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In this paper, we study the shortest path tour problem in which a shortest path from a given origin node
to a given destination node must be found in a directed graph with non-negative arc lengths. Such path
needs to cross a sequence of node subsets that are given in a fixed order. The subsets are disjoint and may
be different-sized. A polynomial-time reduction of the problem to a classical shortest path problem over a
modified digraph is described and two solution methods based on the above reduction and dynamic pro-
gramming, respectively, are proposed and compared with the state-of-the-art solving procedure. The
proposed methods are tested on existing datasets for this problem and on a large class of new benchmark
instances. The computational experience shows that both the proposed methods exhibit a consistent
improved performance in terms of computational time with respect to the existing solution method.
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1. Introduction

The shortest path tour problem ðSPTPÞ is a variant of the short-
est path problem ðSPPÞ and appeared for the first time in the sci-
entific literature in Bertsekas’s dynamic programming and optimal
control book [2].

The SPTP has been recently studied by Festa in [13]. The paper
of Festa is the first systematic contribution for solving the SPTP.
The author proved that the problem belongs to the complexity
class P. The polynomial Karp-reduction of the SPTP to the sin-
gle-source single-destination SPP involves the construction of an
expanded graph in which different algorithms for the SPP were
tested and compared on pseudo-randomly generated instances.
The results presented in [13] showed that Dijkstra’s algorithm out-
performs all the competitor algorithms.

Applications of the SPTP arise for example in the context of the
manufacture workpieces, where a robot has to perform at least one
operation selected from a set of S types of operations. In such case,
the problem may be modeled as a SPTP in which operations are
associated with nodes of a directed graph and the time needed
for a tool change is represented by the distance between two nodes
(see [13]).

The main scientific contribution of this paper consists in analyz-
ing some basic theoretical properties of the SPTP, in designing a
dynamic programming-based algorithm ðDPAÞ for solving it, and
showing how an ad hoc algorithm for acyclic graphs may be used
to solve the SPTP after efficiently reducing it to a classical SPP
through the method referred to as modified graph algorithm
ðMGAÞ.

The remainder of the paper is organized as follows. The problem
is formally described in Section 2. The state-of-the-art algorithm to
address the SPTP is presented in Section 3. Some properties con-
cerning the reducibility of the problem to a classical SPP and the
relevant consequences in terms of solvability are described in Sec-
tion 4. A dynamic programming algorithm is illustrated in Sec-
tion 5. Computational results and the analysis of the performance
of the proposed algorithms are presented in Section 6. The paper
ends with some concluding remarks stated in Section 7.

2. Problem description

Consider a directed graph G = (N,A) defined by a set of nodes
N :¼ {1, . . . , n} and a set of arcs A :¼ {(i, j) 2 N � N: i – j}, where
jAj = m. A non-negative length cij is assigned to each arc (i, j) 2 A.
Let F(i) :¼ {j 2 N: (i, j) 2 A} and B(i) :¼ {j 2 N: (j, i) 2 A} be the forward
star and backward star associated with each node i 2 N, respec-
tively. Moreover, let S denote a certain number of node subsets
T1, . . . , TS such that Th \ Tk = ;,h, k = 1, . . . , S,h – k.

Given two nodes i1, ip 2 N, i1 – ip, the path Pi1 ;ip from i1 to ip is
defined as a sequence of nodes Pi1 ;ip ¼ fi1; . . . ; ipg such that (ij, ij+1) -
2 A, j = 1, . . . , p � 1. Observe that ij, j = 1, . . . , p, represents the node
index occurring in position j in path Pi1 ;ip . A path Pi1 ;ip is said to be
elementary whether il – ij, l, j = 1, . . . , p and l – j. We refer to the
length of path Pi1 ;ip as lðPi1 ;ip Þ representing the sum of the lengths
of the arcs connecting consecutive nodes in Pi1 ;ip , i.e.,
lðPi1 ;ip Þ ¼

Pp�1
j¼1 cj;jþ1.

The SPTP aims at finding a shortest path Ps;d from origin node
s 2 V to destination node d 2 V in the directed graph G, such that it
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visits successively and sequentially the following subsets Tk,
k = 0, . . . , S + 1, such that T0 = {s} and TS+1 = {d}. Note that sets Tk,
k = 1, . . . , S, must be visited in exactly the same order in which they
are defined.

Consequently, a path Pi1 ;ip is said to be a feasible solution for the
SPTP if:

9 g0; g1 . . . gSþ1 2 ½1;p� : g0 < g1 < � � � < gSþ1;

ig0
2 Pi1 ;ip \ T0; ig1

2 Pi1 ;ip \ T1; . . . ; igSþ1
2 Pi1 ;ip \ TSþ1:

ð1Þ

Conditions (1) mean that an increasing sequence of natural
numbers exists such that the corresponding nodes of the path
Pi1 ;ip belong to the ordered sequence of subsets T0, T1, . . . , TS+1. A
small instance of the SPTP is depicted in Fig. 1, where N = {s = 1,
2, 3, 4, 5, 6, d = 7}, S = 2,T0 = {s = 1}, T1 = {3}, T2 = {2, 4},
T3 = {d = 7}. The shortest path from node 1 to node 7 is
P1;7 ¼ f1;3;7gwith length 5, while the shortest path tour between
the same origin and destination nodes is P1,7 = {1, 3, 2, 3, 7} with
length 11. Such path is not elementary, since it passes twice
through node 3.

3. The state-of-the-art

The state-of-the-art consists of the expanded graph method
proposed by Festa in [13], and referred to as EGA in the sequel.
A brief description of how the EGA works is given in the
following.

The EGA relies on a polynomial-time reduction algorithm that
transforms any SPTP instance defined on a single-stage graph G
into a single-source single-destination SPP instance defined on a
multi-stage graph G0 = (V0,A0) with S + 2 stages, each replicating G,
and such that V0 = {1, . . . , (S + 2)n} and jA0j = (S + 1)m. More pre-
cisely, the reduction algorithm performs the following
operations:

i. V0 :¼ {1, . . . , (S + 2)n}; A0 :¼ ;;
ii. at each iteration, an arc(a,b) is added to A0. In particular, for

each stage k 2 {0, . . . , S}, for each node v 2 {1, . . . , n}, and for
each adjacent node w 2 FS(v), (a,b) = (v + kn,w + (k + 1)n)
with length cvw, if w 2 Tk+1; (a,b) = (v + kn,w + kn) with
length cvw, otherwise.

Since jA0j = (S + 1)m, the computational complexity of the reduc-
tion algorithm is O(Sm).1 Once the multi-stage graph G0 is obtained,
to solve the resulting SPP any shortest path algorithm can be ap-
plied. By applying Dijkstra’s algorithm that uses a binary heap for
storing temporary node labels, the overall worst case computational
complexity of EGA is O(jA0jlogjV0j + jV0jlogjV0j), which is dominated by
O(jA0jlogjV0j), that is O(Smlogn).

4. A modified graph method

In this section, we will focus on some basic properties related to
the reducibility of any SPTP instance into a single-source single-
destination SPP instance.

4.1. On the reduction of the SPTP to the SPP

Given an instance of the SPTP on a directed graph G = (N,A) the
following definition is applied.
1 For bounding the computational complexity of an algorithm, several asymptotic
notations are used [6]. If n is the input size, the computational complexity of an
algorithm f(n) is O(g(n)), if there exist positive constants a and n0 such tha
0 6 f(n) 6 ag(n) for all n P n0.
t

Definition 1. Let G(a) = (N(a),A(a),c(a)) be a weighted directed graph
obtained from G in such a way that:

� NðaÞ ¼
SSþ1

k¼0Tk;

� AðaÞ ¼
SS

k¼0AðaÞk , where

AðaÞk :¼ fði; jÞ 2 Tk � Tkþ1 : i 2 Tk and j 2 Tkþ1g;
� cðaÞ : AðaÞ # Zþ is a function that associates an integer non-neg-

ative number cðaÞij to each arc (i, j) 2 A(a), where cðaÞij :¼ lðPi;jÞ is the
length of a shortest path from node i 2 Tk to node j 2 Tk+1 on
graph G.

The following property holds for the arc set A(a).

Property 1. Let G(a) be the weighted directed graph associated with
an instance of the SPTP, then jA(a)j 6 n(n � 2).

Solving a SPTP instance may be performed by finding a shortest
path in G(a). Indeed, the following property holds.

Property 2. Every path PðaÞs;d from s to d in G(a) defines a SPTP solution
in G with the same cost, and vice versa.

Such a property derives from the construction of graph G(a) gi-
ven in Definition 1.

The optimal cost of any SPTP instance is equal to the cost of the
shortest path from node s to node d computed on G(a), as shown in
the following property.

Property 3. The cost of a shortest path PðaÞs;d in G(a) is equal to the cost
of an optimal SPTP in G.
Proof. Such property can be proved by contradiction. From

Property 2, it follows that the shortest path PðaÞs;d in G(a) corresponds
to a feasible path tour P�s;d in G. Hence, suppose that a shortest path

tour Ps,d different from P�s;d exists in G, such that lðPs;dÞ < l P�s;d
� �

.

This means that a feasible path PðaÞ
0

s;d exists in G(a), associated with

Ps,d, whose cost is less than the cost of the shortest path PðaÞs;d . This
conclusion contradicts the initial assumption. h
4.2. Solving the SPTP as SPP

The framework of the proposedMGA is sketched in Algorithm 1:

Algorithm 1. Modified graph algorithm

Step 1 (Initialization)
Compute a shortest path from each node i 2 Tk to each node

j 2 Tk+1, k = 0, . . . , S.
Step 2 (Graph Construction)
Build the digraph G(a) = (N(a),A(a)) as detailed in Definition 1.
Step 3 (Topological enumeration of N(a))
Step 4 (Shortest Path Computation)
Let lðP1;iÞ denote the length of the shortest path from node

s = 1 to node d = i, and p(i) denote
the predecessor node of i in P1;i.
Set lðP1;1Þ :¼ 0; pð1Þ :¼ 1 and iterationMGA :¼ 0.
for all j = 2, . . . , jN(a)j do

lðP1;jÞ ¼mini2NðaÞ :ði;jÞ2AðaÞ flðP1;iÞ þ cijg. Update p(j) with the

value of i whereby the minimum of lðP1;jÞ occurs.
Update the number of iterations as
iterationMGA ¼ iterationMGA þ 1.

end for
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Fig. 1. A SPTP instance on a small directed graph G.
Theorem 1. The worst case computational complexity of MGA is
O(n3).
Proof. In order to evaluate the computational complexity of the
proposed algorithm, it is useful to observe that the total number
C of shortest paths to be computed in Step 1 is given by:

C ¼
XS

i¼0

jTijjTiþ1j:

Note that C = O(n2) and the worst case arises when S = 2 and
jTij ¼ n�2

2

� �
; i ¼ 1;2. In this latter case, Step 1 reduces to computing

a shortest path between each pair of nodes i, j 2 N(a) such that i 2 T1

and j 2 T2 and can be solved in the worst case in O(mn + n2logn) by
applying Dijkstra’s algorithm with Fibonacci’s heap. As already
underlined, the complexity of Step 2 is O(Sm). Step 3 is performed
in O(jN(a)j) = O(n), while the theoretical complexity of the shortest
path problems in acyclic graphs is linear in the number of arcs, so
that the complexity of Step 4 in Algorithm 1 is O(jA(a)j), which is
O(n2). Since m = O(n2), it follows that the problem can be solved
in the worst case in O(n3). h
5. A dynamic programming based algorithm

In this section, we describe a dynamic programming algorithm
ðDPAÞ to solve the SPTP. DPA has been designed by considering
the SPTP as an extension of the weight constrained shortest path
problem, where the resource ri associated to a path Ps,i from node s
to node i represents the index of the last set Tk, k = 0, . . . , S + 1, vis-
ited along the path and the resource consumption of an arc is label-
dependent.

Recent scientific literature on the study of the classical weight
constrained shortest path problem includes among others a paper
of Dumitrescu and Boland [10], where the authors propose several
alternative algorithms, including an exact method based on the
weight-scaling approach, later improved by the same researchers
in [11]. In 2009, Muhandiramge and Boland [19] designed a meth-
od to find simultaneous solution of Lagrangean dual problems
interleaved with preprocessing. Dynamic programming ap-
proaches for the weight constrained shortest path problem and
the shortest path problem with resource constraints have been
proposed in [1,12,20].

In our case, viewing the SPTP as an extension of the weight
constrained shortest path problem, to each path Ps,i from node s
to node i is associated a label yi. It stores information about the
length of the path and the resource consumption along the path,
that is, yi = (l(Ps,i), ri). With reference to the same network depicted
in Fig. 1, label y2 associated with the subpath P1,2 = {1, 3, 2} takes
the following form: y2 = (6, 2). Similarly, subpath P1,3 = {1, 2, 3}
has label y3 = (2, 1).

It is worth observing that more than one path Ps,i may exist to
reach node i starting from node s. This means that several labels
yi = (l(Ps,i), ri) can be associated with each node i and they are stored
in the set D(i).

Let P0s;i and P00s;i be two distinct paths from node s to node i and let
r0i and r00i denote the resource consumption along path P0s;i and P00s;i,
respectively.

From the definition of resource consumption, it follows that for
the path P0s;i a sequence of natural numbers g00; g01 . . . g0r0

i
exists such

that g00 < g01 < � � � < g0r0
i

and ig00
2 P0s;i \ T0; . . . ; ig0

r0
i

2 P0s;i \ Tr0
i
. Simi-

larly, for the path P00s;i it is possible to find a sequence of natural

number g000; g
00
1 . . . g00r00

i
such that g000 < g001 < . . . < g00r00

i
and ig000

2 P00s;i\
T0; . . . ; ig00

r00
i

2 P00s;i \ Tr00
i
.

Suppose that r0i P r00i , there exists a path P000i;d such that the path
resulting from the concatenation of P00s;i with P000i;d, saybPs;d ¼ P00s;i � P000i;d, is a feasible solution for the SPTP. The following
result holds.
Lemma 2. If P00s;i � P000i;d is a feasible SPTP solution, then P0s;i � P000i;d is
also a feasible SPTP solution.
Proof. Since P00s;i � P000i;d is a feasible SPTP solution, there exists a
sequence of natural numbers g000r00

i
þ1; . . . ; g000Sþ1 such that

g000r00
i
þ1 < � � � < g000Sþ1 and ig000

r00
i
þ1
2 P000i;d \ Tr00

i
þ1; . . . ; ig000

Sþ1
2 P000i;d \ TSþ1.

Owing to the feasibility of path P00s;i � P000i;d and r0i P r00i , it is
possible to extract the subsequence g000r0

i
þ1; . . . ; g000Sþ1 from the

sequence g000r00
i
þ1; . . . ; g000Sþ1, such that g000r0

i
þ1 < � � � < g000Sþ1 and

ig000
r0
i
þ1
2 P000i;d \ Tr0

i
þ1; . . . ; ig000Sþ1

2 P000i;d \ TSþ1. Consequently, P0s;i � P000i;d is a

feasible path for the SPTP. h

Let us assume that l P0s;i
� �

< l P00s;i
� �

. It follows that path P00s;i can be
discarded.

Lemma 3. If l P0s;i
� �

< l P00s;i
� �

, then l P0s;i � P000i;d
� �

< l P00s;i � P000i;d
� �

, thus

from path P00s;i it is not possible to generate the optimal SPTP solution.
Proof. Lemma 3 can be proved by contradiction. Thus, for the pur-

pose of contradiction, let us assume that l P0s;i � P000i;d
� �

P

l P00s;i � P000i;d
� �

. Such an expression can be rewritten as follows:

l P0s;i
� �

þ l P000i;d
� �

P l P00s;i
� �

þ l P000i;d
� �

. It follows that l P0s;i
� �

�

l P00s;i
� �

P 0. This means that l P0s;i
� �

P l P00s;i
� �

, contradicting the

assumption. h

Lemma 3 suggests us to define a dominance relation between
labels. In particular the following results can be drawn.

Definition 2. Let y0i ¼ l P0s;i
� �

; r0i
� �

and y00i ¼ l P00s;i
� �

; r00i
� �

be two

labels associated with paths P0s;i and P00s;i, respectively. If

l P0s;i
� �

< l P00s;i
� �

and r0i P r00i , then y00i is dominated by y0i and path

P00si can be discarded.
Definition 3. Let y0i ¼ l P0s;i
� �

; r0i
� �

and y00i ¼ l P00s;i
� �

; r00i
� �

be two

labels. Such labels are said to be equivalent if l P0s;i
� �

¼ l P00s;i
� �

and

r0i ¼ r00i .

Starting from label y0
s ¼ ð0;0Þ associated with the origin node s,

the solution space is explored in order to obtain efficient solutions
for each node. Through the algorithm iterations, a label

y00j ¼ l P00s;j
� �

; r00j
� �

is generated starting from a label y0i ¼ l P0s;i
� �

; r0i
� �

using the following updating rules:
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l P00s;j
� �

¼ l P0s;i
� �

þ cij; ð2Þ

r00j ¼
r0i þ 1; if r0i þ 1 6 Sþ 1 and j 2 Tr0

i
þ1;

r0i; otherwise:

(
ð3Þ

At the end of the algorithm, D(j), j 2 N, is an efficient set, that is, it
contains efficient and feasible solutions. In addition,

l�d ¼ l P�s;d
� �

: y� ¼ l P�s;d
� �

; Sþ 1
� �

2 DðdÞ represents the length of

the optimal solution of the shortest path tour from node s to node d.
Let L be the set storing the labels associated with the partial

paths to be processed, the steps of the proposed labeling method
are depicted in Algorithm 2.

An upper bound on l(Ps,d), named hmax, may be obtained by con-
sidering that, in the worst case, a tour contains S + 1 subpaths, each
of them involving n � 1 arcs having the maximum cost.

Therefore it results that
lðPs;dÞ 6 hmax 6 ðSþ 1Þðn� 1Þcmax; cmax ¼max

ði;jÞ2A
cij: ð4Þ

Algorithm 2. Multidimensional labeling algorithm

Step 1 (Initialization)

Set: P0
s;s :¼ fsg; y0

s :¼ 0; r0
s

� �
with r0

s :¼ 0, and iterationDPA :¼ 0.

Set: L :¼ y0
s

� 	
;DðsÞ :¼ y0

s

� 	
;DðjÞ :¼ ;;8j 2 N; j – s.

Step 2 (Label Selection)
Select and delete from L a label y0i.
Update the number of iterations as

iterationDPA ¼ iterationDPA þ 1.
Step 3 (Label Extension)
for all (i, j) 2 A do

Set:
Ps;j :¼ P0s;i [ fjg.

lðPs;jÞ :¼ l P0s;i
� �

þ cij.

if r0i < Sþ 1 then

Set: �k :¼ r0i þ 1.
if j 2 T�k then

Set �rj :¼ �k.
else

Set �rj :¼ r0i.
end if

else
Set: �rj :¼ r0i.

end if
Set �yj :¼ ðlðPs;jÞ;�rjÞ.
if �yj is not dominated by any label y0j belonging to D(j) then

Remove from D(j) and from L all labels y0j that are

dominated by �yj.
Add �yj to D(j) and to L.

end if
end for
Step 4 (Termination check)
if L = ; then

STOP
else

Go to Step 2.
end if

In view of the relation (4), the following property stands.
Theorem 4. The computational complexity of DPA is O(S2n3cmax).
Proof. The number of iterations performed by the algorithm
depends on the total number B of different labels generated. There
are at most O(B) = O(Shmax) different labels. Each label may be rep-
licated on different nodes, but it is expanded at mostP

i2N j FðiÞ j¼ m times, and each expansion requires O(1) times,
then the total number of performed iterations is:

OðBmÞ ¼ OðS2nmcmaxÞ:

Since O(m) = O(n2), the resulting overall complexity is O(S2n3cmax) in
the worst case. h

The running time of Algorithm 2 could be improved by consid-

ering a pruning strategy based on the path length. Let li be the least
length from node i to node d and let UB be the length of a feasible

solution for the SPTP. A label y0i can be discarded if l P0s;i
� �

þ li > UB.

In addition, whenever a feasible SPTP solution P0s;d is found such

that l P0s;d
� �

< UB, then UB is updated.

6. Computational results

In this section, we discuss and compare the computational results
obtained with theDPA; MGA andEGA. The experiments were carried
out on a PC equipped with one Intel Core X5680 Processor@3.33 GHz,
with 50 Gbyte RAM. All algorithms were coded in java.

The main goal of these experiments is to study the behavior of the
proposed algorithms (i.e.,DPA; MGA) and compare them with the
state-of-the-art algorithm (i.e., EGA). A computational analysis is
outlined to show how the performance of DPA and MGA are af-
fected by network topology and characteristics, i.e., number and size
of subsets Tk, k = 0, . . . , S + 1. In all the test problems, the following
setting is used: s = 1 and d = n. Details related to the basic shortest
path algorithms used inside the proposed methods are given below.

As far as the construction of G(a) in the MGA is concerned, the
Floyd–Warshall algorithm [15] is used to compute the length of
the shortest path between all node-pairs of G. Observe that graph
G(a) is built explicitly within MGA. The shortest path solutions in
EGA is provided by Dijkstra’s algorithm [7] with binary heaps
[17]. It is worth observing that for EGA an iteration corresponds
to process the node just selected from the heap, while for MGA
andDPA an iteration is defined implicitly inside the corresponding
algorithmic sketches.

Given that the performance of DPA is strongly influenced by an
Upper Bound (UB) on the minimum cost, a feasible solution is
found heuristically by selecting a node sequence {1, i1, i2, . . . , iS,n}
starting from the source node 1 and ending with the destination
node n, and such that ik 2 Tk, k = 1, . . . , S. The length of the path
associated with this sequence is evaluated as the shortest path cost
obtained by applying Dijkstra’s algorithm between two consecu-
tive nodes in the sequence.

The collected computational results are reported in Tables A.1–
A.9 reported in the Appendix. For each instance and each algorithm,
the number of iterations and the execution times are detailed. The
column headings of such tables are defined as follows: ‘‘Test’’ de-
notes the instance name; ‘‘Time’’ denotes the computational time
in milliseconds (ms) required by each one of the proposed algo-
rithms in order to find the optimal SPTP solution; ‘‘Iterations’’ de-
notes the overall number of iterations performed by each of the
designed algorithm; ‘‘FW Time’’ denotes the Floyd–Warshall run-
ning time performed byMGA on G and required to construct G(a);
‘‘SpTime’’ indicates the running time required by EGA to compute
the shortest path on the expanded graph; the running time required
by EGA to build the expanded graph is reported in column ‘‘EgTime’’.
Due to the use of java as programming language, the running time
required by DPA; MGA and EGA are averaged over 30 runs, exe-
cuted for each SPTP instance.



Table 2
Fully random networks.

Problem Nodes Arcs Density

R1 300 1500 5
R2 300 3000 10
R3 300 4500 15
R4 500 2500 5
R5 500 5000 10
R6 500 7500 15
R7 1000 5000 5
R8 1000 10,000 10
R9 1000 15,000 15
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6.1. Test problems

Three classes of networks are considered: grid random, fully
random, and fully dense networks. The rationale of this choice is
motivated by the fact that these networks are well recognized
and used extensively to assess the behavior of the solution algo-
rithms for the classical SPP and some of its variants (see for exam-
ple, [4,5,16,9,8]). For all test networks, the arc lengths are chosen
according to a uniform distribution in the range from [1,1000].

6.1.1. Grid random networks
Such problems are generated by using the Gridgen generator

written by Bertsekas [3]. Problem sizes are outlined in Table 1.
Both square (Gs, with s = 1, 2, 3) and rectangular grid networks
(Gs, with s = 4, 5, 6) are designed. The nodes are arranged in a pla-
nar grid. Nodes s and d are placed at the corners. Each pair of adja-
cent nodes are connected in both directions. Sets Tk, k = 1, . . . , S, are
generated by randomly selecting one node at a time and placing it
into Tk up to achieve the corresponding size.

6.1.2. Fully random networks
A set of nine networks of different size and density (i.e., the

number of arcs over the number of nodes) is designed. These net-
works, named Rs, s = 1, . . . , 9, in the sequel, are generated by using
the public domain Netgen program [18]. Table 2 reports the sizes
of the random networks. For each problem, the number of nodes,
the number of arcs, and the density are provided.

6.1.3. Fully dense networks
Three fully dense networks are generated by using the Compli-

gen generator written by Bertsekas [3]. Each of these problems, re-
ferred to as Cs, s = 1, 2, 3, in the sequel, includes all the possible
n(n � 1) arcs. The number of nodes is set equal to 100 for C1, 300
for C2, and 500 for C3.

6.1.4. SPTP datasets
For each network of the type described above, a set of SPTP s is

built by varying the number of node subsets S, and the size of jTkj,
k = 1, . . . , S, for a given S. More precisely, let n0 = n � 2 be the num-
ber of nodes in the original network from which the source and
destination nodes are discarded, four instances of the SPTP are ob-
tained by setting S in S ¼ f5;10;15;20g. For each value of S, three
SPTP s are designed by varying jTkj in the set

T S ¼ jTSjlower :¼ N0

3S


 �
; jTSjmiddle :¼ N0

2S


 �
; jTSjupper :¼ N0

S


 �� 

:

More generally, it is:

T S ¼ q
N0

S


 �
: q 2 1

3
;
1
2
;1

� 
� 

;

where q represents the consistency of sets Tk, k = 1, . . . , S, associ-
ated with S. Observe that jT Sj ¼ 3 for each S 2 S, and it will be re-
ferred to as jT j in the sequel. In this way, a set of 12 benchmark
instances remains associated with each original network.
Table 1
Grid random networks.

Problem Dimension Nodes Arcs

G1 25 � 25 625 2400
G2 30 � 30 900 3480
G3 50 � 50 2500 9800
G4 25 � 50 1250 4850
G5 30 � 60 1800 7020
G6 50 � 100 5000 19,700
In what follows, we use the notation typeSjTj to identify each
SPTP instance. Indeed, R58

1 refers to the fully random problem R1,
with S = 5 node subsets T1, . . . ,T5, such that jT1j = . . . = jT5j = 8, and
jT0j = jT6j = 1. The SPTP instances are available for download at
the following URL: http://uweb.deis.unical.it/guerriero/bench-
mark-instances-for-sptp. In addition, computational experiments
were carried out on the instances defined by Festa in [13] and pro-
vided by the same author.

6.2. Statistics

We look at several statistics to evaluate the performance of the
proposed algorithms on a large number of different-sized test
problems. The statistics we will consider are defined below:

(a) n-Average execution time: mean value of the overall execu-
tion times related to the SPTP instances associated with a
network with a given topology (grid random, fully random,
fully dense), and a given number n of nodes.

(b) S-Average execution time: mean value of the average execu-
tion times associated with a set of SPTP instances defined
by all the networks with a given topology (grid random, fully
random, fully dense), and a given value of S.

(c) S-Average iteration number: computed as for the S-Average
execution time with respect to the number of iterations.

(d) q-Average execution time: average execution time computed
with respect to a given consistency value, for a given S and
for all the networks with a given topology (grid random,
fully random, fully dense).

6.3. Results on grid random networks

In this section, the behavior of the proposed methods is studied
for the set of SPTP s based on grid random networks. Computa-
tional results are detailed in Tables A.1–A.2 of the Appendix. Gen-
erally, the computational results show how the performances of
the proposed algorithms seem to be affected by the structure of
the networks, expressed by means of the number of nodes n, and
density d ¼ m

n . In general, the computational effort increases with n.
This trend is well highlighted in Fig. 2, where the n-Average

execution times are plotted as a function of the number of nodes.
The n-Average time of MGA increases more quickly than DPA as
long as n increases beyond 1250. Since the most computational
part of MGA is represented by Floyd–Warshall algorithm, that is
involved in construction of G(a), the reported computational times
of MGA, that is, the times required by Floyd–Warshall, grow
according to the computational complexity O(n3). Therefore, for
grid networks with large value of n, that is, n greater than 1250,
the time required byMGA is more expensive than the one implied
by DPA. On the other hand, since paths Ps,d in grid network with a
large number of nodes n contain a large number of intermediate
nodes (at least gx + gy � 1 nodes in a gx � gy grid), then the possibil-
ity to meet several sets Tk, k = 1, . . . , S, could increases with n.

http://uweb.deis.unical.it/guerriero/benchmark-instances-for-sptp
http://uweb.deis.unical.it/guerriero/benchmark-instances-for-sptp


Fig. 2. n-Average execution time of DPA andMGA on grid random network-based
test problems.

Fig. 3. S-Average execution time of DPA and MGA on rectangular grid random
network-based test problems.

Fig. 4. S-Average execution time of DPA and MGA on square grid random
network-based test problems.

Table 3
S-Average iteration numbers performed byMGA and DPA on grid random network-
based test problems.

S Rectangular grid Square grid

DPA MGA DPA MGA

5 5538.67 708031.78 3575.56 176570.44
10 21184.78 396883.22 18522.33 98674.33
15 154647.10 274393.78 72033.78 68055.56
20 501962.20 208135.44 218226.60 51685.44
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Therefore, the convergence of DPA towards the optimal SPTP
solution does not deteriorate with the increase of n in the same
manner as it occurs for MGA.

The same trend occurs if iteration numbers are considered in-
stead of average times (see Tables A.1–A.2 of the Appendix).

Figs. 3 and 4 help to explain the differences underlined so far. In
case of DPA, the more high the value of S becomes, the more in-
crease in the execution time occurs. This is motivated by the theo-
retical computational complexity of DPA that increases explicitly
more than linearly with S.

On the contrary, the theoretical computational complexity of
MGA varies implicitly with S, depending on whether it is building
G(a) or finding the shortest path on G(a). More precisely, the increase
of S reduces the cardinality of sets Tk, k = 1, . . . , S, and thus the

number of arcs of G(a). In fact, jAðaÞj ¼ O ðqnÞ2
S

� �
; therefore, the time

to build G(a) is reduced also as well as the time for finding the
shortest path on G(a). Observe that for square grid random net-
work-based SPTP instances there exists a value of S from which
MGA outperforms DPA.

Table 3 brings out clearly the difference in the relationship be-
tween the S-Average iteration number performed by each algo-
rithm and the number S of sets. Such a table shows that the
average number of iterations performed by DPA increases with
S, while it decreases forMGA. In effect, the number of labels gen-
erated by DPA for each node increases with S, and then the num-
ber of iterations also increases. As mentioned earlier, the running
time of MGA decreases with the increase of S.

The impact of q on the performance of the solving algorithms
emerges in Figs. 5 and 6. They show how the average execution
times vary with respect to the values of q. More precisely, for a gi-
ven S the time performance of DPA decreases significantly with
the values of q. The rationale of such a behavior can be explained
by taking into account that large value of q, that is large size of Tk

with k = 1, . . . , S, makes easier to improve the resource labels and
also generate new labels with increasing resources allowing to re-
move a large number of dominated labels from L, so that the algo-
rithm converges quickly to the optimal solution. This is specially
true for large values of S. For MGA an opposite trend is observed.
The occurrence of increasing value of q for a given S, that is
increasing size of sets Tk with k = 1, . . . , S, affects the construction
of G(a) by enlarging the size of N(a), and increases also the number
of arcs belonging to A(a) and connecting pairs of disjoint nodes of
N(a). Moreover, the running time to find the shortest path on G(a)

grows with the size of Tk, that depends directly on q for a given
S. Therefore, the more the performance of MGA deteriorates with
the increase of q, the lower are the values of S.

The computational results collected for the grid random
network-based SPTP s indicate that DPA behaves the best. In



Fig. 5. q-Average execution time of DPA on grid random network-based test
problems.

Fig. 6. q-Average execution time of MGA on grid random network-based test
problems.
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particular, on the rectangular grid networks DPA is on average
7.95 times faster than MGA. A similar behavior can be observed
for the square grid random networks where the average execution
time of DPA is 2.13 times faster than the average time required by
MGA.

6.4. Computational results on fully random networks

The behavior observed for grid random networks remains con-
firmed in case of fully random networks. Fig. 7 shows how the n-
Average execution time, for both DPA and MGA, increases with
n, even if the slope related to DPA is clearly higher that the one
corresponding to MGA. The cost of an iteration of DPA is greater
than the computational effort required to execute an iteration of
MGA. Fully random graphs are expected to contain Ps,d paths with
less and less arcs as d increases for a fixed number of nodes n. Fur-
thermore, the cost of the single iteration of DPA clearly grows with
d. On the other hand, for sufficiently small n, the cost of Floyd–
Warshall algorithm that is involved in construction of G(a) is lim-
ited, andMGA outperforms DPA; note that this happens for both
fully random and grid random networks, with a number of nodes
n 6 1250. Definitively, the computational results collected on fully
random networks confirm that DPA can outperform MGA, but
only for sufficiently large n.

Fig. 8 shows clearly how the S-Average time of DPA increases
with S, while the average performance ofMGA seems not be influ-
enced by the values of S. Table 4 indicates that the average number
of iterations of DPA increases more than linearly with S, while the
average number of iterations of MGA decreases less than linearly
with S. The rationale is the same highlighted for the grid random
network-based SPTP s.

Finally, the impact of q on the performance of both algorithms
is numerically underlined by looking inside Tables A.3–A.5, and
globally depicted in Figs. 9 and 10.

In particular, Fig. 9 shows the impact of q on the performance of
DPA for a given S. The increase of q enlarges the size of Tk, where
k = 1, . . . , S, so that the improvement of the resource labels be-
comes easier. In case ofMGA the trend is opposite as follows from
Fig. 10. In such a case, the execution times ofMGA increase with q,
so the performance ofMGA decreases with q. More precisely, the
size of Tk, with k = 1, . . . , S, increases with q, and the impact of such
an increase has an effect on the computational complexity of
MGA.

The computational results collected for the fully random net-
work-based SPTPs indicate that MGA outperforms DPA. More
precisely, MGA is on average 13.81 times faster than DPA.

6.5. Computational results on fully dense networks

Concerning experiments on fully dense networks, since n as-
sumes the smallest value with respect to that occurring in grid
and fully random networks, then the computational time required
by Floyd–Warshall is very limited compared to the one implied in



Fig. 7. n-Average execution time of DPA and MGA for the SPTP s based on fully
random network-based test problems.

Fig. 8. S-Average execution time of DPA and MGA for the SPTP s based on fully
random network-based test problems.

Table 4
S-Average iteration numbers performed by DPA andMGA on fully random network-
based test problems.

S DPA MGA

5 1851.741 32025.778
10 32184.519 17713.556
15 152739.593 12294.667
20 404469.926 9066.444

Fig. 9. q-Average execution time of DPA for fully random network-based test
problems.

Fig. 10. q-Average execution time of MGA for fully random network-based test
problems.
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an iteration of DPA. Therefore, the performance ofMGA is clearly
better than DPA. Figs. 11 and 12 show how the n-Average execu-
tion time and the S-Average execution time of DPA quickly in-
creases with n, while they have a very slow increase in case of
MGA.

Table 5 brings out that the S-Average number of iterations of
DPA increases monotonically and more than in a linear way with
S, while it decreases less than linearly with S in case of MGA.
Table A.6 gives numerically evidence of the above considerations.

The trend of the q-Average execution time for DPA andMGA is
coherent with the dependence already observed for the test prob-
lems based on grid and fully random network-based SPTPs, as
confirmed by Figs. 13 and 14. The rationale of these behaviors is
implied into the nature of the computational complexity of DPA
and MGA that is emphasized by this type of networks.

The computational results summarized and discussed on fully
dense network-based SPTPs show that MGA clearly outperforms
DPA. In fact, MGA is on average 814.02 times faster than DPA.
6.6. Comparison with the state-of-the-art algorithm

In this section, for each set of test problems, the best performing
algorithm selected between DPA and MGA is compared with the
algorithm devised by Festa in [13]. In particular, the comparison
involves the average computational times and the number of iter-
ations performed by the best algorithm between DPA and MGA,
and EGA.

The performance of EGA with respect toMGA is affected by the
topology of graph G0 that is not necessarily acyclic, unlike G(a) that
is acyclic and explicitly built within MGA. The computational re-
sults obtained by testing EGA on the considered three random



Fig. 11. n-Average execution time of DPA andMGA on fully dense network-based
test problems.

Fig. 12. S-Average execution time of DPA andMGA on fully dense network-based
test problems.

Table 5
S-Average iteration numbers performed by DPA and MGA on fully dense network-
based test problems.

S DPA MGA

5 2352.111 8272.444
10 34001.222 4491.889
15 206849.222 3123.556
20 494807.944 2286.778

Fig. 13. q-Average execution time of DPA on fully dense network-based test
problems.

Fig. 14. q-Average execution time of MGA on fully dense network-based test
problems.
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datasets are reported in Tables A.7–A.9. In order to assess the
behavior of EGA on these test problems, let us to consider them
separately.

The computational results obtained by testing EGA on the first
set of the SPTP instances based on grid random networks under-
line that the best algorithm between DPA and MGA outperforms
EGA. In particular, DPA is on average 28.27 and 18.19 times faster
than EGA on the rectangular and square grid random networks,
respectively.MGA performs better than EGA with an average time
reduction by a factor of 21.94 on fully random network-based
SPTP instances. Finally, MGA clearly outperforms EGA on fully
dense random network-based SPTP instances by a factor of
301.13.

As for the datasets provided by Festa in [13], named TF in the
sequel, they refer to the same three network topologies already de-
fined. Tables 6–8 report the characteristics of the SPTP instances
belonging to TF and defined on the basis of grid random networks
GTF, fully random networks RTF and fully dense networks CTF,
respectively. Observe that these networks are designed by using
the generator described in [14]. The source and destination nodes
are randomly selected among all the nodes, according to a uniform
distribution. Each node of the networks belongs to a set Tk, where
k = 0, . . . , S + 1. Moreover, the SPTP instances in the TF datasets



Table 6
SPTP s of TF based on grid random networks.

Problem Dimension Nodes Arcs S

GTF
1

10 � 10 100 400 10

GTF
2

10 � 10 100 400 30

GTF
3

10 � 10 100 400 50

GTF
4

10 � 10 100 400 70

GTF
5

25 � 6 150 600 15

GTF
6

25 � 6 150 600 45

GTF
7

25 � 6 150 600 75

GTF
8

25 � 6 150 600 105

Table 7
SPTP s of TF based on fully random networks.

Problem Nodes Arcs Density S

RTF
1

150 600 4 15

RTF
2

150 600 4 45

RTF
3

150 600 4 75

RTF
4

150 600 4 105

RTF
5

150 1200 8 15

RTF
6

150 1200 8 45

RTF
7

150 1200 8 75

RTF
8

150 1200 8 105

Table 8
SPTP s of TF based on fully dense networks.

Problem Nodes Arcs S

CTF
1

60 3540 6

CTF
2

60 3540 18

CTF
3

60 3540 30

CTF
4

60 3540 42

CTF
5

100 9900 10

CTF
6

100 9900 30

CTF
7

100 9900 50

CTF
8

100 9900 70

Table 9
Computational results on the grid network-based SPTP s of TF .

Test EGA MGA

SpTime EgTime Iterations FW time Time Iterations

GTF
1

15 5 785 0.25 0.25 813

GTF
2

83 26 2803 0.25 0.25 295

GTF
3

160 29 4758 0.25 0.25 199

GTF
4

345 17 6712 0.25 0.25 145

GTF
5

77 15 1844 0.25 0.25 1026

GTF
6

311 12 6308 0.25 0.25 500

GTF
7

988 6 10,956 0.25 0.25 301

GTF
8

2002 12 15,380 0.25 0.25 210

Average 497.63 15.25 6193.25 0.25 0.25 436.13

Table 10
Computational results on the random network-based SPTP s of TF .

Test EGA MGA

SpTime EgTime Iterations FW time Time Iterations

RTF
1

71 70 1752 0.25 0.25 1544

RTF
2

298 86 6187 0.25 0.25 493

RTF
3

874 26 10,863 0.25 0.25 293

RTF
4

1596 37 15,306 0.25 0.25 211

RTF
5

57 2 1810 0.25 0.25 1321

RTF
6

478 6 6378 0.25 0.25 473

RTF
7

1076 14 10,863 0.25 0.25 298

RTF
8

2119 20 15,336 0.25 0.25 208

Average 821.13 32.63 8561.88 0.25 0.25 605.13

Table 11
Computational results on the fully dense network-based SPTP s of TF .

Test EGA MGA

SpTime EgTime Iterations FW time Time Iterations

CTF
1

3 2 238 0.13 0.13 343

CTF
2

30 9 888 0.13 0.13 158

CTF
3

99 14 1581 0.13 0.13 115

CTF
4

113 65 2374 0.13 0.13 87

CTF
5

86 156 619 0.13 0.13 523

CTF
6

209 104 2766 0.13 0.13 307

CTF
7

544 266 4730 0.13 0.13 192

CTF
8

1201 441 6791 0.13 0.13 139

Average 285.63 132.13 2498.38 0.13 0.13 233
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are generated for each network and value of S specified in the last
column of Tables 6–8. For a detailed description of how such in-
stances are generated, the reader is referred to [13].

The computational results collected on the instances of TF can
be found in Tables 9–11. They show that the best performing algo-
rithm is MGA, even on the grid network-based instances. This
behavior is coherent with the trend analyzed in Section 6.3. The
rationale lies in the fact that the SPTP instances of TF have a very
small number of nodes, thus the running time of MGA is slower
than that required by DPA.

In comparison with EGA, one may observe thatMGA is on aver-
age 2051.50 times faster than EGA on grid network-based in-
stances, 3415 times faster in case of fully random network-based
instances, and 3213.46 times faster in case of fully dense net-
work-based instances. This behavior may be explained by observ-
ing that the SPTP instances of TF are designed in such a way that
the size of expanded graph built in the method proposed in [13]
grows linearly with S since for each of the S node subsets it repli-
cates the original graph, whereas working on the modified graph
G(a) determines considerable improvements in performance.
7. Conclusions

This paper exhibits the results of the study concerning a variant
of the SPP, called the Shortest Path Tour Problem ðSPTPÞ, in which
the shortest path from a given origin node to a given destination
node flows through a given number of node subsets ordered
according to a given sequence. We provide two competitive solving
algorithms. The former is based on an explicit reduction of the
SPTP into an instance of the SPP, the latter on a dynamic pro-
gramming method where the SPTP is considered as an extension
of the resource constrained shortest path problem. Some basic
properties are highlighted and an extensive computational analysis
of both the proposed methods is carried out on new large size
benchmark instances, and the dataset considered in [13]. The
numerical results show that the performance of the proposed algo-
rithms depends mainly on the structure of the networks. More pre-
cisely, the dynamic programming-based algorithm ðDPAÞ
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outperforms the modified graph-based algorithm ðMGAÞ on the
SPTP instances that are generated from grid random networks,
while the latter is more competitive than the former as long as
fully random and fully dense networks are involved. This appears
from the computational results obtained with the new datasets.
The numerical experiments carried out on the TF dataset show
that the most efficient proposed algorithm outperforms clearly
the state-of-the-art solution strategy [13]. The obtained results
also suggest that these methods could be extended to address
other variants of the classical SPP, which represent a new and
challenging research area.
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