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a b s t r a c t

In this paper, we consider a specific variant of the field service routing problem. It consists in
determining vehicle routes in a single period to serve two types of customers: mandatory and optional.
Mandatory customers have to be served within a specified time window whereas optional customers
may be served (or not) within the planning horizon. For more realism, we assume that service as well as
travel times are stochastic and also that there are multiple depots. The objective is to visit as many
optional customers as possible while minimizing the total travel time. To tackle this problem, we
propose a 2-stage solution method: the planning stage and the execution stage. We decompose the
planning stage into two phases: the design of a skeleton of mandatory customers and the insertion of
optional customers in this skeleton. In the execution stage, we proceed to a real-time modification of the
planned routes to face stochastic travel and service times and to enable time windows to be respected.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The field service routing problem consists, given a limited number
of technicians, in determining a set of optimal technician routes to
serve customer requests, while ensuring that each technician has the
required skills for his tasks. The problem we are dealing with in this
paper is a variant of the single-period field service routing problem
without technician skills. In this variant, we suppose that all customers
are known a priori and we distinguish between two types of
customers: mandatory and optional customers. Optional customers
have an associated time window corresponding to the time horizon
and may be postponed at any time. Mandatory customers have an
associated hard time window (they must be served within this time
window). We associate to each technician a vehicle and we suppose
that each vehicle has unlimited capacity, its own origin and destina-
tion depots and must return to this destination depot by the end of
the period (hard time window). We consider that travel and service
times for all customers (mandatory and optional) are stochastic. The
objective is to visit as many optional customers as possible while
minimizing the total travel time. This problem can also be seen as a
variant of the vehicle routing problem with time windows (VRPTW).
Indeed, the VRPTW consists in determining a set of optimal vehicle
routes serving all customers to meet customer demands within

specified time windows, each of these routes starting and ending at
a given depot. The objective in the VRPTW is to minimize the total
traveled distance and also, sometimes, the number of vehicles.
Compared to this classical VRPTW, our variant present some differ-
ences as we consider multiple depots, uncapacitated vehicles, priority
within customers as well as stochastic travel and service times. In the
remainder of this paper, we will call this variant the Multi-Depot
Vehicle Routing Problem with Time Windows, Stochastic Service and
Travel Times and with priority (MDVRPTWSSTT with priority).

A generic application of the MDVRPTWSSTT with priority we
consider is the design of routes for technicians for repair and mai-
ntenance operations. Mandatory customers are requiring repair opera-
tions whereas optional customers are requiring a service (control,
maintenance, meter-reading…). In this application, as it is about
service routing, vehicles are used only for carrying material and
personnel. Thus we can suppose that the vehicle capacity is unlimited.
Moreover, as vehicles do not carry goods, they can have their own
origin and destination depots (typically technician homes). Last, as the
service provided to the customer may be a repair operation, we
understand the need to consider stochastic service times. The parti-
cular application that we are considering corresponds to a real
problem coming from a leading international company in the area
of domestic water provision and treatment. In this company, techni-
cians have to perform maintenance operations (corresponding to
optional customers) and repair operations (corresponding to manda-
tory customers). It is described in Tricoire et al. [1,2] and Binart et al.
[3] as well as Bostel et al. [4]. In this paper, we consider uncertainties
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in both travel times between clients and duration of service at
customers’ premises. Uncertainties are indeed a major problem in a
real application of this kind, especially to reach efficient solutions
during the real-time execution stage. To the best of our knowledge, no
previous work has been reported on the problem we just defined.
Therefore, we will first focus on literature dealing with variants of the
field service routing problem and then on literature dealing with the
vehicle routing problem with time windows (VRPTW) with common
characteristics to the MDVRPTWSSTT with priority.

Since a few decades, the problem of field service routing has
arised in the literature with the development of the service
industry. In 2002, Grötschel et al. [5] address a realtime variant
of the field service routing problem and propose a column
generation method with a dynamic pricing strategy. More recently,
Kovacs et al. [6] propose an adaptive large neighborhood search
for solving the field service routing problem with and without
team building. Borenstein et al. [7] and Delage et al. [8] consider
the field service routing problem with stochastic service times.
Borenstein et al. [7] proceed in many steps: they first partition
customers into different clusters, then assign technicians to them.
To get a soft clustering, they make the tasks located at the
boundary between areas belong to all adjacent areas. After this
soft clustering, they define some rules to allocate tasks to techni-
cians. Delage et al. [8] proposes a two-step method: he first
establishes workload planning and then he deals with stochastic
service times thanks to a dynamic programming approach. Last,
Cortes et al. [9] and Souyris et al. [10] address the field service
routing problem with stochastic service times and a priority
within customers (corresponding to a target response time).
Tricoire et al. [1,2] and Bostel et al. [4] have been interested in
the deterministic multiple depot, multiperiod field service routing
with priority within customers (MDVRPTW with priority), distin-
guishing mandatory and optional customers. For this problem,
they propose a column generation-based method [11] as well as a
memetic algorithm [12]. In 2006, Dugardin et al. [13] deals with
the single-period field service routing problem with priority
within customers, but he considers stochastic travel times. How-
ever, he does not take into account the stochasticity when building
the route plan. Given a route plan, he defines simple rules to react
to the different events which may occur. Even if the VRPTW has
been addressed in many papers, few are those taking into account
stochastic travel and/or service times. Ando et al. [14], Russell et al.
[15], Jie [16], and Tas et al. [17] formulate the VRPTW with
stochastic travel times as an integer program and seek to minimize
the weighted sum of total traveled distance and penalties related
to the violation of time windows. Moreover, Ando et al. [14] and
Russell et al. [15] minimize the number of vehicles used. To solve
this problem, Russell et al. [15] and Tas et al. [17] propose a tabu
search based algorithm whereas Jie [16] present an evolutionary
algorithm.

Some authors have been interested in the VRPTW with sto-
chastic service times. In 2007, Flatberg et al. [18] propose a
scenario-based approach with local search. In 2011, Lei et al. [19]
propose a two-stage dynamic programming model with recourse,
where the recourse consists in going back to the depot as soon as
the end of the depot time window is reached. To solve the VRPTW
with stochastic travel and service times, Wang et al. [20] present
assignment models whereas Li et al. [21] propose a tabu search
algorithm. In 2007, Zeimpekis et al. [22] add to this problem
priorities within customers (depending on profit, on time window
and on travel cost to access a customer) but limit the problem to a
single vehicle. For this variant, they propose a variant of the S-
algorithm [23].

In this paper, we address a different problem as we consider a
variant of the VRPTW with multiple depots, priority within
customers and stochastic travel and service times. All of these

characteristics have not been considered all together previously
in the literature. We assume that all customers are known a
priori, as well as the minimal, modal and maximal values for
speed and service times. Regarding the number of mandatory
customers, we suppose that it is sufficient, in order for our
method to be consistent. This assumption is not restrictive since,
if we do not have enough mandatory customers, we can decide to
make some optional customers become mandatory. Making these
assumptions, we propose a two-stage method: a planning stage
followed by an execution stage. As Delage et al. [8], we decom-
pose the planning stage into two phases: (i) we build routes
considering only mandatory customers (we call the set of these
routes “skeleton”); (ii) we insert optional customers in this
skeleton. At the beginning of the execution stage, we have a
planned route for each vehicle. In this stage, we use dynamic
programming to deal with the stochasticity on travel and service
times. The key idea in this two-stage method is to use the
optional customers as buffer to absorb variations on travel and
service times. The remainder of the paper is organized as follows.
We present the planning stage in Section 2, the execution stage in
Section 3, computational results of the two-stage method in
Section 4 and we conclude in Section 5.

2. Planning stage

In the planning stage, we aim at building optimal routes
containing both mandatory and optional customers. Assuming
that lower and upper bounds on travel and service times are
known (as mentioned before), we proceed in two phases: first, we
build a skeleton of routes serving mandatory customers and then
we insert optional customers in this skeleton. In phase I (skeleton
design), we formulate the problem as a mixed integer program
and we solve it exactly using a commercial solver. In the second
phase (insertion of optional customers), we formulate the problem
as an integer program and we proceed in two steps: we first solve
this model with pessimistic estimates using a branch and cut
algorithm or a Lagrangian decomposition method and we then
repair and improve the solution with a heuristic method.

2.1. Phase I: skeleton design

In this step, we consider only mandatory customers, which are
a priori known and have an associated time window. In order to
design the skeleton of routes including mandatory customers only,
we just have to solve a m-TSPTW on mandatory customers. As we
do not allow any delay for serving mandatory customers, we
consider that travel and service times are maximal. Let K be the set
of vehicles and M the set of mandatory customers. We note ok and
dk the origin and destination depots for vehicle k and ½ei; li� the
time window for customer i (service should begin after ei and
before li). Let σ i and σ i be respectively the minimal and maximal
service time for customer i, τ ij and τ ij be respectively the minimal
and maximal travel time between i and j. Let T be a large constant.
We define the following variables. A binary variable xi

k indicates if
mandatory customer i is served by vehicle k. A binary variable yijk

indicates if customer i is served just before j by vehicle k, and last ti
corresponds to the time at which service starts at customer i. Then
the skeleton design is modelled as follows:

Model 1 (M1):

min
X
kAK

X
iAM[fokg

X
jAM[fdkg

τ ijykij

S. Binart et al. / Computers & Operations Research 65 (2016) 64–75 65



subject to:X
kAK

xki ¼ 1 8 iAM ð1Þ

X
jAM[fdkg

ykij ¼ xki 8 iAM; kAK ð2Þ

X
iAM[fokg

ykij ¼ xkj 8 jAM; kAK ð3Þ

X
iAM[fdkg

ykoki ¼ 1 8kAK ð4Þ

ei⩽ti⩽li 8 iAM [ fok; dkg ð5Þ

tj⩾tiþσ iþτ ijþ
X
kAK

Tðykij�1Þ 8 iAM [ fokg; jAM [ fdkg ð6Þ

ykijAf0;1g 8kAK; iAM [ fokg; jAM [ fdkg
xki Af0;1g 8 iAM; kAK

ti⩾0 8 iAM [ fok; dkg

Constraints (1) state that every mandatory customer must be
served exactly once. Constraints (2) and (3) are in-degree and
out-degree constraints. Constraints (4) state that each vehicle
should leave its origin, even if going directly to destination.
Constraints (5) ensure that the respect of time windows (service
for customer i must begin within the time window ½ei; li�). Finally,
constraints (6) are precedence constraints, which also ensure the
elimination of subtour. Since the number of mandatory customers
is low in the instances considered, this model is solved exactly
using a commercial solver.

2.2. Phase II: inserting optional customers

Once the skeleton of routes serving mandatory customers is built,
we have for each vehicle a sorted list of mandatory customers to be
visited. In order to improve the quality of service, we update the
earliest and latest times for beginning service, ei and li, associated with
mandatory customer i. They correspond to the beginning service time
respectively in the best and in the worst case. Therefore we state li¼ti
and we calculate ei with the minimal travel and service times (while
ensuring that ei respects the previous time window) according to the
routes of the skeleton.

In this phase, we introduce the concept of segment, which is a
route portion between two successive mandatory customers (the
origin depot and destination depot of each vehicle are considered
as mandatory customers). Segment p has three main character-
istics: an origin op, a destination dp and a length Δp. As we wish to
use optional customers as buffer to absorb variations of travel and
service times, we define this length as the largest possible one:
Δp ¼ ldp �eop �σop where ldp is the latest time to begin service at
customer dp, σop the minimal service time for the origin customer
op and eop the earliest time to begin service at customer op. Note
that, for a given vehicle, segments are sorted the following way
(see Fig. 1 below): segment ðpþ1Þ has for origin dp (the destination
customer of segment p).

With this new concept of segment, the problem of inserting
optional customers in the skeleton consists in establishing routes
associated with each segment of the skeleton while ensuring on each
segment p that the length of the route does not exceed Δp. Two
objective functions are considered in this insertion phase: the max-
imization of the profit associated with servicing optional customers
and then, the minimization of the total traveled time. To deal with
these objectives, we use the classical weighted sum technique to

combine them into a single one, where α is the weight for the travel
time ðαA ½0; þ1½Þ. Let O be the set of optional customers and P the
set of segments over all the routes. Customer i has an associated profit
pi. We use reference values ~τ ij and ~σ i respectively for travel and
service times. We define the following variables. A binary variable xi

p

indicates if customer i is served on segment p, and a binary variable yijp

indicates if customer i is served just before j on segment p. With these
notations, we formulate the insertion of optional customers in the
skeleton of routes as follows:

Model 2 (M2):

max
X
pAP

X
iAO

pix
p
i �α

X
pAP

X
iAO

X
jAO

~τ ijy
p
ij

subject to:X
pAP

xpi ⩽1 8 iAO ð7Þ

X
jAO[fdpg

ypij ¼ xpi 8 iAO; pAP ð8Þ

X
iAO[fopg

ypij ¼ xpj 8 jAO; pAP ð9Þ

X
iAO[dp

ypopi ¼ 1 8pAP ð10Þ

X
iAO[fopg

X
jAO[fdpg

~τ ijy
p
ijþ
X
iAO

~σ ix
p
i ⩽Δ

p 8pAP ð11Þ

X
iA S

X
jAS

ypij⩽
X

iA S⧹flg
xpi 8S�O; jSj⩾2; 8 lAS; pAP ð12Þ

ypijAf0;1g 8 iAO [ fopg; jAO [ fdpg; pAP

xpi Af0;1g 8 iAO; pAP

Constraints (7) state that each optional customer is served at most
once. Constraints (8) and (9) are in-degree and out-degree con-
straints. Constraints (10) ensure that each vehicle leaves the origin
of the segment (eventually to go directly to the destination of the
segment). Constraints (11) force the length of the route associated
with a segment to be smaller than the length of this segment.
Constraints (12) are subtour elimination constraints. They are
necessary in this model because optional customers do not have
any time window.

Regarding the value setting for travel and service times ~τ ij and ~σ i,
many choices are possible. If we choose minimal values (optimistic
estimates), we may obtain solutions with empty routes while some
routes serve a large number of customers each. It is an admissible
solution as long as we are in the optimistic case. However, during
execution stage, many customers remain unserviced while some
routes remain empty. In order to avoid this pitfall, we have to balance
workload over vehicles during the insertion of optional customers. We
thus perform the insertion of optional customers in two steps. First,
we insert optional customers with pessimistic estimations of travel and

Fig. 1. Segment order for a given vehicle (route).
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service times. Next, we insert optional customers with optimistic
estimations of travel and service times, while keeping the assignment
of customers to vehicles obtained in the first step. With these choi-
ces, we build route portions on segments with a duration limit
corresponding to the length of the segments. But if we consider a
route containing several segments, this route has a duration limit
corresponding to the sum of the lengths of the associated segments,
i.e. ldp �eop �σop (optimistic estimate for the length of segment p). The
obtained route can thus be much longer than the time horizon.
Indeed, preliminary experiments lead us to observe that the feasibility
probability for some routes can fall to 0.2. As a consequence, during
the execution stage, we completely changed the planned routes. In
order to avoid this, we choose to ensure a minimal probability for the
routes to be feasible. The insertion of optional customers now consists
in inserting first optional customers with pessimistic estimations of
travel and service times. Then, we repair and improve the solution
obtained, while ensuring that each route has a sufficient probability to
be feasible (greater than a given threshold).

We develop a basic branch and cut algorithm for solving ðM2Þ. We
obtain a first subproblem by relaxing the subtour elimination con-
straints (12) as well as the integrality constraints on the variables.
Then, constraints (12) are added dynamically to improve the upper
bound. When no cuts can be identified, branching is performed in
priority on the xi variables. The fractional variable xi

p closest to 0.5 is
selected for branching. When all xip variables are integer, yijp variables
are considered using the same selection rule. As inserting optional
customers with pessimistic estimations on small instances with this
branch and cut algorithm can be time-consuming, we propose some
speedup techniques to improve computation times. In order to solve
larger instances, we also propose a Lagrangian relaxation to decom-
pose the problem into one subproblem per segment. As the routes
obtained by both methods (branch and cut and Lagrangian relaxation)
may have a low probability to be feasible, we propose to repair and
improve these routes afterwards in order to get routes with a
sufficient feasibility probability. In what follows, we will first detail
the different speedup techniques we propose for the branch and cut
algorithm in Section 2.2.1, present the Lagrangian relaxation method
in Section 2.2.2 and then describe the repair and improve algorithms
in Section 2.2.3.

2.2.1. Speedup techniques for the branch and cut algorithm
As we mentioned before, solving model ðM2Þ with a branch and

cut algorithm can be very time-consuming. In order to improve
computation times, we propose in this section different speedup
techniques: preprocessing, an insertion heuristic to build an initial
integer solution, reachability cuts and subset elimination inequalities.

Preprocessing: A commonly used speedup technique is to make
some preprocessing to fix some variables before beginning the
branch and cut method. This preprocessing is based on the idea
that, when inserting optional customers in the skeleton, some
customers cannot possibly be served on some segments. In order
to avoid this, when comparing maximal travel and service times to
the length of segments, we obtain conditions which allow us to set
the values of some variables or to strengthen the formulation by
adding some valid inequalities:

Proposition 1. The following clauses are valid:

If τopjþσ jþτ jdp⩾Δ
p
; then xpj ¼ 0 ð13Þ

If τopiþσ iþτ ijþσ jþτ jdp⩾Δ
p
; then ypij ¼ 0 ð14Þ

If
τopiþσ iþτ ijþσ jþτ jdp⩾Δ

p

τopjþσ jþτ ijþσ iþτ idp⩾Δ
p

9=
; then xpi þxpj r1 ð15Þ

Clause (13) states that customer i cannot be visited on segment
p if the total time needed to serve only i on segment p (travel time
from op to i, service time at i and travel time from i to dp) exceeds
the length Δp of segment p. Likewise, clause (14) indicates that
customer j cannot be served after customer i if the total time
needed to serve only customer i followed by customer j on
segment p (travel time from op to i, service time at i, travel time
from i to j, service time at j and travel time from j to dp) exceeds
the length Δp of this segment. Finally, clause (15) is a valid
inequality based on clause (14). This clause expresses that if both
the total time needed to visit only i and j in this order and the one
needed to visit only j and i in this order on segment p exceed the
length Δp of segment p, then i and j cannot be served together on
segment p. Indeed, using clause (14) on the conditions of clause
(15), we obtain ypij ¼ 0 and ypji ¼ 0 (i.e. j cannot be served after i and
i cannot be served after j on segment p). Thus, we conclude that i
and j cannot be served together on segment p.

Insertion Heuristic: To build an initial solution for the branch
and cut, we propose a heuristic based on the insertion of
customers. This heuristic can be described as follows. We compute
the insertion costs of each customer on each segment (if a
customer i cannot be inserted on a segment p, the insertion cost
ci
p associated will be þ1). Then we solve an assignment problem
(assigning customers to segments). Given the assignment solution,
we have for each segment a route serving potentially one optional
customer. Thus, insertion costs are possibly modified for the
unassigned customers. This process is then reiterated until one
of the following stopping conditions is satisfied:

(i) All optional customers have been inserted ;
(ii) No optional customer was inserted in the last iteration.

Reachability Cuts: In order to speedup the branch and cut
algorithm, we propose to strengthen subtour elimination con-
straints (12) in model ðM2Þ. They can be reformulated as follows.
Let δ� ðSÞ ¼ fði; jÞj i=2S; jASg for a set of customers S, we haveX
ðk;lÞAδ� ðSÞ

ypkl⩾x
p
i 8S�O; jSjZ2; 8 iAS; pAP ð16Þ

Constraints (16) are known to be equivalent to constraints (12).
Lysgaard [24] propose to reinforce such constraints by defining the
so-called reachability cuts. Following the lines of Lysgaard [24], we
define the reachability set Ap�

i as being the minimal set of arcs
enabling access to customer i from the origin of segment p. For
instance, if ðop; a;b; iÞ is a feasible path (with respect to the maximum
duration constraint) from op to i, then fðop; aÞ; ða;bÞ; ðb; iÞg � Ap�

i as
long as the time matrix satisfies the triangle inequality. Then,
constraints (16) can be strengthened by considering the following
reachability cuts:X
ðk;lÞAδ� ðSÞ\Ap�

i

ypkl⩾x
p
i 8S� O; jSjZ2; 8 iAS; pAP ð17Þ

In other words, let p be a segment, i a customer and S a set of
customers (with op =2S and iAS ), if customer i is served on segment
pðxpi ¼ 1Þ, then there exists a path from the origin of the segment op to
i, and every arc on this path belongs to Ap�

i . Especially, as iAS and
op =2S, there exists at least one arc in Ap�

i entering S. These constraints
are clearly stronger than the classical subtour elimination constraints
(SEC) since (δ� ðSÞ \ Ap�

i ÞDδ� ðSÞ. In constraints (17), we can see that
the number of terms in the lefthand side depends on the size of Ap�

i .
Therefore, when the accessibility set Ap�

i is large, the constraint
Rp�
i ðSÞ is not so strong compared with the associated SEC constraint.

For a given customer, the size of the accessibility set increases with the
length of the corresponding segment. For this reason, in a first
approach, we choose to generate these new constraints only on
segments whose length does not exceed a threshold Lmax and to
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generate the classical subtour elimination constraints on other seg-
ments. To separate the reachability cuts, we determine a priori the set
of arcs Ap�

i for each iAO. In the preprocessing phase, we create a list
Cp of customers who can be served on each segment p (with respect to
the length of the segments). For each customer i and segment p, we go
through all arcs ðj; kÞ such that jACp and kACp. If the path ðop; j; k; iÞ is
feasible on segment p, we add the corresponding arcs to the set Ap�

i if
they do not already belong to this set. Then, to identify violated
reachability cuts, we consider all possible couples (customer i,
segment p) and for each of them, we solve a maximum flow problem
on the support graph G¼ ðfjj jACpg [ fopg;Ap�

i Þ.
Subset elimination inequalities: Another commonly used

speedup technique consists in using a very well-known family of
valid inequalities known as “subset elimination inequalities”.
These inequalities are derived from constraints (10).

Proposition 2. Given a set S of customers and a segment p, let LpðSÞ
be the length of the shortest path from node op to node dp serving all
customers contained in S. If LpðSÞ4Δp, then the following subset
elimination inequality:

xpðSÞ⩽j Sj �1 ð18Þ
is valid.

Note that for jSj ¼ 2, we have xpi þxpj ⩽1. These inequalities have
already been generated when preprocessing. In our branch and cut
algorithm, such inequalities are generated for 3⩽jSj⩽Smax. Con-
straints (18) are separated heuristically. Given a solution ð ~x; ~yÞ and
a segment p, we first sort customers i verifying xpi 40 in decreas-
ing order of ~xpi . Given this sorted list, we identify k-tuples
fi1; i2;…; ikg verifying xpi1 þxpi2 þ⋯þxpik 4k�1. For each of these k-
tuples, we check first if ðop; i1; i2;…; ik; d

pÞ is admissible. In such
case, there is no violated subset elimination inequality associated
with this k-tuple and this segment. Otherwise, we identify the
shortest path from op to dp serving all customers of the k-tuple. If
the shortest path is not admissible, we just identified a violated
subset elimination inequality of size k with S¼ fi1; i2;…; ikg.

2.2.2. Lagrangian relaxation
We can observe that the problem of inserting optional customers

in the skeleton of routes can be decomposed into subproblems (one
subproblem per segment) if we disregard binding constraints (7). A
solution approach thus consists in relaxing these constraints and in
giving them a Lagrangian multiplier in the objective function, obtain-
ing the Lagrangian relaxation R(u) for a given value of u¼
ðu1;u2;…;uj Oj Þ⩾0:

max
X
pAP

X
iAO

pix
p
i �α

X
pAP

X
iAO

X
jAO

~τ ijy
p
ijþ
X
iAO

ui

 
1�

X
pAP

xpi

!

subject to constraints (8)–(12). In order to be able to break this
problem down into subproblems, we reformulate the objective
function as

max
X
pAP

X
iAO

ðpi�uiÞxpi �α
X
pAP

X
iAO

X
jAO

~τ ijy
p
ijþ
X
iAO

ui

As the last term
P
iAO

ui is a constant for a given vector u, we can
decompose R(u) into subproblems. Considering segment p, subpro-
blem RpðuÞ can be formulated as follows:

max
X
iAO

ðpi�uiÞxpi �α
X
iAO

X
jAO

~τ ijy
p
ij

subject toX
jAO[fdpg

ypij ¼ xpi 8 iAO ð19Þ

X
iAO[fopg

ypij ¼ xpj 8 jAO ð20Þ

X
iAO[dp

ypopi ¼ 1 ð21Þ

X
iAO[fopg

X
jAO[fdpg

~τ ijy
p
ijþ
X
iAO

~σ ix
p
i ⩽Δ

p ð22Þ

X
iA S

X
jA S

ypij⩽
X

iA S⧹flg
xpi 8S� O; jSj⩾2; 8 lAS ð23Þ

ypijAf0;1g 8 iAO [ fopg; jAO [ fdpg
xpi Af0;1g 8 iAO

RpðuÞ is solved using the branch and cut method with speedup
techniques mentioned above. In order to proceed to the insertion of
optional customers in the skeleton, we have to solve the Lagrangian
dual, which can be formulated as follows:

min
uZ0

max
x

X
pAP

X
iAO

pix
p
i �α

X
pAP

X
iAO

X
jAO

~τ ijy
p
ijþ
X
iAO

ui

0
@1�

X
pAP

xpi

1
A

0
@

1
A

subject to (19)–(23) To solve the Lagrangian dual, we apply a
subgradient algorithm. For this algorithm, we need a good lower
bound for the optimal value in order to ensure the convergence of the
method. For this purpose, we build a feasible solution, using the
insertion heuristic presented in Section (2.2.1) and we improve the
obtained solution using string exchange, arc exchange and relocalisa-
tion (without moving mandatory customers). Let ω be the value of
this solution (lower bound value) and u0 ¼ ð0;0;…;0Þ, we proceed as
follows at each iteration k of the subgradient algorithm:

Iteration k:

� u¼ uk

� For each segment pAP, solve RpðukÞ with pessimistic estimates
for travel and service times, using the branch and cut method
with speedup techniques.

� With the values ðxpi ÞiAO;pAP of the obtained solution, calculate
the value zðukÞ of the solution of RðukÞ.

� Calculate the step length μk and the step directions Di
k for each

iAO with formulas:

μk ¼
ϵðzðukÞ�ωÞ

P
iAO

1� P
pAP

xpi

 !2 and Dk
i ¼ 1�

X
pAP

xpi

� Calculate the new vector ukþ1 with ukþ1
i ¼maxðuk

i þμkD
k
i ;0Þ.� k’kþ1

The subgradient algorithm terminates prematurely either when the
gap between the best upper bound mink zðukÞ and the best lower
bound maxk ωk falls under a given threshold or when the number of
iterations reaches a given maximal value. This turns the subgradient
algorithm into a Lagrangian heuristic. In order to accelerate conver-
gence, we calculate a new lower bound at each iteration. After
obtaining the solution at iteration k, we repair this solution (by
removing repeated customers) and improve the solution (proceeding
to successive string exchanges, arc exchanges and relocalisations
without moving mandatory customers). We thus obtain a feasible
solution, i.e., a new lower bound ωk. The solution returned by the
subgradient algorithm is the best feasible solution, i.e. the best lower
bound. This Lagrangian heuristic provides us a good lower bound for
the problem of inserting optional customers in the skeleton. As
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mentioned previously, after this Lagrangian relaxation, we can obtain
a solutionwith a very low probability to be feasible. We thus apply the
repair and improve algorithms to the obtained solution (see Section
2.2.3).

2.2.3. Solution repairing and improving algorithm
When proceeding to the insertion of optional customers in the

skeleton, we may obtain routes with a low probability to be
feasible (see Section 2.2). Indeed, in phase II, we insert optional
customers on segments, while ensuring on each segment p that
the length of the route does not exceed Δp. As mentioned above,
the length of a segment is defined with the formula Δp ¼ ldp �
eop �σop . In the worst case, the length of the segment is rather
ldp � lop �σop . For this reason, the probability for a route to be
feasible can be very low. To avoid this pitfall, we introduce a new
parameter F as being the feasibility threshold (a route must have a
probability to be feasible greater or equal to F). We propose a
procedure that consists in repairing first the solution so that each
route has a feasibility probability greater or equal to F. Then, we
improve the solution (trying to insert unserved customers and to
relocate customers while ensuring the probability for each route to
be feasible to be greater or equal to F). A pseudo-code description
of the repair procedure is given in Algorithm (1). Let Pk be the set
of segments associated with vehicle k. For a vehicle k, given the
planned route (and associated segments Pk), using the probability
distributions for travel and service times, we can calculate at each
mandatory customer the possible arrival times and associated
probabilities. CalculateProbaFeasibleðop; dpÞ returns the probability
for the route to be feasible at dp (probability to arrive before ldp),
knowing the possible arrival times and associated probabilities at
op. We note CustomerLargestDetourða; bÞ the function returning the
customer located between a and b (a and b excluded) generating
the largest detour regarding travel times. The repair algorithm
consists in removing the customer generating the largest detour
until the feasibility probability is sufficient.

Algorithm 1. Repair solution.

for each kAK do
for each pAPk do
proba’CalculateProbaFeasibleðop;dpÞ
while probaoF do
c’CustomerLargestDetourðop; dpÞ
remove customer c
proba’CalculateProbaFeasibleðop; dpÞ

end while
end for

end for

The improvement algorithm pseudo-code description is given in
algorithm (2). In this algorithm, let L be an empty list, U the list of
unserved customers and N the total number of customers. Custo-
merLargestDetour(L) returns the customer generating the largest
detour within the solution and not belonging to L. BestInsertion(c)
returns the best possible insertion of customer c in the solution
with respect to travel times. An insertion is feasible if it generates a
route with a feasibility probability larger than F and if time win-
dows are respected. BestInsertion(U), with U a list of customers, is a
method consisting in getting the best possible insertion over all
the routes and all the customers in U and proceeding to this
insertion if this one is valuable until no more customers can be
inserted. The improvement algorithm consists in proceeding to the
best possible insertion, to improve the quality of the solution,
until no more customer can be inserted. In this algorithm, an

insertion will not be considered if the feasibility probability
threshold is violated.

Algorithm 2. Improve solution.

U’GetUnservedCustomersðÞ
BestInsertion(U)
L’½�
while sizeðLÞoN�sizeðUÞ do
c’CustomerLargestDetourðLÞ;
ðbestRoute; bestPosition; bestProfitÞ’BestInsertionðcÞ;
if bestProfit40 then

remove customer c
insert customer c on the route bestRoute in the position

bestPosition
end if
add c to the list L

end while

3. Execution stage

At the beginning of the execution stage, we have a planned route
for each vehicle obtained at the end of the planning stage. The goal of
the execution stage is to adjust planned routes to reality. In this stage,
we consider stochastic travel and service times and we react in real-
time to face stochasticity. We thus use dynamic programming tools to
determine the optimal policy. We first describe the probability
distributions used in this stage and then we detail the dynamic
programming algorithm.

3.1. Probability distributions

In this stage, as we just mentioned, we consider stochastic travel
and service times. To model bounded travel and service times, we
need truncated probability distributions. We also assume that time
units are discrete (i.e. minutes). Hence we choose to model stochastic
travel and service times with discrete triangular distributions. For
service time at customer i, we use a symmetric discrete triangular
distribution law between σ i�1 and σ iþ1 where σ i and σ i corre-
spond respectively to the minimal and maximal service time at
customer i. For distance units we use the arbitrary units (a.u.)
proposed by Tricoire [1]. Regarding travel time (min) per distance
unit (a.u.) δ, we use a discrete triangular distribution between δ and δ .
As travel speed varies between 20 km/h and 50 km/h and as
41 km¼1000 a.u. (see Tricoire [1]), travel speed v (in a.u./min) lies
in the interval ½8:13;20:33� and travel time per distance unit (in min/a.
u.) lies in the interval ½0:05;0:12�. In order to get discrete values for
travel time per distance unit, we use a scale factor and we set
δ ¼ ⌈100=vmax⌉�1 and δ ¼ ⌈100=vmin⌉þ1 with mode ⌈100=vmode⌉
where vmin, vmax and vmode correspond respectively to the minimal,
maximal and modal travel speed (in u.a./min). Then, the probability
for the travel time between customers i and j is given by the formula:
Pðτij ¼mÞ ¼ P ⌈Dijδ=100⌉¼m

� �
.

3.2. Dynamic programming algorithm

For each vehicle, we have a route including both mandatory and
optional customers. So far we assumed that travel and service times
were either minimal or maximal. In this last stage, we take into
account the stochasticity on travel and service times and we modify
the planning in real time to face stochasticity. We assume that
segments are sorted the following way: segment pþ1 has for origin
mandatory customer opþ1 ¼ dp (mandatory customer corresponding
to the destination of segment p). Each dynamic programming step
corresponds to the end of service at a customer's location. At each
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step, we have a list of unserviced optional customers who could
possibly be served before the next mandatory customer. In this
context, two choices are to be taken into account: either the vehicle
goes directly to the next mandatory customer or it visits the optional
customer in this list that maximizes the profit. Let Γj be the lateness
penalty and lj the end of the timewindow at mandatory customer j. In
this phase, we consider real travel and service times, noted respec-
tively τij and σi (with τ ij⩽τij⩽τ ij and σ i⩽σi⩽σ i). At step k, we finish
servicing customer vk at time tk. Let Vp be the sorted list of optional
customers associated with segment p and V

p
k the list of optional

customers of segment p located after vk (see Fig. 2).
Using these notations, we propose two different dynamic

programming methods. In the first algorithm, we consider only
one segment p whereas we consider the remaining route in the
second one.

� Method considering one segment (OS): In this method, when a
vehicle finishes servicing customer vk at time tk with V

p
k the

remaining customers to be visited before the next mandatory
customer, there are two possibilities. Either it goes directly to
the next mandatory customer dp, earning thus a profit
corresponding to the expected profit at dp. Or it visits the
optional customer v from V

p
k maximizing the expected profit

(profit for visiting customer v þ expected profit at v).
Moreover, in this method, the revenue associated with
mandatory customer dp is the opposite of the penalty cost
for arriving late at this customer. The revenue function for the
first method can thus be stated as follows:

f ðvk; tk;V
p
kÞ ¼max E½f ðdp; tkþτvkdp ;∅Þ�;

�
max

vAV
p
k
ðpv þE½f ðv; tkþτvkv þσv ;V

p
k⧹fvgÞ�Þ

�
with f ðdp; t;∅Þ ¼ �Γdpmaxðt� ldp ;0Þ� Method considering the whole route (WR): In this method, the
only change concerns the revenue associated with mandatory
customer dp at time t: in this revenue, we still have the
opposite of the penalty cost for arriving late at this customer
but we also have the expected profit associated with finishing
the service at customer dp at time tþσdp . The revenue
function for the second algorithm can thus be stated as
follows:

f ðvk; tk;V
p
kÞ ¼max E½f̂ ðdp; tkþτvkdp Þ�;

�
max

vAV
p
k
ðpv þE½f ðv; tkþτvkv þσv ;V

p
k⧹fvgÞ�Þ

�
with f̂ ðdp; tÞ ¼ �Γdpmaxðt� ldp ;0Þþ f ðdp; tþσdp ;V

pþ1Þ

Solving the Bellman's equations, it can be shown that the optimal
policies for both methods are threshold policies. A detailed proof is
provided in [3]. For each customer, we obtain different time

thresholds defining time intervals. With each interval is associated
a decision (for example, if t1⩽t⩽t2, go to customer c).

4. Computational results

4.1. Instances

To test the 2-stage method we just described, we chose to use
instances proposed by Tricoire [1] since they correspond to the multi-
period, multi-depot vehicle routing problem with time windows and
priority within customers (i.e. the multi-depot and deterministic var-
iant of our problem). In his instances, Tricoire [1] considers 3 vehicles
and a planning horizon of 5 days. He proposes to take into account
two types of customers: appointments with an associated time
window of 2 or 4 h and a one-day validity period (mandatory
customers), and postponable customers without time windows and
with a validity period of some days (optional customers). From these
instances, we extracted three sets of instances with 30, 40 and 50
customers. Moreover, as mentioned before, our method assumes
having a sufficient number of mandatory customers in our instances
(if this is not the case, it can be decided to make some optional
customers become mandatory). Thus we chose to keep a number of
mandatory customers between 5 and 9. Indeed, as mandatory
customers correspond to repair operations, which may require long
service times, it seems reasonable to consider serving no more than
3 mandatory customers per vehicle while ensuring a good service
quality. We thus choose to keep between 2 and 3 mandatory
customers per vehicle. Therefore, from each original instance, we
extracted 5 instances in each set, each instance considering 3 techni-
cians but having a different number of mandatory customers. From
the instances called I (with IAfC1_1;C1_2;C1_3;C1_4;C1_5g) from
Tricoire [1], we build instances called I_N with N being the number of
mandatory customers ðNAf5;6;7;8;9gÞ. For example, instance
C1_1_5 is extracted from instance C1_1 and contains 5 mandatory
customers. We also modified the time windows of Tricoire [1]
associated with mandatory customers in order to have only half-day
(4 h) time windows. Thus we attributed to the first half of mandatory
customers the morning and to the rest the afternoon.

4.2. Experimental context

The planning stage is solved exactly with Cplex 12.4 for instances
with up to 40 customers. As mentioned above, for the skeleton design,
we use the integer programming algorithm proposed in Cplex
whereas, for the insertion of optional customers, we use a branch
and cut algorithm by adding dynamically the subtour elimination cuts
(12). For larger instances containing 50 customers, we use a branch
and bound algorithm for the skeleton design, but we use the
Lagrangian heuristic to insert optional customers in the skeleton. In
both cases, at the end of the planning stage, we use repair and
improvement algorithms to get routes with a sufficient feasibility
probability. As for the execution stage, we use dynamic programming
tools to get the optimal policy and its thresholds. We thus obtain, for
each customer, a list of time thresholds and associated decisions
corresponding to the optimal policy. We then proceed to 100
simulations per instance, each simulation consisting in: first, generat-
ing stochastic travel and service times and then, each time the service
at a customer's location is completed, in comparing the current time
to the thresholds and in meeting the optimal decision determined by
the dynamic programming algorithm. Our experiments were con-
ducted on a machine with 4 CPU, 2.8 Ghz, 30 Go of RAM. For setting
our parameters, we based ourselves on the industrial context from
Tricoire's [1] work. For instance, as he proposed to consider an average
speed of 35 km/h in a suburban area, we chose a minimal speed of
20 km/h and a maximal speed of 50 km/h (to keep an average ofFig. 2. Step k of the dynamic programming algorithm.
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35 km/h). We also set the modal speed, speed that has the biggest
probability to occur, to 40 km/h. Regarding service time, we consid-
ered that optional customers service times varied between 15 and
30minwhereas mandatory customers service times were between 30
and 60min. For the insertion of optional customers, we assumed that
the service of any optional customer yields a revenue pi¼100. To set
the parameter α for weighting travel time in the second step objective
function, we made some experimentation. By choosing α¼ 1, we
ensure a hierarchical objective function, thus maximizing the profit
for visiting optional customers, and, for the same profit, minimizing
the total traveled distance. Finally, for the execution phase, we choose
Γdp ¼ 5000 for any p.

4.3. Planning stage results

Before presenting the planning stage results, we set values for two
parameters of the planning stage: Lmax (maximal size of segments on
which we generate reachability cuts instead of classical subtour
elimination constraints) and Smax(the maximal size of subset elimina-
tion inequalities to be generated).

To adjust the Lmax value, we made some experimentation on small
instances containing 30 customers and 3 vehicles. Results were
obtained by varying Lmax from 0 to the time horizon (Lmax ¼ 480)
and are summarized in Table 1. Unlike what we could expect, we
observe in this table that the best computation times are obtained for
Lmax ¼ 480 (time horizon), i.e. when we generate reachability cuts on
all segments. We thus set Lmax ¼ 480 in further experiments.

For choosing Smax, we also made some experimentation sum-
marized in Table 2. We can observe in this table that the best
computation times are obtained for Smax ¼ 6, i.e., when we gen-
erate subset elimination inequalities for subsets containing at
most 6 customers. We thus choose Smax ¼ 6.

In Table 3 we report the average computation times for our 2-
stage method in which the insertion of optional customers
consists in a single step (the one with pessimistic estimation).
We limited the computation times to 2 h (i.e., 7200). If the
problem could not be solved within this time, we replace the

computation time by a “–”. Many variants of the branch and cut
algorithm are considered. The column headings are the following
ones: # solved: number of instances solved optimally within 2 h;
B&C: Branch and cut; P: Preprocessing on variables; H: Heuristic
to generate an initial solution; RC: Reachability cuts; SEI: Subset
elimination inequalities. In these tables, we can observe a
significant decrease of the computation times thanks to the
different speedup techniques. We are able to solve instances

Table 1
Lmax adjustment (maximal size of segments for reachability cuts).

Number of mandatory customers Instances Lmax ¼ 0 Lmax ¼ 80 Lmax ¼ 160 Lmax ¼ 240 Lmax ¼ 320 Lmax ¼ 400 Lmax ¼ 480

C1_1_5 4 5 4 27 14 4 4
C1_2_5 10 11 11 23 23 24 10

5 C1_3_5 39 40 40 46 46 46 29
C1_4_5 1159 1208 1190 609 607 610 263
C1_5_5 55 55 35 57 57 57 41

C1_1_6 69 69 90 97 97 97 68
C1_2_6 139 136 100 64 64 64 82

6 C1_3_6 267 259 263 206 165 166 148
C1_4_6 120 120 120 82 83 83 76
C1_5_6 1024 1033 1041 247 319 322 320

C1_1_7 1219 1230 1427 565 559 561 559
C1_2_7 26 27 23 16 19 19 18

7 C1_3_7 75 75 75 63 47 47 47
C1_4_7 96 97 77 92 92 92 47
C1_5_7 54 54 54 36 37 37 36

C1_1_8 315 317 316 115 117 117 117
C1_2_8 25 25 29 25 62 18 18

8 C1_3_8 13 13 14 24 12 12 12
C1_4_8 76 78 75 80 80 80 76
C1_5_8 23 24 23 23 31 31 31

C1_1_9 101 98 98 35 35 35 35
C1_2_9 28 27 27 25 41 41 41

9 C1_3_9 28 28 28 41 41 24 24
C1_4_9 134 132 132 110 110 80 80
C1_5_9 7 8 8 11 12 6 6

Table 2
Smax adjustment (maximal size of subset elimination inequalities).

Number of
mandatory
customers

Instances Smax ¼ 3 Smax ¼ 4 Smax ¼ 5 Smax ¼ 6 Smax ¼ 7

C1_1_5 4 4 4 4 4
C1_2_5 8 8 8 12 17

5 C1_3_5 27 28 27 26 28
C1_4_5 163 131 177 139 153
C1_5_5 32 34 34 34 46

C1_1_6 61 40 44 40 44
C1_2_6 65 58 59 55 60

6 C1_3_6 124 76 68 80 75
C1_4_6 69 46 45 53 59
C1_5_6 211 105 102 102 102

C1_1_7 368 145 144 144 145
C1_2_7 16 16 16 15 15

7 C1_3_7 28 21 21 21 21
C1_4_7 65 64 51 53 49
C1_5_7 52 33 33 33 33

C1_1_8 66 56 56 56 56
C1_2_8 21 28 21 23 22

8 C1_3_8 17 13 12 13 12
C1_4_8 63 46 58 60 70
C1_5_8 22 23 25 17 16

C1_1_9 31 23 23 23 23
C1_2_9 21 26 25 26 27

9 C1_3_9 28 29 33 26 27
C1_4_9 69 46 42 40 40
C1_5_9 5 7 7 7 6
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with 30 customers in less than 3 min and most of the instances
with 40 customers in less than 2 h.

The results obtained comparing Lagrangian heuristic and branch
and cut methods are summarized in Table 4. We choose β¼ 0:9, ϵ¼ 1
and the subgradient method ends either when the gap falls under 2%
or after 50 iterations. The column headings are the following ones: #
solved: number of instances solved to optimality; Avg. gap to opt:
average gap between the best upper bound z and the optimal value
zn gap¼ z�zn=zn
� �

; Avg. gap to LB: average gap between z and the
best lower bound z gap¼ z�z=z

� �
; Avg. gap LB to opt: average gap

between z and zn gap¼ zn�z=zn
� �

. In Table 4, we observe that the
branch and cut algorithm computes the optimal solution on almost all
instances containing up to 40 customers. On larger instances (with 50
customers), most of the instances cannot be solved to optimality
within 2 h with the branch and cut algorithm. The gap between
solutions obtained with this algorithm on instances with 50 custo-
mers and the lower bound is located between 3% and 7.5% whereas
the Lagrangian heuristic provides better solutions (with a gap to lower
bound smaller than 3%) within less than 1 h. For the remaining part of
experiments, we thus choose the branch and cut method for instances
with up to 40 customers and the Lagrangian heuristic for instances
containing 50 customers.

In order to validate our method for inserting optional customers,
we performed some computational experiments on the Team Orien-
teering Problem (TOP) instances proposed by Chao et al. [25], and we
compared our results with those obtained with a branch and price
algorithm by Boussier et al. [26]. Results for both methods are shown
in Table 5. We can observe that the branch and price algorithm is

more efficient that our algorithm on most instances. In the TOP
instances, a single depot is considered. It generates symmetry we did
not have to deal with in our multi-depot variant. In our branch and
cut algorithm, in order to strengthen the model with respect to this
symmetry, we add the following constraints:

P
iAOx

p
i ⩽

P
iAOx

pþ1
i ;

8pAP. Our branch and cut algorithm solves 15 unsolved instances
with the branch and price algorithm proposed by Boussier et al. [26].
Results obtained on these open instances are shown in Table 6. We
can observe that, on small-size instances, we are able to solve all of
them, even if the branch and price algorithm may remain faster.

4.4. Execution stage results

For the execution phase results, we experiment the two strategies
mentioned before: considering one segment (OS) and considering the
whole route (WR). During simulations, in order to get unpredictable
service and travel times, we increase the maximal service time σ i for
mandatory customers (we will note this value smax) and we decrease
the minimal speed vmin. For instances with 30 and 40 customers, we
used results obtained with branch and cut method for the insertion of
optional customers (even if the result is not the optimal one), whereas
we used results obtained with Lagrangian heuristic for instances with
50 customers. The results obtained after simulation (with variant V1,
F¼0.8 for the repair and improve algorithms) are summarized in
Tables 7–9 giving the mean values, before and after simulations, for
the number of unserved customers, the total traveled distance and the
total lateness (Table 10). In Tables 7–9, we observe that, for a given
strategy (OS or WR), when we decrease the minimal speed and

Table 3
Planning stage: average computation times (in seconds).

# of customers # of mandatory # of instances B&C B&C, P B&C, P, H B&C, P, H, RC B&C, P, H, RC, SEI

# solved Avg. time # solved Avg. time # solved Avg. time # solved Avg. time # solved Avg. time

5 5 5 1813 5 237 5 253 5 68 5 43
6 5 4 2797 5 288 5 324 5 137 5 66

30 7 5 2 1118 5 408 5 294 5 138 5 53
8 5 4 1689 5 109 5 90 5 50 5 34
9 5 5 1613 5 69 5 60 5 37 5 24

5 5 0 – 0 – 0 – 1 3869 3 3277
6 5 0 – 3 1952 3 1720 4 1601 4 962

40 7 5 0 – 1 519 1 493 3 3736 4 1451
8 5 0 – 1 556 2 3428 2 1196 5 1880
9 5 0 – 3 2250 3 1988 3 1201 5 1053

Table 4
Planning stage: branch and cut versus Lagrangian relaxation.

# of customers # of mandatory # of instances Branch and cut Lagrangian relaxation

# solved Avg. gap to LB (%) Avg. time Avg. gap to opt. (%) Avg. gap to LB (%) Avg. gap LB to opt. (%) Avg. time

5 5 5 0.0 43 1.75 2.03 0.27 192
6 5 5 0.0 66 3.14 3.32 0.18 262

30 7 5 5 0.0 53 2.13 2.83 0.66 102
8 5 5 0.0 34 3.13 3.32 0.19 119
9 5 5 0.0 24 2.22 2.95 0.70 99

5 5 3 1.8 3277 1.98 2.64 0.46 1211
6 5 4 2.0 962 1.99 3.09 0.52 1106

40 7 5 4 0.8 1451 1.60 2.81 0.27 572
8 5 5 0.0 1880 2.09 2.42 0.32 532
9 5 5 0.0 1053 1.35 2.43 1.04 507

5 5 0 4.04 7200 – 1.44 – 1227
6 5 1 4.99 5960 0.33 1.63 0.00 3064

50 7 5 1 4.03 6820 0.88 2.57 0.07 2844
8 5 0 7.50 7200 – 2.40 – 2323
9 5 2 2.78 5365 0.54 2.13 0.46 1408
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increase the maximal service time at mandatory customers, the
quality of the obtained solution decreases. Indeed, we get more
unserved customers, more lateness and, as we serve less customers,
the traveled distance decreases. When comparing results obtained
before and after simulations, we observe that, with vmin ¼ 15 km=h,
wemodify the planned routes less thanwith vmin ¼ 10 km=h (with 3–
5 customers becoming unserved instead of 5–8). Moreover, in Tables
7–9, we observe that the strategy considering only one segment (OS)
is better than the strategy considering thewhole route (WR) regarding
the average number of unserved customers. On the other hand, we
should prefer the whole route strategy for the traveled distance and
the lateness. For the remaining part of our experiments, we use
vmin ¼ 15 km=h and smax ¼ 90 min.

During the insertion of optional customers (in the planning stage),
we proceed to the improvement of the solution (see Section 2.2.3).
Two strategies are considered: in variant V1, we proceed to a single

improvement, whereas in variant V2, we improve the solution as long
as we can. We made some experiments to compare both strategies
and also to choose the value of the feasibility threshold F (Table 11).

We observe in Tables 8–10 that the variant V2, consisting in
improving the solution as long as we can, produces better solutions
than the variant V1. In fact, the number of unserved customers is
lower for variant V2 (thus increasing sometimes the traveled distance)

Table 5
Branch and cut compared to branch and price on team orienteering problem
instances.

Instance
type

Instance # of
instances

Branch and cut Branch and price

#

solved
Avg
value

Avg
CPU

#

solved
Avg
value

Avg
CPU

p1_2 18 18 140.8 13.3 15 116.0 127.5
p1 p1_3 18 18 111.1 68.6 18 111.1 2.1

p1_4 18 18 84.2 105.4 18 84.2 0.1

p2_2 11 11 190.5 0.8 11 190.5 0.1
p2 p2_3 11 11 136.4 0.5 11 136.4 0.1

p2_4 11 11 94.5 0.4 11 94.5 0.0

p3_2 20 20 496.0 15.4 12 357.5 283.4
p3 p3_3 20 20 411.5 288.5 18 375.0 98.5

p3_4 20 19 324.7 601.3 20 336.5 0.9

p4_2 20 4 382.5 2159.5 5 429.6 996.6
p4 p4_3 20 4 141.5 337.5 9 422.7 643.6

p4_4 20 6 90.8 224.2 11 344.3 65.8

p5_2 26 9 331.1 1064.1 11 275.5 470.2
p5 p5_3 26 9 120.0 285.7 16 369.1 161.7

p5_4 26 10 100.0 82.0 23 476.2 103.7

p6_2 14 6 190.0 115.8 9 385.3 157.1
p6 p6_3 14 7 40.3 12.9 13 404.8 683.0

p6_4 14 10 36.6 76.6 14 255.0 0.6

p7_2 20 7 217.3 1143.0 6 177.0 9.3
p7 p7_3 20 8 179.1 1012.4 9 213.3 379.6

p7_4 20 8 118.0 569.4 12 240.2 71.0

Table 6
Open team orienteering problem instances solved to optimality.

Instance type # of customers Instance Value CPU (s)

p1_2_p 250 13
p1 32 p1_2_q 265 16

p1_2_r 280 49

p3_2_l 590 14
p3_2_m 620 20
p3_2_n 660 23
p3_2_o 690 22

p3 33 p3_2_p 720 17
p3_2_q 760 28
p3_2_r 790 46
p3_2_s 800 21

p3_3_s 720 778
p3_3_t 760 2394

p5 66 p5_2_z 1680 2943
p7 102 p7_2_g 459 5870

Table 7
Average number of unserved customers on instances with 30 customers.

Number of
mandatory
customers

A
priori

vmin¼15 km/h vmin¼10 km/h

smax¼75 min smax¼90 min smax¼75 min smax¼90 min

WR OS WR OS WR OS WR OS

5 1.6 5.48 3.35 5.82 3.72 7.37 5.50 7.70 5.88
6 3.0 8.04 7.64 8.48 8.09 9.70 9.30 10.11 9.72
7 2.8 5.86 5.21 6.47 5.84 7.46 6.90 8.10 7.57
8 2.8 5.38 5.46 6.24 6.32 7.43 7.53 8.19 8.29
9 2.8 5.72 5.73 6.65 6.65 7.73 7.72 8.64 8.64

Table 8
Average traveled distance on instances with 30 customers.

Number of
mandatory
customers

A
priori

vmin¼15 km/h vmin¼10 km/h

smax¼75 min smax¼90 min smax¼75 min smax¼90 min

WR OS WR OS WR OS WR OS

5 219 200 211 198 209 193 203 191 201
6 226 214 216 211 214 205 208 203 205
7 221 204 207 200 203 194 196 189 192
8 232 217 218 212 213 206 207 202 202
9 224 207 207 202 202 197 198 193 193

Table 9
Average lateness on instances with 30 customers.

Number of
mandatory
customers

vmin¼15 km/h vmin¼10 km/h

smax¼75 min smax¼90 min smax¼75 min smax¼90 min

WR OS WR OS WR OS WR OS

5 1.45 1.50 2.03 2.06 14.81 16.82 16.05 18.12
6 40.09 40.10 43.07 43.07 87.20 87.23 95.07 95.17
7 1.82 1.84 2.68 2.76 20.97 21.57 24.20 24.88
8 2.91 2.05 4.76 3.48 28.55 28.21 34.50 32.97
9 2.38 2.43 4.82 4.79 25.80 27.06 34.17 35.10

Table 10
Impact of the improvement variant on the average number of unserved customers
for instances with 30 customers.

Number of mandatory
customers

Variant V1 Variant V2

F¼0.8 F¼0.9 F¼0.8 F¼0.9

WR OS WR OS WR OS WR OS

5 5.82 3.72 5.98 3.93 4.03 3.53 5.33 3.36
6 8.48 8.09 5.53 5.54 8.44 8.00 5.59 5.55
7 6.47 5.84 9.24 8.61 6.41 5.65 5.52 5.51
8 6.24 6.32 7.57 6.17 6.86 6.23 7.55 6.13
9 6.65 6.65 7.08 6.42 6.59 6.59 7.03 6.36
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whereas the lateness remains almost the same. Regarding the
feasibility threshold, we observe that increasing F induces a decrease
of the number of unserved customers and of the lateness (for variant
V2) while the traveled distance does not increase too much (Table 12).

The results obtained on instances with 40 customers are summar-
ized in Tables 13–15. In these tables, we observe the same behaviour
between variant V1 and V2 (smaller number of unserved customers
and increased traveled distances for V2, and lateness remaining
almost the same). On the other hand, when F increases in variant
V2, the number of unserved customer increases with lateness whereas
traveled distance decreases. However, variations remain small in
comparison to those on 30 customers. We thus choose variant V2
with F¼0.9.

The results obtained for the variant V2, with F¼0.9, on instances
with 50 customers are summarized in Table 16. Like previously, we
can observe in this table that the one segment strategy turns out to be
more effective regarding the number of unserved customers whereas
the average lateness and traveled distance remain almost the same,
regardless of the strategy used.

5. Conclusions

In this paper, we presented a 2-stage method for solving a field
service routing problem with time windows, multiple depots, priority
within customers and stochastic travel and service times. The method
consists in a planning stage followed by an execution stage. In the
planning stage, we first design a skeleton of mandatory customers,
and then we insert optional customers in this skeleton. In the
execution stage, we use a dynamic programming algorithm to face
stochastic travel and service times. We also proposed some speedup
techniques to improve computation times. We experimented our
method for inserting optional customers on TOP instances and solved
15 open TOP instances from the literature. We also tested our entire
method on instances based on realistic data. In the experimental
results, we could see that these techniques proved very effective on

instances containing up to 50 customers and 3 vehicles. In the
computational results, we could observe that the best solutions were
obtained with variant V2 (improve the solution as long as we can
during the insertion of optional customers) and setting the feasibility
threshold F¼0.9. We also noticed that the dynamic programming
strategy considering only one segment turns out to be more effective
regarding the number of unserved customers whereas the other
strategy (considering the whole route) prevents from lateness and
distance overcost. However, even if our method gave good results, it
has a drawback: we have to consider a sufficient number of man-
datory customers (otherwise, the skeleton design becomes useless). If

Table 11
Impact of the improvement variant on the average traveled distance for instances
with 30 customers.

Number of mandatory customers Variant V1 Variant V2

F¼0.8 F¼0.9 F¼0.8 F¼0.9

WR OS WR OS WR OS WR OS

5 198 209 199 210 206 210 199 211
6 211 214 212 212 212 214 212 212
7 200 203 201 204 204 207 209 209
8 212 213 195 204 209 211 195 204
9 202 202 197 202 202 202 197 201

Table 12
Impact of the improvement variant on the average lateness for instances with 30
customers.

Number of mandatory
customers

Variant V1 Variant V2

F¼0.8 F¼0.9 F¼0.8 F¼0.9

WR OS WR OS WR OS WR OS

5 2.03 2.06 2.01 2.05 2.03 2.06 1.99 2.03
6 43.07 43.07 3.09 3.10 43.07 43.12 3.09 3.15
7 2.68 2.76 2.68 2.75 2.71 2.79 2.70 2.77
8 4.76 3.48 3.14 3.24 3.51 3.58 3.18 3.24
9 4.82 4.79 4.65 4.65 4.92 4.89 4.62 4.63

Table 13
Impact of the improvement variant on the average number of unserved customers
for instances with 40 customers.

Number of mandatory
customers

Variant V1 Variant V2

F¼0.8 F¼0.9 F¼0.8 F¼0.9

WR OS WR OS WR OS WR OS

5 10.91 10.13 10.87 10.09 9.74 9.73 9.66 9.66
6 13.49 12.73 12.96 12.96 12.54 12.53 12.69 12.68
7 13.84 13.11 13.28 13.28 13.00 13.02 13.28 13.28
8 13.43 13.42 13.32 13.32 13.40 13.38 13.21 13.22
9 14.93 14.41 14.24 14.33 13.94 14.02 14.51 14.00

Table 14
Impact of the improvement variant on the average traveled distance for instances
with 40 customers.

Number of mandatory customers Variant V1 Variant V2

F¼0.8 F¼0.9 F¼0.8 F¼0.9

WR OS WR OS WR OS WR OS

5 189 191 189 191 196 196 193 194
6 200 202 202 202 205 204 204 204
7 191 194 198 198 195 196 198 198
8 197 198 198 198 198 198 198 198
9 188 189 193 191 192 192 189 191

Table 15
Impact of the improvement variant on the average lateness for instances with 40
customers.

Number of mandatory
customers

Variant V1 Variant V2

F¼0.8 F¼0.9 F¼0.8 F¼0.9

WR OS WR OS WR OS WR OS

5 1.82 1.85 1.79 1.80 1.80 1.85 1.77 1.81
6 2.59 2.62 2.65 2.65 2.61 2.64 2.65 2.65
7 2.52 2.54 2.41 2.45 2.52 2.54 2.41 2.45
8 3.63 3.67 3.62 3.61 3.59 3.69 3.60 3.61
9 6.69 5.61 6.71 5.60 6.71 5.57 6.75 5.59

Table 16
Average values after simulations for instances with 50 customers.

Number of mandatory Avg # unserved Avg traveled distance Avg lateness

WR OS WR OS WR OS

5 17.84 17.87 184 185 1.96 1.97
6 21.00 20.36 187 187 3.62 3.54
7 21.84 21.20 180 180 3.56 3.51
8 22.14 22.16 188 188 4.27 4.39
9 22.73 22.75 179 179 5.81 6.00
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this is not the case, it would be possible to increase the number of
mandatory customers by making some optional customers become
mandatory. Nevertheless, it would be interesting, in the future, to
group the two phases of the planning stage of this method into a
single one. It would also be interesting to extend the method in order
to deal with the multi-period problem, to see the impact of the
dynamic programming strategy (whole route or one segment) on a
multi-period horizon.
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