneracy assumption called the matching property.

4. The structure of sparsest null bases. Any algorithm for constructing a null basis
has to ensure that the set of n — r null vectors chosen is linearly independent. Construct-
ing a fundamental null basis makes this easy to do. However, sparsest null bases need
not be fundamental. We may be constrained to construct relatively dense fundamental
bases where sparse nonfundamental null bases may exist.
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But what zero-nonzero structure (hereafter structure) should a sparsest null basis
have? By Theorem 4.2 below, a set of m vectors is linearly independent for all nonzero
values of its nonzero elements if and only if it has an embedded upper triangular
submatrix of dimension m. In what follows, let V be a matrix with n rows and m
columns, with n> m. Distinguish some elements of V as nonzeros and the rest as
zeros. By a value of a matrix we mean an assignment of nonzero numerical values to
its nonzero elements.

LeMMA 4.1. If V has at least two nonzeros in each row, then there exists a nonzero
vector x, and a value for V, such that Vx =0.

Proof. Let row i have |r,|=2 nonzeros. We assign to any |r,|—1 nonzeros the
value+1, and to the remaining element the value 1—|r;|. We do this for all the rows
of V, and choose x=(1...1)". O

THEOREM 4.2. V has rank m for all values if and only if it can be permuted to the

following structure:
B
V=
()

where U, is an m X m upper triangular matrix with nonzero diagonal elements.
Proof. The if part is obvious. We prove the only if part. Suppose that V has rank
m, but does not have the structure claimed. Permute the rows and columns of V so

that it has the structure
B C
V=
(6 %)

where R is upper triangular and maximal with respect to this property. Since R is
maximal, B has at least two nonzeros in each of its rows. By Lemma 4.1, we can now
find a vector x and numeric values for the nonzeros of B so that Bx =0. Since

e

V does not have rank m. This contradiction proves the theorem. 0O

It may appear from this theorem that a sparsest null basis should have an embedded
upper triangular matrix. This would be true if we could assign any value to N. But,
we are not free to do so. We can assign any value to A; then, once the structure of N
is chosen, the values of the columns of N are uniquely determined to within a
multiplicative constant.

Theorem 4.3 concerns the structure of a sparsest null basis. This result is a matroid
generalization of a theorem on cycles in graphs proved by Stepanets (1964). We shall
denote the set of columns of the matrix A also by A. Let n(a;) be a circuit of minimum
cardinality containing the column a; The reader may find Fig. 1 helpful to follow the
proof of this theorem.

THEOREM 4.3 (Generalized Stepanets Theorem). Let the columns a,,- - -, a; be
chosen such that

a, €A,
a,€e A\n(ay), ...,

k—1

acce A\ U n(q).
Jj=1

There exists a sparsest null basis N among whose columns are the circuits n(a,), - - -, n(ay).
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n(a;)...n(a,)

e @
-

o

k

F1G. 1. The sparsest null basis N.

Proof. We prove the theorem by induction on n(a;). Let ¢ = n—r, and denote the
set (P\p)Un by P—p+n.

Let P=(p, - - - p,) be a sparsest null basis of A. Since P is a basis, we can expand
n(a,) as

n(a;)=c,py+: "+ CuPm-

We assume that all the coefficients in this expansion are nonzero. Of the circuits in
this equation, there must exist at least one circuit, say p,, which contains a,. Consider
the system

P,=P-p,+n(a,).

Clearly P, is a null basis. Further, since n(a,) has minimum cardinality over circuits
containing a,, P, is a sparsest null basis.

For the inductive step, assume that P;_, is a sparsest null basis of A, having among
its columns n(a,), ..., n(a;_,), where each a; is chosen as claimed. We choose n(a;)
to be a circuit of minimum cardinality containing a; Expand n(q;) in the basis P;_,,

n(a)=cpr+- -+ CuPm,

where again each of the coefficients is nonzero. There is at least one circuit in this
equation, say p, Wwhich contains a, The circuit p, cannot be any one of
n(a,), -+ -, n(a;_,) by the choice of a; Consider now the system

P;=P,_,—p,+n(a).

As before, P; is a sparsest null basis of A.

We take N to be P;. This completes the proof. 0O

There is some k< n—r for which choosing a column q,., is not possible, since
the first k circuits contain all columns of A.

CoROLLARY 4.4. If k=n—r in Theorem 4.3, then the system of circuits
n(a,), -+, n(ay) is a sparsest null basis N of A.

In this case, N has an upper triangular submatrix with n—r columns. We call
such a basis a triangular null basis. Thus, some sparsest null bases are triangular.

5. Conclusions. We have formulated the Null Space Problem, and the Funda-
mental Null Space Problem. We have shown that only circuits can be columns in a
sparsest null basis, and that such a basis can be characterized by a matroid greedy
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algorithm. However, (NSP) is NP-hard since a sparsest null basis contains a minimum
circuit and finding a minimum circuit is NP-complete. Constructing a sparsest funda-
mental null basis is also an NP-hard problem. Hence the use of approximation
algorithms to solve (NSP) is justified.

A fundamental null basis ensures linear independence of the set of null vectors
chosen. We have extended this observation to show that a set of vectors is linearly
independent for all values if and only if it has an embedded upper triangular submatrix
with nonzeros on the diagonal. This can be used in approximation algorithms to
construct triangular null bases for which linear independence of the null vectors is
again easy to ensure.

A problem related to (NSP) is that of finding a set of cycles with the fewest edges
that spans the cycle space of a graph. Note that our proof technique for the NP-hardness
of (NSP) does not extend to this problem, since cycles with the fewest edges can be
found in polynomial time. The complexity of this problem is open (Johnson (1985)).
However, the problem of finding a set of fundamental cycles with the fewest edges
that span the cycle space of a graph is NP-complete (Deo, Prabhu and Krishnamoorthy
(1982), Pothen (1984)). The problem of finding a set of cycles with maximum number
of edges spanning the cycle space of a graph is NP-complete (Pothen (1984)).

In Coleman and Pothen (1985), we will show how circuits can be constructed
from a maximum matching in the bipartite graph of the matrix A. This algorithm can
be used repeatedly to construct fundamental null bases. Here the sparsity of the basis
turns out to depend only on the partition of the columns of A into the matched and
unmatched sets. Various heuristic strategies for finding particular matchings are used
to obtain sparse null bases.

By varying the matching while constructing null vectors, a triangular null basis
can be obtained. Such bases can be potentially sparser than fundamental null bases;
however, this increase in sparsity is achieved at greater computational cost.

We briefly mention recent work related to (NSP). Berry, Heath, Kaneko, Lawo,
Plemmons and Ward (1985) have implemented a refined version of a “turnback
algorithm”, proposed initially by Topcu (1979), that constructs sparse null bases for
large sparse, banded A. This algorithm uses an initial numeric factorization of A to
identify subsets of columns that could become dependent sets in the n — r null vectors.
In a second turnback phase, a numeric factorization on each dependent set is performed
to obtain circuits. Their numerical results on several problems arising from finite
element models in structural engineering show that they obtain null bases with the
same degree of sparsity as the input matrices. Berry and Plemmons (1985) have
implemented a parallel version of this algorithm on a Denelcor HEP computer. Gilbert
and Heath (1986) have implemented several algorithms for computing sparse null
bases; some of these are closer in spirit to the ones we have designed. For instance,
in one of their algorithms, they construct a triangular null basis; the columns in each
circuit are identified by matching methods.

Much work remains to be done. An important numerical consideration is the
condition number of the null basis. To this end, algorithms that can compromise some
degree of sparsity for better conditioned null bases will need to be developed. Other
sparsity criteria than the one used in this paper need to be studied. We mention one
such in closing. An implicit null basis is a representation for the null basis as a product
of a sequence of elementary matrices (e.g., Givens rotations), with the sequence of
elementary matrices being stored. A sparse implicit null basis has relatively few
elementary matrices in the sequence. One direction in which we plan to continue this
research is in developing sparse implicit orthogonal null bases.
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