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Multigraph realizations of degree sequences:

Maximization is easy, minimization is hard

Heather Hulett ∗ Todd G. Will † Gerhard J. Woeginger ‡

Abstract

The following minimization problem is shown to be NP-hard: Given a graphic degree
sequence, find a realization of this degree sequence as loopless multigraph that minimizes
the number of edges in the underlying support graph. The corresponding maximization
problem is known to be solvable in polynomial time.

Keywords: Computational complexity; combinatorial optimization; graph theory.

AMS subject classification: 05C12.

1 Introduction

A sequence d = 〈d1, . . . , dn〉 of non-negative integers is called graphic if it is the degree sequence
of some loopless multigraph G. Such a multigraph G then contains 1

2

∑n
k=1

dk edges, and is
called a realization of sequence d. For a multigraph G = (V,E), the underlying support graph
is a simple graph on the same vertex set V , that contains an edge between two vertices u and
v in V , if and only if the multigraph contains at least one edge between u and v in E.

Degree sequences of simple graphs are well-understood. They have nice combinatorial
characterizations (Hakimi [5]), and they can be recognized in polynomial time. There is a close
connection between degree sequences of simple graphs and general graphic degree sequences (of
loopless multigraphs), which is based on the following procedure for transforming a multigraph
into a simple graph: “As long as there exist two vertices u and v with at least two parallel
edges between them, subdivide one of these edges by creating a new vertex of degree 2.”

Proposition 1 (Owens & Trent [8])
Let t be an integer, let d = 〈d1, . . . , dn〉 be a sequence of non-negative integers, and let the
sequence d′ result from d by appending t copies of the integer 2. Then the following two
statements are equivalent:
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(i) The sequence d is the degree sequence of a loopless multigraph, whose support graph
contains at least 1

2

∑n
k=1

dk − t edges.

(ii) The sequence d′ is the degree sequence of a simple graph. �

Next, let us formulate two natural optimization problems around degree sequences and
support graphs.

Max-Realization:

For a given graphic sequence d, find a loopless multigraph realization that maxi-
mizes the number of edges in the underlying support graph.

Min-Realization:

For a given graphic sequence d, find a loopless multigraph realization that mini-
mizes the number of edges in the underlying support graph.

The maximization problem is solvable in polynomial time. This easy fact is an immediate
consequence of Proposition 1. Kleitman [6] discusses other, perhaps faster algorithms for
Max-Realization.

The minimization problem is more challenging. Will & Hulett [9] study the combinatorial
structure of support graphs with the minimum number of edges, and they show that there are
only two possible types of connected components for them: A connected component is either
a tree, or a tree plus one edge where the unique cycle has odd length. In this note we will
show that the minimization problem is NP-hard.

Theorem 2 It is strongly NP-hard to decide for a given graphic sequence d and an integer
bound B, whether there exists a loopless multigraph realization with at most B edges in the
underlying support graph.

Theorem 2 settles an open question of Will & Hulett [9]. It also adds another item to the
list of optimization problems for which the minimization version and the maximization version
behave very differently. Other items on this list are, for instance, cuts in graphs (min is easy,
max is hard), paths in graphs (min is easy, max is hard), jumps and bumps in linear extensions
of partial orders (min is hard, max is easy; see [4]), or the travelling salesman problem in the
plane with the Manhattan metric (min is hard, max is easy; see [1]).

2 The hardness proof

This section contains the proof of Theorem 2. Our reduction is done from the partial Latin
square completion problem. A Latin square of order p is a p × p matrix with entries from the
color set {1, 2, . . . , p}, such that each row contains each color exactly once, and each column
contains each color exactly once. A partial Latin square is a p × p matrix where each entry is
either empty or contains a color from {1, 2, . . . , p}, such that each row (column) contains each
color at most once. Colbourn [2] established NP-hardness of the following problem.
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Partial Latin square completion (PLSC):

Instance: A partial p × p Latin square L.

Question: Can the empty entries in L be filled with colors from {1, 2, . . . , p}, such
that the resulting matrix is a Latin square?

Now let us describe the reduction. We consider an arbitrary partial Latin square L with m
empty entries as an instance of PLSC, and we will construct an instance of Min-Realization

from it. Let q = 2p. Then, for the kth row, the ℓth column, and for color c we do the following
(where k, ℓ, c run through all values in {1, . . . , p}).

• If color c does not occur in the kth row, then we put the so-called x-number x(k, c) =
2q6 + kq − c into the degree sequence d.

• If color c does not occur in the ℓth column, then we put the so-called y-number y(ℓ, c) =
7q6 + ℓq2 + c into the degree sequence d.

• If the entry L(k, ℓ) at the crossing of kth row and ℓth column is empty, then we put the
so-called z-number z(k, ℓ) = 9q6 + kq + ℓq2 into the degree sequence d.

The bound on the number of edges in the support graph is defined as B = 2m. This completes
the construction of the instance d and B of Min-Realization.

The degree sequence d contains altogether 3m numbers, of which m are x-numbers, m are
y-numbers, and m are z-numbers. The following two Lemmas 3 and 4 state crucial properties
of our construction, and then Lemmas 5 and 6 establish the correctness of our reduction.

Lemma 3 The 3m numbers in the degree sequence d are pairwise distinct.

Proof. The x-numbers are from the range 2q6 to 2q6 + q2, and the value 2q6 + kq − c
uniquely determines k and c. The y-numbers are from the range 7q6 to 7q6 + q3, and the value
7q6 + ℓq2 + c uniquely determines ℓ and c. The z-numbers are from the range 9q6 to 9q6 + q4,
and the value 9q6 + kq + ℓq2 uniquely determines k and ℓ. Since the three ranges are disjoint,
one easily sees that the 3m numbers are pairwise distinct. �

Lemma 4 Assume that two entries di and dj with di < dj in the degree sequence d add up to
a third entry dk. Then di must be an x-number x(k, c), dj must be a y-number y(ℓ, c), and dk

must be a z-number z(k, ℓ) for three appropriate values k, ℓ, c.

Proof. Straightforward case distinctions on the size of the involved numbers imply that
di = x(k1, c1), dj = y(ℓ2, c2), and dk = z(k3, ℓ3) must hold for appropriate values of k1, k3, ℓ2,
ℓ3, c1, and c2. This yields

(2q6 + k1q − c1) + (7q6 + ℓ2q
2 + c2) = (9q6 + k3q + ℓ3q

2).

By considering this equation modulo q, we get c1 = c2. Then considering the equation mod-
ulo q2 yields k1 = k3. Finally, c1 = c2 and k1 = k3 also imply ℓ2 = ℓ3. �
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Lemma 5 If the instance L of PLSC can be completed to a Latin square, then the constructed
instance of Min-Realization has answer YES.

Proof. Whenever an empty entry L(k, ℓ) in the partial Latin square receives color c in the
completed Latin square, we create three (new) corresponding vertices u, v,w in the multigraph
together with x(k, c) edges between u and v, and together with y(ℓ, c) edges between u and w.
No other edges are incident to u, v,w. Then v is of degree x(k, c), and w is of degree y(ℓ, c),
and u is of degree x(k, c) + y(ℓ, c) = z(k, ℓ).

In this fashion, for every empty entry in L we introduce three corresponding vertices and
two corresponding edges in the underlying support graph. Altogether, this yields a support
graph with 2m = B edges. �

Lemma 6 If the constructed instance of Min-Realization has answer YES, then the in-
stance L of PLSC can be completed to a Latin square.

Proof. Consider a loopless multigraph realization G = (V,E) of the degree sequence d with
at most B = 2m edges in the underlying support graph G′ = (V,E′). Since the sequence
d does not contain any zero entries, a connected component in G cannot consist of a single
vertex. Since by Lemma 3 the entries in d are pairwise distinct, a connected component in G
cannot consist of exactly two vertices. Consequently every connected component in G and G′

contains at least three vertices, and there are at most m = |V |/3 connected components. In
any graph, the number of edges is greater or equal to the number of vertices minus the number
of connected components. For G′, this yields |E′| ≥ |V | − m = 2m = B. This implies that
|E′| = 2m, and that every connected component in G′ is a path on three vertices.

Now consider a connected component in the multigraph G. Since the degree of the middle-
vertex equals the sum of the degrees of the two outer vertices, Lemma 4 implies that these
three degrees are x(k, c), y(ℓ, c), and z(k, ℓ) for three appropriate values k, ℓ, c. We fill the
empty entry L(k, ℓ) with color c, and repeat this for all other connected components.

Every empty entry in L(k, ℓ) is filled (since the corresponding z-number z(k, ℓ) is the degree
of a middle-vertex in one of the components). In the kth row every missing color c shows up
exactly once (since the corresponding x-number x(k, c) is the degree of an outer vertex in one
of the components). In the ℓth column every missing color c shows up exactly once (since the
corresponding y-number y(ℓ, c) is the degree of an outer vertex in one of the components). �

By Lemmas 5 and 6, our reduction is correct. Note furthermore that the numbers in the
degree sequence d are polynomially bounded in p. This establishes the strong NP-hardness of
Min-Realization, and completes the proof of Theorem 2.

3 Appendix: Three-partitioning with distinct integers

In this appendix, we extract two corollaries from the NP-hardness proof in the preceding
section. We feel that these corollaries are of independent interest, and that they may prove
useful in other lines of investigation; for instance Li [7] fixes a proof by previous authors who,
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as he points out, had prematurely assumed that NMTS with distinct integers (see below for a
definition of this problem) was NP-hard.

The well-known book [3] by Garey & Johnson lists two NP-hard integer packing prob-
lems that since then have been used in literally hundreds of NP-hardness proofs: Three-

Partitioning and Numerical Matching with Target Sums.

Three-Partitioning:

Instance: A sequence a1, . . . , a3n of 3n positive integers; an integer B with∑
3n
k=1

ak = nB.

Question: Is it possible to partition these 3n integers into n disjoint triples, such
that in every triple the three elements add up to B?

Numerical Matching with Target Sums (NMTS):

Instance: Three sequences a1, . . . , an, and b1, . . . , bn, and c1, . . . , cn of positive
integers, such that

∑n
k=1

ak +
∑n

k=1
bk =

∑n
k=1

ck.

Question: Is it possible to partition the 3n given numbers into n triples, such
that each triple contains one ai, one bj, and one ck, with ai + bj = ck?

In the standard NP-hardness proof for Three-Partitioning (as presented in [3]), the
3n numbers a1, . . . , a3n are not pairwise distinct. Quite to the contrary, the proof introduces
repeated integers at many places, and this seems to be an inherent feature of this proof.

The standard NP-hardness arguments for Numerical Matching with Target Sums

also introduce repeated integers. Yu, Hoogeveen & Lenstra [10] provide a very sophisticated
proof that the special case of NMTS with ak ≡ bk ≡ k is NP-hard. However, their construction
yields numerous repeated integers among c1, . . . , cn.

Corollary 7 The special case of Three-Partitioning where the 3n integers a1, . . . , a3n are
all distinct is strongly NP-hard.

Corollary 8 The special case of Numerical Matching with Target Sums where the 3n
integers a1, . . . , an, b1, . . . , bn, c1, . . . , cn are all distinct is strongly NP-hard.

The proofs of both corollaries follow the construction in the preceding section. For Corol-
lary 7 we use all x-numbers, all y-numbers, and for every z-number z(k, ℓ) we use the number
B − z(k, ℓ) with B = 19q6. For Corollary 8 we simply use the x-numbers as a1, . . . , an, the
y-numbers as b1, . . . , bn, and the z-numbers as c1, . . . , cn. Lemma 3 yields that these numbers
are all distinct. Lemma 4 yields the correctness of these reductions from PLSC to Three-

Partitioning and NMTS, respectively.
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