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a b s t r a c t

This paper investigates two problems related to the determination of critical edges for the minimum
cost assignment problem. Given a complete bipartite balanced graph with n vertices on each part and
with costs on its edges, k Most Vital Edges Assignment consists of determining a set of k edges whose
removal results in the largest increase in the cost of a minimum cost assignment. A dual problem, Min
Edge Blocker Assignment, consists of removing a subset of edges of minimum cardinality such that the
cost of aminimum cost assignment in the remaining graph is larger than or equal to a specified threshold.
We show that k Most Vital Edges Assignment is NP-hard to approximate within a factor c < 2 and
Min Edge Blocker Assignment is NP-hard to approximate within a factor 1.36. We also provide an exact
algorithm for k Most Vital Edges Assignment that runs in O(nk+2). This algorithm can also be used to
solve exactly Min Edge Blocker Assignment.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In many applications involving the use of communication or
transportation networks, we often need to identify critical infras-
tructures. By critical infrastructure we mean a set of lines/nodes
whose damage causes the largest inconvenience within the net-
work. Modeling the network by a weighted graph, where weights
represent costs, identifying a vulnerable infrastructure amounts to
finding a subset of edges/nodes whose removal from the graph
causes the largest cost increase. In the literature this problem is
referred to as the k most vital edges/nodes problem. A dual problem
consists of determining a set of edges/nodes of minimum cardinal-
ity whose removal causes the cost within the residual network to
become larger than a given threshold. In the literature this prob-
lem is referred to as themin edge/node blocker problem. In this pa-
per the k most vital edges and min edge blocker versions for the
assignment problem are investigated.

The k most vital edges/nodes and min edge/node blocker ver-
sions have been studied for various problems including short-
est path, spanning tree, maximum flow, independent set, vertex
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cover, p-median, p-center and maximummatching. The kmost vi-
tal arcs problemwith respect to shortest path was proved NP-hard
in [2]. Later, kmost vital arcs/nodes shortest path andmin arc/node
blocker shortest path were proved to be not 2-approximable and
not 1.36-approximable, respectively, if P ≠ NP [8]. No positive
result is known about the approximation of these problems.
For minimum spanning tree, k most vital edges is NP-hard and
O(log k)-approximable [6] while several efficient exact algorithms
have been proposed [10,4]. It is proved in [15] that k most vital
arcs maximum flow is NP-hard. It is shown in [3] that k most vital
nodes and min node blocker with respect to independent set and
vertex cover for bipartite graphs remain polynomial time solvable
on unweighted graphs and become NP-hard for weighted graphs.
It is shown in [5] that kmost vital edges p-median and kmost vital
edges p-center are NP-hard to approximate within a factor 7

5 − ϵ

and 4
3 − ϵ respectively, for any ϵ > 0, while k most vital nodes

p-median and k most vital nodes p-center are NP-hard to approx-
imate within a factor 3

2 − ϵ, for any ϵ > 0. The blocker versions
of these four problems are NP-hard to approximate within a factor
1.36 [5]. For maximum matching, k most vital nodes was shown
polynomial time solvable for unweighted bipartite graphs and
NP-hard for bipartite graphs when edge weights are bounded by
a constant [16]. Moreover, min edge blocker maximum matching
is NP-hard even for unweighted bipartite graphs [17], but polyno-
mial for grids and trees [14].
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After introducing some preliminaries in Section 2, we prove
in Section 3 that k Most Vital Edges Assignment and Min Edge
Blocker Assignment are NP-hard to approximate within a con-
stant factor. An exact algorithm is presented in Section 4 for both
problems. Conclusions are provided in Section 5.

2. Basic concepts and preliminary results

Given a directed or an undirected graph G = (V , E), we denote
by G − E ′ the graph obtained from G by removing a subset E ′

⊆ E
of arcs or edges. Moreover, for any V ′

⊆ V , Γ (V ′) denotes the set
of vertices which are adjacent to V ′.

Given a complete bipartite graph G = (V , E) with a bipartition
V = V1 ∪ V2 where |V1| = |V2| = n and costs cij associated
with each edge (i, j) ∈ E, the assignment problem consists of
determining a perfect matching of minimum total cost. Let a∗

denote a minimum cost assignment in G.
We consider in this paper the k most vital edges and min edge

blocker versions of the assignment problem. These problems are
defined respectively as follows.
kMost Vital Edges Assignment
Input: A complete bipartite graph G = (V , E) with bipartition
V = V1 ∪ V2 and |V1| = |V2| = n, where each edge (i, j) ∈ E
has a cost cij, and an integer k.
Output: A subset S∗

⊆ E, with |S∗
| = k, such that the minimum

cost of an assignment in G − S∗ is maximum.
Min Edge Blocker Assignment
Input: A complete bipartite graph G = (V , E) with bipartition
V = V1 ∪ V2 and |V1| = |V2| = n, where each edge (i, j) ∈ E
has a cost cij, and an integer U .
Output: A subset S∗

⊆ E of minimum cardinality such that the
minimum cost of an assignment in G − S∗ is at least U .

Given an optimization problem and an instance I of this prob-
lem, we denote by |I| the size of I , by opt(I) the optimum value of
I and by val(I, S) the value of a feasible solution S of I . The perfor-
mance ratio of S (or approximation factor) is r(I, S) = max


val(I,S)
opt(I) ,

opt(I)
val(I,S)


. The error of S, ε(I, S), is defined by ε(I, S) = r(I, S) − 1.

For a function f , an algorithm is an f (n)-approximation, if for
every instance I of the problem, it returns a solution S such that
r(I, S) ≤ f (|I|).

The notion of a gap-reduction was introduced in [1] by Arora
and Lund. In this paper we use a gap-reduction between two
minimization problems. A minimization problem Π is called gap-
reducible to aminimization problemΠ ′ with parameters (c, ρ) and
(c ′, ρ ′), if there exists a polynomial time computable function f
such that f maps an instance I of Π to an instance I ′ of Π ′, while
satisfying the following properties.

• If opt(I) ≤ c then opt(I ′) ≤ c ′.
• If opt(I) > cρ then opt(I ′) > c ′ρ ′.

Parameters c and ρ are functions of |I| and parameters c ′ and ρ ′

are functions of |I ′|. Also, we have ρ, ρ ′
≥ 1.

The interest of a gap-reduction is that if Π is not approximable
within a factor ρ then Π ′ is not approximable within a factor ρ ′.

The notion of an E-reduction (error-preserving reduction) was
introduced byKhanna et al. [9]. A problemΠ is called E-reducible to
a problemΠ ′, if there exist polynomial time computable functions
f , g and a constant β such that

• f maps an instance I ofΠ to an instance I ′ ofΠ ′ such that opt(I)
and opt(I ′) are related by a polynomial factor, i.e. there exists a
polynomial p(n) such that opt(I ′) ≤ p(|I|)opt(I),

• g maps solutions S ′ of I ′ to solutions S of I such that ε(I, S) ≤

βε(I ′, S ′).
An important property of an E-reduction is that it can be
applied uniformly to all levels of approximability; that is, if Π is
E-reducible to Π ′ and Π ′ belongs to C then Π belongs to C as
well, where C is a class of optimization problems with any kind
of approximation guarantee (see [9] for more details).

To conclude this section, we give a preliminary result concern-
ing our problems.

Lemma 1. Given a complete bipartite graph G = (V1 ∪ V2, E) with
|V1| = |V2| = n, for any subset S ⊂ E with |S| ≤ n − 1, G − S
contains an assignment.

Proof. We show that the sufficient condition of Hall’s theorem is
satisfied, i.e. that |Γ (A)| ≥ |A| for all A ⊂ V1, which means that
we can match V1 in V2, thus obtaining an assignment. In order to
reduce |Γ (A)| by one unit, S must contain |A| edges incident to the
same node of V2. Thus, after removing edges of S, A loses at most
⌊

|S|
|A|

⌋ neighbors in V2. Then, we have |Γ (A)| ≥ n− ⌊
|S|
|A|

⌋. If |A| = n,
we have |Γ (A)| ≥ n and then |Γ (A)| ≥ |A|. If |A| ≤ n − 1, we
have |Γ (A)| ≥ n −

|S|
|A|

≥ n −
n−1
|A|

=
(|A|−1) n+1

|A|
≥

(|A|−1)(|A|+1)+1
|A|

= |A|. �

Observe that there exists a subset S of edges, with |S| ≥ n, such
that no assignment exists in G − S. Indeed, if we select in Sn edges
incident to the same node v, then in G−S node v becomes isolated
and cannot be assigned.

Therefore, we suppose in the following that k ≤ n − 1 for k
Most Vital Edges Assignment and that |S∗

| ≤ n for any optimal
solution S∗ forMin Edge Blocker Assignment.

Observe finally that in order to have a chance to increase the
value of a minimum cost assignment in G − S∗, S∗ must contain at
least one edge of a∗ so as to eliminate a∗ as an optimal solution.

3. Complexity

We study in this section the complexity of k Most Vital Edges
Assignment and Min Edge Blocker Assignment. We show that
each of these two problems is not approximable within a ratio that
is better than a certain constant, unless P = NP .

Hoffman and Markowitz [7] describe a polynomial reduction
from the shortest path problem to the assignment problem. We
extend this reduction in order to prove our inapproximability
results. For this, we propose reductions from k Most Vital Arcs
Shortest Path and Min Arc Blocker Shortest Path defined as
follows:
k Most Vital Arcs Shortest Path
Input: A directed graph G = (V , A), two vertices s, t ∈ V , the
length ℓij for each arc (i, j) ∈ A, and an integer k.
Output: A subset A′

⊆ A, with |A′
| = k, such that the minimum

length of a path from s to t in G − A′ is maximum.
For an instance of k Most Vital Arcs Shortest Path formed by a
graph G, we consider that k ≤ λs,t(G) − 1, where λs,t(G) is the
cardinality of an s− t minimum cut in G. Otherwise, taking all arcs
of an s − t minimum cut among the k arcs to be removed would
lead to a solution with infinite value.
Min Arc Blocker Shortest Path
Input: A directed graph G = (V , A), two vertices s, t ∈ V , the
length ℓij for each arc (i, j) ∈ A, and an integer U .
Output: A subset A′

⊆ A of minimum cardinality such that the
minimum length of a path from s to t in G − A′ is at least U .
An optimal solution A′ of an instance ofMin Arc Blocker Shortest
Path formed by a graph G is such that |A′

| ≤ λs,t(G).
We define in the following the construction used in our reduc-

tions.
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Fig. 1. Construction ofG from G.
Consider an instance of the shortest path problem: a directed
graph G = (V , A) with |V | = n including two vertices s, t ∈ V
corresponding to the origin and destination nodes respectively,
and the length ℓij for each arc (i, j) ∈ A. We construct an instanceG = (W , E) of the assignment problem with bipartition W =

V ′
∪ V ′′ (see Fig. 1). For each vertex i ∈ V \ {s, t} we associate two

vertices i′ ∈ V ′ and i′′ ∈ V ′′, and we add vertex s′ to V ′ and vertex
t ′′ to V ′′.We create, for each arc (i, j) ∈ A, an edge (i′, j′′) in E of cost
ℓij and, for each vertex i ∈ V \{s, t}, an edge (i′, i′′) in E of cost 0. To
complete the construction ofG, we consider a complete bipartite
graph K i

= (Xi, Yi) for each i ∈ V \ {s, t} with Xi = X ′

i ∪ X ′′

i , where
X ′

i = {x′

i1, . . . , x
′

i(n−1)} and X ′′

i = {x′′

i1, . . . , x
′′

i(n−1)}, and a cost 0
associated to each edge of Yi. We add the edges (i′, x′′

iℓ) and (x′

iℓ, i
′′)

of cost 0 for each i ∈ V \{s, t} and ℓ = 1, . . . , n−1. Hence, we have
|V ′

| = |V ′′
| = 1 + n(n − 2). Finally, in order to obtain a complete

bipartite graphG, we add dummy edges of costM =


(i,j)∈A ℓij+1.
We denote by P the set of all simple paths from s to t in G, by

A the set of all feasible assignments inG and by A′
⊆ A the set of

all feasible assignments inG that do not include any dummy edge
of costM .

The following constructions describe a transformation from a
path in P to an assignment in A′ and its converse transformation.

1. For each simple path p inP weassociate a unique assignment ap
inA′ in the followingway:we include in ap, the edge (i′, j′′) ∈ E
for each arc (i, j) ∈ p, the edges (i′, i′′) ∈ E if vertex i does not
belong to path p and the edges (x′

iℓ, x
′′

iℓ) for ℓ = 1, . . . , n − 1,
i ∈ V \ {s, t}. Clearly, the cost of ap is the same as the length
of p.

2. Each assignment a in A′ contains a subset of edges (s′, i′′1),
(i′1, i

′′

2), . . . , (i
′

b−1, i
′′

b), (i
′

b, t
′′) corresponding to a unique sim-

ple path pa = (s, i1, i2, . . . , ib, t) in P . Indeed, each a in A′
necessarily contains an edge of type (s′, i′′). Moreover, if edges
(s′, i′′1), (i

′

1, i
′′

2), . . . , (i
′

c−1, i
′′
c ) belong to a then there exists k ∈

V \ {i1, i2, . . . , ic} such that (i′c, k
′′) belongs to a. Clearly k ∈

{i1, i2, . . . , ic} is impossible, but also (i′c, x
′′

icℓ) since otherwise
a must contain a dummy edge incident to one vertex of X ′

ic .
Assignment a can also contain a set of edges of type (i′, i′′) or
(i′, x′′

iℓ) or (x′

iℓ, i
′′) or (x′

iℓ, x
′′

ij) and possibly a set of edges corre-
sponding to arcs forming circuits in G.
In general, the cost of a is equal to the length of pa plus the
lengths of the circuits corresponding to the cycles described by
a. However, when a is a minimum cost assignment, the cost of
a coincides with the length of pa, since the cycles described by
a can only have a cost 0 (otherwise all vertices i of these cycles
could be replaced by edges (i′, i′′) with cost 0).

Given a subset S of arcs from G, the subset of edges associated
to S inG, denoted byIm(S), is defined byIm(S) = {(i′, j′′) ∈ E :

(i, j) ∈ S}. We have |Im(S)| = |S|.
Given a subsetS of edges fromG, the subset of arcs associated

toS in G, denoted by Im(S), is defined by Im(S) = {(i, j) ∈ A :

(i′, j′′) ∈S, i ≠ j, ci′j′′ ≠ M}. We have |Im(S)| ≤ |S|.
Observe that for any subset S of arcs we have Im(Im(S)) = S.
In the following, we present two preliminary results. The first

one characterizes a minimum cost assignment generated by delet-
ing a subset of edges and the second one allows us to establish the
non-approximability results for k Most Vital Edges Assignment
and Min Edge Blocker Assignment.

Lemma 2. For any subsetS ⊂ E of cardinality k,with k ≤ λs,t(G)−1,
any minimum cost assignment inG −S does not contain any dummy
edge of cost M.
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Proof. By removing the subset of edges S of E of cardinality k,
the subset of arcs Im(S) contains at most k arcs of G. Since k ≤

λs,t(G)−1 then there exists at least one path from s to t inG−Im(S).
Denote by p a shortest path from s to t in G− Im(S). If no edge of ap
belongs toS, then the result is established since ap is an assignment
inG−S of cost less thanM . Otherwise, consider the nonempty set
of edges ap ∩ S. These edges belong either to complete bipartite
subgraphs K ′

i induced by X ′

i ∪ X ′′

i when i ∈ V (p) \ {s, t} or to
complete bipartite subgraphs K ′′

i induced by X ′

i ∪X ′′

i ∪{i′, i′′}when
i ∈ V \ V (p). All these subgraphs contain only edges of cost 0.
Moreover, subgraphs K ′

i contain n − 1 vertices on each part while
subgraphs K ′′

i contain n vertices on each part. Since |S| ≤ n − 2,
we can apply Lemma 1 to all relevant subgraphs K ′

i and K ′′

i and
derive an assignment a′ with the same cost as ap (and thus without
dummy edges) butwithout edges belonging toS. Since a′ has a cost
less thanM , it is also the case for any minimum cost assignment inG −S which thus does not contain dummy edges. �

Lemma 3. (i) Let S be a subset of k arcs of G, with k ≤ λs,t(G) − 1,
and p be a shortest path from s to t in G− S. There exists a subset
S̄ = Im(S) of k edges of G such that the assignment ap is a
minimum cost assignment inG− S̄ and the cost of ap is the same
as the length of p.

(ii) Let S be a subset of k edges of G, with k ≤ λs,t(G) − 1, and
a be a minimum cost assignment inG −S. There exists a subset
S ′

⊇ Im(S) of k arcs such that the path pa is a shortest path from
s to t in G − S ′ and its length is the same as the cost of a.

Proof. (i) The existence of an assignment a of cost lower than that
of ap inG−Im(S)would imply that there exists inG− Im(Im(S)) =

G − S a path pa of length strictly less than that of p. Hence, ap is a
minimum cost assignment inG − S̄ and its cost is the same as the
length of p.

(ii) According to Lemma 2, a contains no dummy edge of cost
M . Let S ′

= Im(S) ∪ S ′′, where S ′′ is any subset of k − |Im(S)| arcs
not belonging to pa. The length of pa is the same as the cost of a. We
show in the following that pa is a shortest path from s to t in G−S ′.

Suppose that there exists a path p from s to t in G− S ′ of length
strictly less than that of pa. Let ap be the assignment corresponding
to p in G −Im(S ′). By construction, ap contains no dummy edge.
If ap contains no edge ofS then ap is an assignment in G − S of
cost strictly less than that of a, which contradicts the optimality
of a in G − S. Otherwise, ap can contain only edges ofS of type
(i′, i′′), i = 1, . . . , n − 2, or (x′

iℓ, x
′′

iℓ), ℓ = 1, . . . , n − 1. Then, we
can exhibit an assignment a′ from ap inG −Im(S ′) which contains
no edge ofS and with the same cost as that of ap, as shown in the
proof of Lemma 2. Hence, a′ is an assignment inG−S of cost strictly
less than that of a, contradicting again the optimality of a inG−S.
Therefore, pa is a shortest path from s to t in G − S ′. �

We are now in a position to give our two main inapproximabil-
ity results.

Theorem 1. kMost Vital Edges Assignment is NP-hard to approx-
imate within a factor 2 − ϵ, for any ϵ > 0.

Proof. We construct an E-reduction from k Most Vital Arcs
Shortest Path which is shown to be NP-hard to approximate
within a factor 2−ϵ, for any ϵ > 0 [8]. This establishes that kMost
Vital Edges Assignment is also NP-hard to approximate within a
factor 2 − ϵ, for any ϵ > 0.

Let I be an instance of k Most Vital Arcs Shortest Path con-
sisting of a graph G = (V , A). We use the previous construction
to define from I an instanceI of k Most Vital Edges Assignment
formed by the graphG = (W , E).
Consider an optimal solution S ⊂ A for I , with |S| = k, and de-
note by p a path of minimum length from s to t in G − S. When
removing fromG the subset of edgesIm(S), the assignment ap is,
according to Lemma 3(i), aminimum cost assignment inG−Im(S).
Thus, opt(I) ≥ opt(I).

Consider now a solutionS ⊂ E ofI , with |S| = k, and denote by
a a minimum cost assignment inG−S. Consider the subset of arcs
Im(S) and let pa be the path from s to t inG−Im(S) corresponding to
a. Let S be a subset of k arcs consisting of Im(S) possibly completed
by any subset of k − |Im(S)| arcs not belonging to pa. According to
Lemma 3(ii), pa is a path of minimum length in G− S whose length
is equal to the cost of a. Hence, val(I, S) = val(I,S). In particular,
ifS is an optimal solution ofI , then opt(I) = val(I, S) ≤ opt(I).

Therefore, we have opt(I) = opt(I) and the error of the two solu-
tions S andS are equal ε(I, S) = ε(I,S). �

Weprove now an inapproximability result forMinArc Blocker
Assignment. Unlike for k Most Vital Edges Assignment, using
our construction, it seems difficult to build an E-reduction which
imposes conditions on all feasible solutions (in particular for those
inG of size more than λs,t(G) that do not give necessarily a feasible
solution in G). Thus, we resort to a gap-reduction which imposes
conditions on optimal solutions only.

Theorem 2. Min Edge Blocker Assignment is NP-hard to approx-
imate within a factor 1.36.

Proof. We construct a gap-reduction from Min Arc Blocker
Shortest Path which is known to be NP-hard to approximate
within a factor 1.36 even for graphs G such that the optimum value
is less than λs,t(G) [8].

Let I be an instance of Min Arc Blocker Shortest Path con-
sisting of a graph G = (V , A) and a positive integer U . We use the
previous construction to define from I an instanceI of Min Edge
Blocker Assignment formed by the graphG = (W , E) and U .

Consider an optimal solution S ⊂ A for I , and denote by p a path
of minimum length in G − S from s to t . Since |S| ≤ λs,t(G) − 1,
according to Lemma 3(i), the assignment ap is a minimum cost as-
signment inG −Im(S) of cost equal to the length of p, which is at
least U . Thus, we have opt(I) ≤ opt(I) ≤ λs,t(G) − 1.

LetS ⊂ E be an optimal solution ofI , and denote by a an assign-
ment of minimum cost inG −S. Assignment a is such that its cost
is at leastU . According to Lemma 3(ii), there exists a subset S ′ of |S|
arcs such that the path pa is a shortest path in G− S ′ and its length
is the same as the cost of a. The length of pa is then greater than or
equal to U . Hence, opt(I) ≤ |S ′

| = opt(I). Thus opt(I) = opt(I),
showing that opt(I) ≤ c implies opt(I) ≤ c and opt(I) > cρ im-
plies opt(I) > cρ which establishes that Min Edge Blocker As-
signment is also NP-hard to approximate within a factor 1.36. �

4. Exact resolution

We propose in this section an exact algorithm for solving k
MostVital EdgesAssignment andMinEdgeBlockerAssignment.
Consider G = (V1 ∪ V2, E) a complete bipartite graph with |V1| =

|V2| = n and a cost is associated to each edge of E. Denote by a∗ a
minimum cost assignment in G.

An approach to solve 1Most Vital Edge Assignment is to delete
one by one each of the n edges belonging to a∗, determine the
minimum cost assignments on the n resulting partial graphs, and
retain the deleted edge which leads to a largest minimum cost
assignment. This approach is very similar to the scheme developed
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byMurty [12] for ranking the assignments in increasing cost order,
except that in Murty’s approach a minimum cost assignment is
selected among the n candidate assignments. In this context,Miller
et al. [11] and Pedersen et al. [13] showed that the n assignments
can be found efficiently using reoptimization. Indeed, given an
edge e = (y, z) ∈ a∗, a minimum cost assignment ae in G − {e}
can be found using Dijkstra’s algorithm in O(n2) by solving a single
shortest path problem between y and z where arcs are valued by
(nonnegative) reduced costs. Therefore, the time complexity for
finding all assignments ae for all edges e ∈ a∗ is O(n3). Thus, we
obtain the following result.

Theorem 3. 1Most Vital Edge Assignment can be solved in O(n3)
for complete bipartite graphs with n vertices in each part.

In the following, we are interested in the exact resolution of k
Most Vital Edges Assignment. Taking advantage of the fact that
optimal solutions must contain at least one edge of a∗, a naive
approach would be to remove each edge e ∈ a∗, consider all
possible combinations of k − 1 edges to delete from the n2

− 1
remaining edges and determine aminimum cost assignment in the
resulting partial graphs. An optimal solution is a subset of removed
edgeswhich leads to the largestminimum cost assignment. Hence,
a naive approach for solving k Most Vital Edges Assignment
would require n


n2−1
k−1


O(n3) = O(n2k+2) time. A more efficient

algorithm can be obtained through the following result.

Theorem 4. k Most Vital Edges Assignment can be solved in
O(nk+2) time for complete bipartite graphs with n nodes in each part
and for general k.

Proof. Consider a minimum cost assignment a∗ in G. Obviously, a
set S∗ of k most vital edges must contain at least one edge e in a∗.
Consider now a minimum cost assignment b∗ in G − {e}. If k ≥ 2,
then S∗ must contain at least one edge of b∗, and so on. Hence, by
simply enumerating all possibilities to choose an edge in a∗, then
one in b∗ and so on, one can find an optimal solution by looking at
O(nk) possible subsets of removed edges. At each step, we compute
a minimum cost assignment in time O(n2), as for example when
determining b∗ in G− {e} starting from a∗. Therefore, we compute
in this way n+n2

+· · ·+nk minimum cost assignments, resulting
in a time O(nk+2). �

This algorithm can be implemented by developing a search tree
with k + 1 levels. The root node at level 0 corresponds to the op-
timal assignment a∗ and each node at level i (i = 1, . . . , k) repre-
sents a tentative selection of i edges which could be part of the k
most vital edges. A refined implementation, avoiding the repetition
of tentative selections but still in O(nk+2), can be obtained using a
branching scheme similar to the one used by Murty [12]. More-
over, observe that solving k Most Vital Edges Assignment in this
way (developing a complete or reduced search tree) allows the de-
termination of an optimal solution for i Most Vital Edges Assign-
ment by simply scanning all nodes of level i and retaining a node
corresponding to the largest minimum cost assignment (i = 1,
. . . , k).

We show now how to solve Min Edge Blocker Assignment. If
the minimum cost of an assignment is at least U then the optimal
cardinality is 0. Otherwise, we search for the smallest level i, 1 ≤

i ≤ n − 1 such that the optimum value of i Most Vital Edges
Assignment is at leastU . If such an idoes not exists, then any subset
of n edges incident to a vertex is optimal. Thus, considering that we
need to develop our search tree until level n − 1 at most, we can
solve Min Edge Blocker Assignment in O(nn+1).
5. Conclusions

We established in this paper negative results concerning the
approximation of kmost vital edges andmin edge blocker versions
of the assignment problem.

It is remarkable that all the proofs of NP-hardness or inapprox-
imability previously used up to now for kmost vital edges andmin
edge blocker versions of classical optimization problems are based
on reductions from standard problems like vertex cover, clique, in-
dependent set, or min k cut. Our proofs are the first ones using re-
ductions from a k most vital edges and min edge blocker version
of a classical optimization problem, namely shortest path. A main
advantage of our E-reduction is to preserve the value of solutions
and therefore approximation properties between these versions of
shortest path and assignment. Thus, a polynomial time approxima-
tion algorithm for k Most Vital Edges Assignment would imply a
polynomial time approximation algorithm with the same approx-
imation ratio for the corresponding versions of shortest path. A
gap-reduction only preserves inapproximability results. Thus, any
stronger inapproximability result for k most vital edges and min
edge blocker shortest path would give rise to the same result for
the corresponding versions of assignment.

Concerning positive results, we proposed exact algorithms, in
O(nk+2) for kMost Vital Edges Assignment and inO(nn+1) forMin
Edge Blocker Assignment. An interesting open question is to try
to establish approximation algorithms or better exact algorithms
for these problems.
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