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ABSTRACT

We prove a conjecture of C. Thomassen: If s and ¢t are non-negative integers, and if G
is a graph with minimum degree s + ¢t + 1, then the vertex set of G can be partitioned
into two sets which induce subgraphs of minimum degree at least s and ¢, respectively.
© 1996 John Wiley & Sons, Inc.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected and simple. For a graph G, we
denote by V(G), E(G),8(G) and x(G) the vertex set, the edge set, the minimum degree,
and the chromatic number of G, respectively. The degree of a vertex z with respect to
G is denoted by dg(x). Let X C V(G). The subgraph of G induced by X is denoted by
G(X),ie., V(G(X)) =X and E(G(X)) ={e € E(G)le =zy& z,y € X}.

(A1,...,Ag) is called a partition of a set V if Aq,..., A are pairwise disjoint, non-
empty subsets of V' such that their union is V.

Let G be a graph and f : V(G) — N be a function, where N is the set of non-negative
integers. G is said to be f-degenerate if for every induced subgraph H of G there is a
vertex « € V(H) such that dy (z) < f(z).

In this paper the following result is proved.

Theorem 1. Let G be a graph and a,b: V(G) — N two functions. Assume that dg(z) >
a(x) + b(x) + 1 for every vertex z € V(G). Then there is a partition (A, B) of V(G) such
that

(1) dgay(z) > afzx) for every vertex z € A, and
(2) dg(p)(z) > b(x) for every vertex x € B.

By induction, Theorem 1 implies immediately the following result.
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Corollary 2. Let Gbeagraphandlet fy,..., fi : V(G) — N be k > 2 functions. Assume
that

do(z) > fi(z)+- -+ fulz) + k-1

for every vertex x € V(G). Then there is a partition (A,..., A;) of V(G) such that, for
all i € {1,...,k},dg(a,(x) > fi(x) for every vertex = € A;. ]

Another consequence of Theorem 1 is the following result which has been conjectured
by C. Thomassen (see [8] or [9]).

Corollary 3. Let G be a graph and s,t > 0 integers. If §(G) > s+ ¢ + 1, then there is a
partition (A, B) of V(G) such that §(G(A)) > s and §(G(B)) > t. a

The complete graph K, shows that s+t+1 cannot be replaced by s+ ¢ in Corollary
3. A weaker version of Corollary 3 was first proved by C. Thomassen [8] and subsequently
improved by R. Haggkvist, N. Alon and P. Hajnal [2] (with 25 +¢ — 3 instead of s+t + 1
where s,t > 3). In 1966, L. Lovasz [4] proved a counterpart to Corollary 3: if the maximum
degree of a graph G is at most s+ ¢+ 1, then there is a partition (A4, B) of V(G) such that
the subgraphs G(A) and G(B) have maximum degree at most s and ¢, respectively. For
some interesting generalizations of this result the reader is referred to [1].

2. PROOF OF THEOREM 1

Let GG be a graph and a,b: V(G) — N two functions such that
dg(z) > a(z) + b(z) + 1

for every vertex z € V(G).

For M C V(G) and x € M, we briefly write dj(x) instead of dg () (). A pair (4, B)
is said to be feasible if A and B are disjoint, non-empty subsets of V(G) such that

(1) da(z) > a(x) for all x € A, and

(2) dp{x) > b(z) for all z € B.

We have to show that there is a feasible partition of V(G). If a(z) = 0, or b(z) = 0, for
some vertex ¢ of G, then ({z}, V(G) — {z}), or (V(G) — {z},{z}), is a feasible partition
of V(G). Therefore, in what follows, we assume that

a(z) > 1 and b(z) > 1

for every vertex = € V(G).
The following simple observation has proved very useful.

Proposition 4. If there exists a feasible pair, then there exists a feasible partition of V(G),
too.

Proof. Let (A, B) be a feasible pair such that AU B is maximal. We need only to show
that AU B = V(G). Suppose that this is not true, i.e., C = V(G) — (AU B) is non-empty.
Then the maximality of AU B implies that (A, B U C) is not feasible. Therefore, there is
a vertex « € C such that dguc(z) < b(z) — 1. Since dg(z) > a(z) + b(z) + 1,z is joined
to at least a(x) + 2 vertices in A. But then (A U {z}, B) is a feasible pair, contradicting
the maximality of AU B. This proves the proposition. s
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Obviously, Proposition 4 remains valid under the weaker assumption that dg{z) >
a(z) + b(z) — 1 for all x € V(G).

We need some further notation. By an (a, b)-partition of V(G) we mean a partition
(A, B) of V(G) such that G(A) is a-degenerate and G(B) is b-degenerate. Moreover, we
define a weight w(A, B) by

w(4, B) = |B(G(A)] + |EGB)] + Y b@) + 3 ala).

r€EA z€B

For the proof of Theorem 1 we consider two possible cases.
Case 1. There is no (a,b)-partition of V(). Then we argue as follows. Among all
non-empty subsets of V{(G) we select one, say A, such that

(i) da(z) > a(zx) for all x € A, and
(i) |A| is minimum subject to (i).

Let B = V(G) — A. Since V(G) — {v} satisfies (i), for each vertex v, A exists and is
a proper subset of V(G). Hence, B is non-empty. Because of (ii), for every non-empty
proper subset A’ of A there is a vertex x € A’ such that da (x) < a(z) — 1. This implies
that d4(z) < a(z) for some z € A. Consequently, G(A) is a-degenerate. Clearly, G(B) is
not b-degenerate, since otherwise (A, B) were an (a, b)-partition of V(G). Therefore, there
is a non-empty subset B’ of B such that dp/(z) > b(z) for all z € B’. Then (A, B’) is a
feasible pair and, by Proposition 4, there is a feasible partition of V(G).

Case 2. There is an (a,b)-partition of V(G). Then let (A, B) be an (a, b)-partition of
V(G) such that w(A, B) is maximum. G(A) being a-degenerate, there is a vertex z € A
such that d4(z) < a(z). Since dg(z) > a(z) + b(z) + 1,z is joined to at least b(x) + 1
vertices in B. This implies that |B| > 2. By symmetry we also have |4| > 2.

Next, we claim that there is a non-empty subset A C A such that d ;(x) > a(z) for
all z € A. Suppose, on the contrary, that this is not true. Then, clearly, for each y €
B,G{AU{y}) is a-degenerate. G(B) being b-degenerate, there is a vertex y' € B such that
dp(y') < b(y'). Let A’ = AU{y'} and B’ = B—{y'}. Obviously, B’ is non-empty. Now, we
easily conclude that (A’, B') is an (a, b)-partition of V (G). Since d¢(y') > a(y’) +b(y') +1
and dp(y') < b(y'), we have da/(y’) > a(y’) + 1 and, therefore,

w(A',B") —w(A,B) =da(y') —dp(y') +b(y') —a(y') > 1,

contradicting the maximality of w(A, B). This proves the claim. By symmetry there is a
non-empty subset B C B such that di(z) > b(x) for all x € B. Then (A, B) is a feasible
pair and, by Proposition 4, there is a feasible partition of V(G).

Thus, Theorem 1 is proved.

3. CONCLUDING REMARKS

For given integers s,t > 1, let G(s,t) denote the class of all graphs G such that there is
no pair G, G; of vertex disjoint subgraphs of G with §(G;) > s and 6(G3) > t. Corollary
3 implies that §(G) < s + ¢ for each graph G € G(s,t). The complete graph K, is an
example for which the bound is attained. Another example, for (s,t) = (1,4), is the graph
of the isocahedron, but we do not know whether G(s, t) contains a triangle-free graph with
minimum degree s + ¢ for some pair (s, ?).
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In a forthcoming paper [7] the following result answering a question raised by Borodin,
Kostochka and Toft (private communication) is proved.

For every graph G € G(s,t), x(G) < s + t + 1 where equality holds if and only if
G2 Kipiq1.

That a much stronger result holds was conjectured by P. Erdos and L. Lovasz in 1968
(see problem 5.12 in [3]), namely: if x(G) > s +t + 1, and if G does not contain a K441,
then there is a pair G, G2 of vertex disjoint subgraphs of G satisfying x(G:) > s+ 1 and
x(G2) > t + 1. Besides some few special cases (see [3] or [6]), this conjecture is still
unsettled.

In 1983, C. Thomassen [8] and, independently, M. Szegedy proved that for each pair s, ¢
of positive integers there exists a smallest number f(s,t) such that the vertex set of each
graph of connectivity at least f(s,¢) has a partition into two sets which induce subgraphs
of connectivity at least s and ¢, respectively. The complete graph K., shows that
f(s,t) > s+t + 1, and C. Thomassen [9] conjectured that, in fact, f(s,t) = s+t + 1 for
all pairs s,t. P. Hajnal [2] proved that f(s,¢) < 4s+ 4t — 13 for s,t > 3.

For a positive integer k, let h(k) denote the smallest number such that every graph of
minimum degree at least h(k) contains a k-connected subgraph. W. Mader [5] proved that
2k — 2 < h(k) < 4k — 6 for k > 2. In [8], C. Thomassen proved that if an (s +¢ — 1)-
connected graph G contains two vertex disjoint subgraphs of connectivity at least s and ¢,
respectively, then there is a partition (A4, B) of V(G) such that G(A) is s-connected and
G(B) is t-connected. Combining Corollary 3 with the results of Mader and Thomassen,
we obtain

f(s,t) < h(s) +h{t) + 1.
Therefore, an improvement of the upper bound for h(k) would yield an improvement of
the upper bound for f(s,t).
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