
European Journal of Operational Research 231 (2013) 22–33
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
An efficient evolutionary algorithm for the ring star problem q
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.05.013

q This research work has been funded by the Gobierno de Aragón under grant E58
(FSE) and by Ibercaja under grant UZ2011-CIE-01.
⇑ Corresponding author. Tel.: +34 976 762210.

E-mail addresses: herminia@unizar.es (H.I. Calvete), cgale@unizar.es (C. Galé),
joseani@unizar.es (J.A. Iranzo).
Herminia I. Calvete a,⇑, Carmen Galé b, José A. Iranzo a

a Dpto. de Métodos Estadı́sticos, IUMA, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
b Dpto. de Métodos Estadı́sticos, IUMA, Universidad de Zaragoza, Marı́a de Luna 3, 50018 Zaragoza, Spain
a r t i c l e i n f o

Article history:
Received 7 November 2012
Accepted 10 May 2013
Available online 23 May 2013

Keywords:
Ring star problem
Median cycle problem
Evolutionary algorithm
Bilevel programming
a b s t r a c t

This paper addresses the ring star problem (RSP). The goal is to locate a cycle through a subset of nodes of
a network aiming to minimize the sum of the cost of installing facilities on the nodes on the cycle, the
cost of connecting them and the cost of assigning the nodes not on the cycle to their closest node on
the cycle. A fast and efficient evolutionary algorithm is developed which is based on a new formulation
of the RSP as a bilevel programming problem with one leader and two independent followers. The leader
decides which nodes to include in the ring, one follower decides about the connections of the cycle and
the other follower decides about the assignment of the nodes not on the cycle. The bilevel approach leads
to a new form of chromosome encoding in which genes are associated to values of the upper level vari-
ables. The quality of each chromosome is evaluated by its fitness, by means of the objective function of
the RSP. Hence, in order to compute the value of the lower level variables, two optimization problems are
solved for each chromosome. The computational results show the efficiency of the algorithm in terms of
the quality of the solutions yielded and the computing time. A study to select the best configuration of the
algorithm is presented. The algorithm is tested on a set of benchmark problems providing very accurate
solutions within short computing times. Moreover, for one of the problems a new best solution is found.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Ring Star Problem (RSP) arises in telecommunications net-
work design problems where a subset of nodes is selected for
installing concentrators. The selected nodes are interconnected
by a ring network (this is known as ring topology), whereas the
remaining nodes are linked to their closest concentrator (this is
known as star topology). The RSP can also model location–alloca-
tion problems occurring in logistics where some retailer locations
are used as small depots served from a central depot in a single-
vehicle route. The remaining retailers are directly served from their
nearest small depot.

Let G = (V,E [A) be a mixed graph, where V = {0,1, . . . ,n} is the
node set, E = {[i, j]:i, j 2 V} is the edge set and A = {(i, j):i, j 2 V} is
the arc set. Node 0 is a distinguished node which is referred to as
the depot or the root. Edges in E refer to undirected links which
are used to form the ring structure and arcs in A refer to directed
links used in the star structure. We assume that there is a nonneg-
ative facility cost pi associated with each node i. This may repre-
sent, for instance, the cost of placing a facility at node i. There is
also a nonnegative ring cost cij associated with each edge [i, j], rep-
resenting the cost of connecting nodes i and j, and a nonnegative
assignment cost dij associated with each arc (i, j), referring to the
cost of node i being connected to node j. The RSP consists of select-
ing a subset of nodes V0 # V, including the depot, where facilities
are installed and interconnected by a cycle structure. The remain-
ing nodes are each connected to one of the facilities (see Fig. 1). The
goal is to minimize the total cost, being the sum of the cost of plac-
ing the facilities at the nodes of the cycle plus the cost of the ring
connections and the assignment costs. The cycle connection cost is
the sum of all edge costs on the cycle. The assignment cost is de-
fined as

P
i2VnV 0minj2V 0dij.

To formulate the RSP, we define

zi ¼
1; if i 2 V is on the cycle
0; otherwise

�

xij ¼
1; if edge ½i; j� 2 E is on the cycle
0; otherwise

�

yij ¼
1; if node i 2 V is assigned to node j on the cycle;

ði; jÞ 2 A

0; otherwise

8><
>:

In order to simplify the notation, we denote {zi, i 2 V; xij, [i, j] 2 E; yij,
(i, j) 2 A} by {z,x,y}.

Then, the RSP can be formulated as the following binary
problem:

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.05.013&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.05.013
mailto:herminia@unizar.es
mailto:cgale@unizar.es
mailto:joseani@unizar.es
http://dx.doi.org/10.1016/j.ejor.2013.05.013
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

Fig. 1. A feasible solution of the RSP.

H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33 23
min
z;x;y

X
i2V

pizi þ
X
½i;j�2E

cijxij þ
X
ði;jÞ2A

dijyij ð1aÞ

subject to
X
½i;j�2E

xij ¼ 2zi; 8i 2 V ð1bÞ
X
ði;jÞ2A

yij ¼ 1� zi; 8i 2 V ð1cÞ
X
½i;j�2EðSÞ

xij 6 jSj � 1; 8S # V n f0g; S – ; ð1dÞ

z0 ¼ 1 ð1eÞ
zi 2 f0;1g; 8i 2 V ð1fÞ
xij 2 f0;1g; 8½i; j� 2 E ð1gÞ
yij 2 f0;1g; 8ði; jÞ 2 A ð1hÞ

where E(S) = {[i, j] 2 E:i, j 2 S # V}. In this formulation, the objective
function (1a) minimizes the total cycle and assignments costs, and
the cost of placing the facilities at the nodes. Constraints (1b) en-
force that the degree of each node i is 2 if and only if it belongs
to the cycle. Constraints (1c) ensure that either each node i is on
the cycle or is assigned to a single node j on the cycle. Constraints
(1d) are the well-known subtour elimination constraints limiting
the number of cycles to one. Constraint (1e) ensures that the depot
is on the cycle. Constraints (1f)–(1h) guarantee that all variables are
binary.

The RSP is also known as the first version of the Median Cycle
Problem (MCP1). Under this name, Moreno Pérez et al. [22] use
the model to test a heuristic that combines variable neighborhood
search and tabu search using a set of benchmark problems based
on Traveling Salesman Problem (TSP) instances from TSPLIB [24]
involving between 50 and 200 nodes. In order to provide an opti-
mal solution of the RSP, the algorithms developed in the literature
mainly consider branch and cut techniques. Labbé et al. [17] for-
mulate the problem as a mixed integer linear program, which uses
connectivity constraints instead of constraints (1d), and relaxes
some integer requirements of variables {zi}i2V and {yij}(i,j)2A in for-
mulation (1). After a polyhedral analysis of the problem, they pro-
pose a branch-and-cut algorithm and apply it to solve the
benchmark problems and some randomly generated instances
with a number of nodes between 10 and 300. Kedad-Sidhoum
and Nguyen [16] propose a new formulation of the RSP based on
chains and use it to develop a new branch-and-cut approach. A
branch-and-cut algorithm is also proposed by Simonetti et al.
[26], who reformulate the RSP as a minimum Steiner arborescence
problem. They provide an optimal solution for some benchmark in-
stances not solved in [17]. In summary, an optimal solution has
been achieved for 120 out of the 124 benchmark instances consid-
ered in the literature [17,26].

Besides the above mentioned heuristic, other heuristic
algorithms have been proposed in the literature. Renaud et al.
[25] propose a multistart greedy add heuristic and a random keys
evolutionary algorithm. Both algorithms are tested using only the
benchmark instances which were exactly solved in [17] and proved
to be quite efficient compared with [22]. Dias et al. [12] propose a
heuristic that uses a general variable neighborhood search to im-
prove the quality of the solution obtained by a greedy randomized
adaptive search procedure. They only solve the benchmark in-
stances having between 50 and 100 nodes, obtaining better results
than [22] in some cases.

Other variants of the RSP have been introduced in the literature.
Baldacci et al. [3] introduce the capacitated m-ring-star problem
which consists of designing a set of m rings with bounded capacity
that passes through the depot and through some transition points
and/or customers, and then assigning each non-visited customer to
a visited point or customer. A branch-and-cut approach is pro-
posed to solve the problem. For the same problem, Naji-Azimi
et al. [23] develop a heuristic algorithm which follows the scheme
of the Variable Neighborhood Search and incorporates an Integer
Linear Programming based improvement. Baldacci and Dell’Amico
[2] generalize the above problem by allowing the existence of mul-
tiple depots. Finally, Liefooghe et al. [19] propose to consider indi-
vidually on the one hand the costs of the ring and on the other
hand the assignment costs. Based on this bi-objective formulation
they propose different metaheuristics for solving the problem.

The goal of this paper is to propose an evolutionary algorithm
for the RSP based on a new encoding scheme to handle which
nodes are on the ring. This algorithm has been suggested by a
new formulation of the RSP as a bilevel problem with three deci-
sion makers, a leader and two independent followers. The paper
is organized as follows. In Section 2 the formulation of the RSP as
a bilevel problem is proposed and the main results of the equiva-
lence between both problems are proved. The algorithm is devel-
oped in Section 3. In Section 4 the computational performance of
the procedure is evaluated using the benchmark instances dealt
with in the literature. Finally, Section 5 concludes the paper with
some final remarks.

2. A bilevel formulation for the RSP

Bilevel programming has been proposed for modeling hierar-
chical processes characterized by the existence of two decision lev-
els. The decision makers at both levels of the hierarchy seek to
optimize their individual objective functions and control their
own set of decision variables. Due to the hierarchical structure of
the process, the decision maker at the upper level of the hierarchy,
also called the leader, aims to optimize his own objective function
but anticipating within the optimization scheme the reaction of
the decision maker at the lower level, also called the follower. In
mathematical terms, the bilevel programming problem involves
two optimization problems where the constraint region of the
upper level optimization problem is implicitly determined by the
lower level optimization problem. Bilevel programming is dis-
cussed in Bard [4], Colson et al. [10] and Dempe [11]. Some exten-
sions of bilevel programming consider the existence of several
decision makers at the lower decision level [6] or multiple objec-
tives at each decision level [7,8].

In the RSP, the decision maker has to locate a simple cycle and
assign the remaining nodes to the nodes on the cycle in an optimal
way. In the bilevel programming formulation that we propose, the
decision maker will share the decision process. This decision maker
will act as a leader and delegate some of the decisions to two fol-
lowers. The idea is that the leader will decide on the nodes of the
cycle, but anticipating the reactions of both followers. Each fol-
lower, after receiving the leader’s selection, solves his own prob-
lem. One follower will find the cycle by solving a traveling

24 H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33
salesman problem and the other follower will solve the problem of
assigning the nodes not in the cycle to their closest node on the cy-
cle. These followers are independent in the sense that there is no
communication between them and they do not share any informa-
tion. Taking into account the hierarchical structure of the bilevel
problem, the leader maintains overall control of the process. More-
over, since the leader is assumed to anticipate the reactions of the
followers, he will be able to choose his optimal strategy. Fig. 2 dis-
plays a scheme of this decision process.

In order to reformulate the RSP as a bilevel problem, we assume
that variables {zi}i2V are controlled by the leader, variables {xij}[i,j]2E

are controlled by follower 1 and variables {yij}(i,j)2A are controlled
by follower 2. The bilevel reformulation of the RSP (BRSP) is:

min
z;x;y

X
i2V

pizi þ
X
½i;j�2E

cijxij þ
X
ði;jÞ2A

dijyij ð2aÞ

subject to z0 ¼ 1 ð2bÞ
zi 2 f0;1g; 8i 2 V ð2cÞ

where, for every {zi}i2V fixed, {xij}[i,j]2E solves the problem:

L1ðzÞ : min
x

X
½i;j�2E

cijxij ð2dÞ

subject to
X
½i;j�2E

xij ¼ 2zi; 8i 2 V ð2eÞ
X
½i;j�2EðSÞ

xij 6 jSj � 1; 8S # fi 2 V n f0g : zi ¼ 1g; ð2fÞ

xij 2 f0;1g; 8½i; j� 2 E ð2gÞ

and {yij}(i,j)2A solves the problem:

L2ðzÞ : min
y

X
ði;jÞ2A

dijyij ð2hÞ

subject to
X
ði;jÞ2A

yij ¼ 1� zi; 8i 2 V ð2iÞ

yij 2 f0;1g; 8ði; jÞ 2 A ð2jÞ

This is a binary bilevel problem with two independent follow-
ers, meaning that the objective function and the set of constraints
of each follower only include the leader’s variables and the
individual follower’s own variables. Bilevel problems with multiple
Fig. 2. Scheme of the bilevel approach of the RSP: The leader decides which nodes are
optimally assigns the nodes not on the cycle.
independent followers have been addressed by Calvete and Galé
[6] when all the functions involved are linear and there are no inte-
grality constraints.

We now prove the main results concerning the equivalence be-
tween the RSP and the BRSP.

Lemma 1. Let f�zigi2V verify constraints (2b) and (2c). Let f�xijg½i;j�2E
and f�yijgði;jÞ2A be feasible solutions of problems L1ð�zÞ and L2ð�zÞ,
respectively. Then, f�z; �x; �yg is a feasible solution of the RSP.
Proof. It is obvious that constraints (1b), (1c), (1e)–(1h) are
verified.

On the other hand, given S # Vn{0}, we define
S0 ¼ fi 2 S : �zi ¼ 0g and S1 ¼ fi 2 S : �zi ¼ 1g. Bearing in mind con-
straints (2e), �xij ¼ 0 for all [i, j] 2 E and i 2 S0 or j 2 S0. Then, by
applying (2f)X
½i;j�2EðSÞ

�xij ¼
X

½i;j�2EðS1Þ

�xij 6 jS1j � 1 6 jSj � 1

This completes the proof. h

From the above lemma we can also conclude that every feasible
solution of the BRSP provides a feasible solution of the RSP.

Lemma 2. Let f�z; �x; �yg be an optimal solution of the RSP. Then, it is a
feasible solution of the BRSP.
Proof. Since f�z; �x; �yg is a feasible solution of the RSP, it verifies all
constraints of problem (2), i.e. (2b), (2c), (2e)–(2g), (2i) and (2j). In
order to show that it is a feasible solution of the BRSP, we need to
prove that f�xijg½i;j�2E is an optimal solution of problem L1ð�zÞ and
f�yijgði;jÞ2A is an optimal solution of problem L2ð�zÞ.

Let us first consider the problem L1ð�zÞ. Assume that f�xijg½i;j�2E is
not an optimal solution of this problem. Then, there exists

x�ij
n o

½i;j�2E
, a feasible solution of L1ð�zÞ so thatX

½i;j�2E

cijx�ij <
X
½i;j�2E

cij�xij ð3Þ

By applying Lemma 1, f�z; x�; �yg is a feasible solution of the RSP
and
to be included in the cycle. Follower 1 solves a TSP to find the cycle. Follower 2

H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33 25
X
i2V

pi�zi þ
X
½i;j�2E

cijx�ij þ
X
ði;jÞ2A

dij�yij <
X
i2V

pi�zi þ
X
½i;j�2E

cij�xij þ
X
ði;jÞ2A

dij�yij

which contradicts that f�z; �x; �yg is optimal for the RSP. The second
part of the proof is analogous. h
Theorem 3. The RSP and the BRSP provide the same optimal solution.
Proof. Let {z⁄,x⁄,y⁄} be an optimal solution of the RSP. By applying
Lemma 2, it is a feasible solution of the BRSP. Assume that it is not
an optimal solution of this problem. Then, there exists a feasible
solution of the BRSP f�z; �x; �yg so thatX
i2V

pi�zi þ
X
½i;j�2E

cij�xij þ
X
ði;jÞ2A

dij�yij <
X
i2V

piz
�
i þ

X
½i;j�2E

cijx�ij þ
X
ði;jÞ2A

dijy�ij ð4Þ

Due to Lemma 1, f�z; �x; �yg is a feasible solution of the RSP. Hence, (4)
is in contradiction to the optimality of {z⁄,x⁄,y⁄}.

Conversely, let {z⁄,x⁄,y⁄} be an optimal solution of the BRSP. By
applying Lemma 1, it is a feasible solution of the RSP. Assume that
it is not an optimal solution of the RSP. ThenX
i2V

pi�zi þ
X
½i;j�2E

cij�xij þ
X
ði;jÞ2A

dij�yij <
X
i2V

piz
�
i þ

X
½i;j�2E

cijx�ij þ
X
ði;jÞ2A

dijy�ij ð5Þ

where f�z; �x; �yg is an optimal solution of the RSP. From Lemma 2, it
follows that f�z; �x; �yg is a feasible solution of problem BRSP. Hence,
(5) is in contradiction to the optimality of {z⁄,x⁄,y⁄}. h

In the following section we use these ideas about sharing the
decision making process to develop an evolutionary algorithm
which solves the BRSP and thus the RSP.

3. BBEA: A bilevel programming based evolutionary algorithm
to solve the RSP

Evolutionary Algorithms (EAs) are adaptive heuristic search
algorithms based on the principles of biological evolution. They
use the ideas of reproduction and selection in populations to pro-
duce good solutions to complex optimization problems. Candidate
solutions to the optimization problem play the role of individuals
in biology. EAs were introduced and developed by Holland [14]
and have been increasingly applied to solve a variety of problems
[1,9,21]. EAs encode each potential solution as a string of symbols
called a chromosome. Each position of a symbol in the chromo-
some is called a gene and its value is called the allele value. Then,
crossover and mutation operators are applied to these structures
so as to preserve critical information based on their fitness. The fit-
ness gives each chromosome a score based on how well it per-
forms, usually through the evaluation of the objective function of
the optimization problem. An implementation of an EA starts with
a randomly generated population of chromosomes whose fitness is
evaluated. The population evolves to create offspring by combining
chromosomes from the current population using a crossover oper-
ation and modifying them by using a mutation operation. Having
evaluated the fitness of the new chromosomes, a selection opera-
tion allows some of the parents and offspring to survive to the next
population. This process continues through successive iterations of
the algorithm until a number of populations have been produced
or a suitable solution has been found depending on the stopping
criterion.

As far as we know, Renaud et al. [25] are the only researchers
to have developed an EA to solve the RSP. In this algorithm, called
the RKEA, each chromosome encodes a cycle, i.e. a feasible solu-
tion of the RSP, using the random keys encoding mechanism
developed by Bean [5]. This encoding easily allows for the recom-
bination of cycles. Moreover, no mutation operator is applied.
Following the ideas presented in the above section, in the algo-
rithm developed in this paper the chromosomes encode the upper
level variables of the BRSP. From these values, a feasible solution
of the BRSP can be obtained by solving both the followers’ prob-
lems. Next, the algorithm proceeds by performing crossover,
mutation, fitness evaluation and selection until the stopping con-
dition is met.

In order to improve the performance of the algorithm, we have
implemented the ideas on distributed genetic algorithms proposed
by Tanese [27]. Hence, the population is divided into smaller sub-
populations which evolve in an isolated manner producing off-
spring for the next generation. After a number of iterations, there
is an information exchange operation as a result of which some se-
lected individuals migrate to a different subpopulation. Moreover,
while EA literature shows that on average the population improves
over the iterations, sometimes the algorithm fails to generate near-
optimal solutions and requires some form of intensification. Hence,
we propose to use local search techniques to improve some ran-
domly selected solutions. A sketch of the algorithm is shown in
Fig. 3. Fig. 3a shows the steps of the algorithm and Fig. 3b displays
the migration process.

3.1. Chromosome encoding and population handling

We encode the chromosome as a binary jVj-dimensional vector
C 2 {0,1}jVj, so that for each i 2 V

Ci ¼
1; if node i is on the cycle
0; otherwise

�

Node 0 is always on the cycle, hence C0 = 1.
Each chromosome C can be associated with a feasible solution

f�z; �x; �yg of the BRSP, and thus a feasible solution of the RSP. The
upper level variables can be directly obtained from the chromo-
some: �zi ¼ Ci; i 2 V . Having fixed the upper level variables, we
can compute the remaining variables by solving both lower level
problems. Follower 1’s problem is a TSP, thus it is difficult to solve.
Since this procedure has to be applied to each chromosome gener-
ated by the algorithm, a compromise is needed between solution
quality and computing time. Therefore, we have decided to use a
procedure not very costly in terms of time and reasonable in terms
of quality of the solution. We have selected a greedy algorithm
based on least cost edges, followed by 2-opt local search. More-
over, with a probability of 0.5, 3-opt local search is also applied.
Needless to say, other algorithms proposed in the literature for
solving the TSP could also be applied [15,18]. Follower 2’s problem
is a very easy optimization problem. For each node not on the cy-
cle, it selects the closest one on the cycle. Hence, it is solved to
optimality.

The initial population is formed by randomly generated IP chro-
mosomes. This population is divided into P subpopulations of size
PS = IP/P. Let MI be the migration interval, i.e. the number of itera-
tions between each migration. Then, each subpopulation evolves
independently for MI iterations producing offspring via crossover,
mutation and local search. Every MI iterations, the best individual
of each subpopulation migrates to another subpopulation follow-
ing the diagram shown in Fig. 3b.

3.2. Crossover, mutation and local search

The crossover operator represents the process by which chro-
mosomes selected from a population are combined to form off-
spring which are potential members of a successor population. In
the BBEA we apply a uniform crossover operator which enables
the parent chromosomes to contribute the gene level. For each
subpopulation of size PS, the crossover operator randomly selects

Fig. 3. Sketch of the BBEA.

26 H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33
PS pairs of parents and generates one offspring from each pair.
Each gene of the offspring is selected from one of the parents with
a probability of 0.5. For instance, from the parents:
Once offspring have been created, the mutation operator is ap-
plied to them. Each offspring is selected for the mutation operation
with a probability of 0.5. After a chromosome has been selected, a
gene is randomly selected and its allele value is switched.

In order to improve the quality of the populations which are
generated in successive iterations, we propose to apply local search
techniques to some of the feasible solutions associated with off-
spring, aiming to improve their quality measured by means of
the objective function (1a). Each offspring is selected for the local
search operation with a probability of 0.5. Let C be a selected off-
spring and f�z; �x; �yg be the associated feasible solution of the BRSP.
In the implementation of the algorithm, cycle reduction, cycle aug-
mentation and node exchange [25] are successively applied insofar
as they improve the objective function value of the solution ob-
tained. Fig. 4 shows these techniques. Let {z⁄, x⁄, y⁄} be the feasible
solution of the RSP obtained after applying the local search proce-
dures. The offspring resulting from the local search operation is C⁄

so that C�i ¼ z�i ; i 2 V and its associated feasible solution is
{z⁄,x⁄,y⁄}.

3.3. Fitness evaluation and survivor selection

The quality of a chromosome is evaluated by its fitness. Hence,
we define the fitness as the value of the objective function (1a) of
the associated feasible solution of the RSP:

FðCÞ ¼
X
i2V

pizi þ
X
½i;j�2E

cijxij þ
X
ði;jÞ2A

dijyij

Finally, some of the parents and offspring are allowed to survive
by applying the selection operator. Based on the chromosome fit-
ness, we use the elitist strategy which keeps the best PS chromo-
somes in each subpopulation from one iteration to the next
(without repetition).

After the stopping condition of the algorithm is met, the chro-
mosome with the least fitness value will be selected and the asso-
ciated feasible solution of the RSP will be provided as the solution
of the RSP.

Having found the best solution provided by the algorithm, we
have considered the possibility of applying an additional improve-
ment in the implementation of the algorithm. This final step con-
sists of applying version 2.0.6 of the implementation by Helsgaun
[13] of the Lin and Kernighan heuristic [20] to the nodes in the cy-
cle in order to obtain a possible better arrangement of the cycle.
This implementation can be downloaded from http://www.akira.r-
uc.dk/�keld/research/LKH/. As we will explain in the next section,
this final improvement appears to be interesting in the case that
the optimal solution of the RSP consists of a cycle with almost all
the nodes in the network, but not otherwise.
4. Computational results

In order to analyze the performance of the BBEA, we have con-
ducted a computational experiment divided into two parts. In the
first part of the experiment, we have studied the effect of different
parameters of the algorithm on the quality of the solution provided
by the BBEA. Having selected the best value of the parameters, in
the second part of the study we have compared the solutions pro-
vided by the BBEA with the optimal solutions available in the liter-
ature. Also in the second part, we have compared the BBEA with
the RKEA, the evolutionary algorithm proposed by Renaud et al.
[25]. The numerical experiments have been performed on a PC In-
tel� Core™ I7-3820 CPU at 3.6 gigahertz � 8 having 32 gigabytes of
RAM under Ubuntu Linux 12.04 LTS. The code has been written in
C++, GCC 4.6.3.

The performance of the algorithm has been tested on the above
mentioned RSP benchmark problems. There are 124 problems
which involve between 50 and 200 nodes. They are derived from
the EUC-2D and EXPLICIT TSPLIB problems eil51 to kroB200 by
modifying the original distance as proposed in [17,22]. For each
of the 31 networks in the TSPLIB, four RSP benchmark problems
are generated as follows. Let lij be the distance between nodes i
and j in the TSP instance. To obtain optimal solutions visiting
approximately 100%, 75%, 50%, and 25% of the total number of
nodes in the instances, the coefficients in the objective function
of the RSP are defined as: cij = dalije, [i, j] 2 E, dij = d(10 � a)lije,
(i, j) 2 A, for a = {3,5,7,9} and pi = 0, i 2 V. To illustrate the effect
of considering each value of a in the optimal solution, Fig. 5
shows the optimal solution of problem KroA100 for the different
values of a.

Finally, we have solved larger RSP instances which have been
derived from the EUC-2D and EXPLICIT TSPLIB problems tsp225
to rat783 from the TSPLIB following the same idea.

http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/

Fig. 4. Local search procedures.

H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33 27
4.1. Selecting the configuration of the algorithm

The aim of the first part of the study was to assess the influ-
ence of five factors on the performance of the BBEA by defining
a 4 � 23 � 3 factorial design. The factors and levels are: Alpha
(a = 3, a = 5, a = 7, a = 9), LS (local search = yes, local search = not),
LKH (additional improvement = yes, additional improve-
ment = not), population size (IP = 400, IP = 800) and subpopulation
size (PS = IP, meaning that there are no subpopulations, PS = 100,
PS = 50). Each combination of factors provides a configuration of
the algorithm. Since we are going to assess the influence of the
factor a in the achievement of the algorithm, instead of the above
mentioned 124 benchmark problems, in this part of the study we
take 31 test problems, each corresponding to a graph of the TSP-
LIB. Each of the test problems has been solved six times under
each algorithm configuration. In order to facilitate the comparison
of the results, the termination condition of the algorithm has
been established in terms of computing time: 15 seconds if the
number of nodes n < 100, 30 seconds if 100 6 n < 150 and 45 sec-
onds if 150 6 n. Moreover, the migration interval MI has been
fixed at 10 iterations.

Let f be the objective function value of the solution provided by
the BBEA and fbest�known be the objective function value of the best
known solution in the literature for the corresponding problem. As
we have previously mentioned, most benchmark problems have
been solved optimally, but an upper bound only of the optimal
objective function value is known for just a few problems. If
f � fbest�known 6 0, this is considered as success.

Fig. 5. Optimal solution of problem KroA100 for the different values of a.

Fig. 6. Main effects plot for proportion of success.

Fig. 7. Interaction plot for proportion of success.

28 H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33

H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33 29
The results of the Analysis of Variance (ANOVA) applied to the
proportion of success indicate that the LS (29.4% of variability ex-
plained), Alpha (21.4% of variability explained) and LKH (7.5% of
variability explained) factors are significant (the p-value being
zero). The interactions between Alpha and the LKH (22.4% of vari-
ability explained), and the interaction between Alpha and LS (10.4%
of variability explained) are also significant. Figs. 6 and 7 display
Table 1
Results for benchmark problems.

Name a Exact algorithm

Optimum solution Corrected time (second)

eil51 3 1278 [17] 0.48
eil51 5 1995 [17] 0.24
eil51 7 2113 [17] 2.41
eil51 9 1244 [17] 2.41
berlin52 3 22,626 [17] 0.24
berlin52 5 36,115 [17] 0.96
berlin52 7 37,376 [17] 1.45
berlin52 9 20,361 [17] 2.89
brazil58 3 76,185 [17] 0.48
brazil58 5 115,045 [17] 3.37
brazil58 7 126,807 [17] 2.89
brazil58 9 83,690 [17] 6.75
st70 3 2025 [17] 3.13
st70 5 3110 [17] 5.78
st70 7 3402 [17] 4.82
st70 9 2610 [17] 16.87
eil76 3 1614 [17] 1.20
eil76 5 2460 [17] 5.06
eil76 7 2504 [17] 8.92
eil76 9 1710 [17] 35.66
pr76 3 324,477 [17] 255.18
pr76 5 500,395 [17] 35.42
pr76 7 555,845 [26] 20.47
pr76 9 424,359 [17] 44.34
rat99 3 3633 [17] 9.16
rat99 5 5885 [17] 8.43
rat99 7 6436 [17] 19.28
rat99 9 5150 [17] 105.78
kroA100 3 63,846 [17] 8.92
kroA100 5 100,785 [17] 20.72
kroA100 7 115,388 [17] 18.31
kroA100 9 94,265 [17] 86.02
kroB100 3 66,423 [17] 23.61
kroB100 5 104,550 [17] 13.73
kroB100 7 118,111 [17] 18.55
kroB100 9 93,938 [17] 109.40
kroC100 3 62,247 [17] 7.95
kroC100 5 99,065 [17] 10.84
kroC100 7 113,533 [17] 16.14
kroC100 9 92,894 [17] 102.41
kroD100 3 63,882 [17] 7.71
kroD100 5 101,645 [17] 9.16
kroD100 7 116,849 [17] 26.51
kroD100 9 92,102 [17] 100.72
kroE100 3 66,204 [17] 25.06
kroE100 5 104,915 [17] 27.47
kroE100 7 116,471 [17] 15.90
kroE100 9 96,116 [17] 121.69
rd100 3 23,730 [17] 3.86
rd100 5 37,975 [17] 24.10
rd100 7 40,915 [17] 27.23
rd100 9 31,776 [17] 101.45
eil101 3 1887 [17] 11.08
eil101 5 2905 [17] 7.47
eil101 7 2926 [17] 57.83
eil101 9 1955 [17] 120.00
lin105 3 43,137 [17] 5.06
lin105 5 69,365 [17] 10.36
lin105 7 83,597 [17] 23.61
lin105 9 69,920 [17] 108.43
pr107 3 132,909 [17] 5.54
pr107 5 210,465 [17] 12.05
pr107 7 259,571 [17] 26.99
pr107 9 264,918 [17] 97.59
the main factor plot and the interaction plot for the response var-
iable proportion of success.

From this study we can conclude that, as we might expect, it is
better to apply the local search. When doing this, the population
and subpopulation sizes are not so relevant. Otherwise, it seems
that a larger population size and a smaller subpopulation size per-
form better. In fact, if local search is applied, in 8119 out of the
BBEA

Minimum Maximum % Error Time (second)

= = 0.21
= = 1.64
= = 1.67
= = 1.88
= = 0.28
= = 1.86
= = 1.74
= = 1.91
= = 0.50
= = 2.26
= = 2.23
= = 2.28
= = 0.36
= = 2.61
= = 2.35
= = 2.72
= = 0.48
= = 3.06
= = 3.06
= = 3.57
= = 0.60
= = 3.22
= = 3.02
= = 3.19
= = 0.66
= = 4.23
= = 4.61
= = 4.86
= = 0.71
= = 4.23
= = 4.37
= = 5.40
= = 0.67
= = 4.44
= = 4.94
= = 5.72
= = 0.67
= = 4.48
= = 4.61
= = 5.33
= = 0.86
= = 5.60
= = 5.19
= = 5.52
= = 0.72
= = 5.25
= = 4.68
= = 5.94
= = 0.69
= = 4.96
= = 5.10
= = 5.22
= = 0.87
= = 4.54
= = 5.34
= = 5.45
= = 0.74
= = 4.44
= = 4.95
= = 5.86
= = 1.29
= = 4.99
= = 5.30
= = 5.35

30 H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33
8928 problems solved, i.e. 90.94%, we have obtained success,
showing that irrespective of the algorithm configuration, the BBEA
with local search provides very accurate solutions within short
computing times. The level of Alpha is also relevant and is espe-
cially important in terms of deciding whether or not to apply the
LKH additional improvement. In fact, only if a = 3 is it worth apply-
ing this improvement. Hence, we propose to select for the algo-
rithm a configuration in which local search is applied but the
LKH improvement is only applied to problems with a = 3.
Table 2
Results for benchmark problems.

Name a Exact algorithm

Optimum solution Corrected time (second)

gr120 3 20,826 [17] 14.70
gr120 5 31,480 [17] 38.07
gr120 7 32,301 [17] 47.95
gr120 9 24,322 [17] 167.23
pr124 3 177,090 [17] 181.20
pr124 5 286,115 [17] 57.35
pr124 7 358,853 [17] 49.88
pr124 9 340,153 [17] 232.53
bier127 3 354,846 [17] 35.42
bier127 5 539,955 [17] 51.08
bier127 7 567,110 [17] 103.86
bier127 9 347,845 [17] 533.01
ch130 3 18,330 [17] 30.60
ch130 5 28,790 [17] 38.07
ch130 7 32,707 [17] 164.82
ch130 9 23,639 [17] 317.11
pr136 3 290,316 [17] 217.83
pr136 5 468,520 [17] 34.46
pr136 7 491,981 [17] 86.99
pr136 9 387,327 [17] 369.40
pr144 3 175,611 [17] 37.35
pr144 5 290,945 [17] 737.59
pr144 7 383,041 [17] 106.51
pr144 9 366,833 [17] 372.05
ch150 3 19,584 [17] 73.98
ch150 5 31,170 [17] 75.90
ch150 7 34,930 [17] 135.18
ch150 9 26,371 [17] 783.61
kroA150 3 79,572 [17] 246.99
kroA150 5 125,435 [17] 53.98
kroA150 7 140,961 [17] 131.33
kroA150 9 113,080 [17] 659.28
kroB150 3 78,390 [17] 152.53
kroB150 5 122,875 [17] 1622.17
kroB150 7 135,382 [17] 101.45
kroB150 9 108,885 [17] 626.99
pr152 3 221,046 [17] 140.24
pr152 5 ⁄364,990 [26]
pr152 7 ⁄467,024 [26]
pr152 9 475,440 [17] 755.42
u159 3 126,240 [17] 35.42
u159 5 204,250 [17] 132.05
u159 7 235,221 [17] 135.90
u159 9 199,552 [17] 865.06
rat195 3 6969 [17] 429.16
rat195 5 11,320 [17] 178.55
rat195 7 12,319 [17] 497.59
rat195 9 8977 [26] 787.50
d198 3 47,340 [17] 374.46
d198 5 76,945 [17] 1045.78
d198 7 94,300 [17] 1575.66
d198 9 96,088 [26] 4232.28
kroA200 3 ⁄88,104 [26]
kroA200 5 ⁄138,885 [26]
kroA200 7 158,227 [17] 1316.87
kroA200 9 122,594 [26] 285.22
kroB200 3 88,311 [17] 198.55
kroB200 5 138,905 [17] 372.05
kroB200 7 156,638 [17] 366.02
kroB200 9 124,043 [26] 1366.56
4.2. Comparing the BBEA with the results provided in the literature

In the second part of the study the goal is to obtain evidence of
the quality of the BBEA by comparing the results yielded by the
algorithm with the best solutions provided in the literature as well
as with the results provided by the RKEA [25]. For this purpose,
bearing in mind the considerations of the previous section, we
have chosen to apply local search with a probability of 0.5 and to
apply the LKH additional improvement if a = 3. Moreover, we have
BBEA

Minimum Maximum % Error Time (second)

= = 1.14
= = 18.73
= = 7.57
= = 7.70
= = 0.95
= = 6.17
= = 6.33
= = 7.19
= = 1.49
= = 10.01
= = 10.31
= = 8.94
= = 1.27
= = 8.46
= = 9.35
= = 8.73
= = 1.36

468,610 468,660 0.023 22.17
= = 9.27
= = 8.62
= 175,770 0.075 1.94

291,030 291,030 0.029 10.09
= = 10.44
= = 9.78
= = 1.41
= = 9.30
= = 10.57
= = 11.25
= = 1.59
= 125,440 0.001 16.02
= = 10.02
= = 11.23
= = 1.56
= = 12.47
= = 9.49
= = 11.33
= = 2.35

364,605 364,820 �0.092 18.31
= 468,027 0.056 11.56
= = 12.57
= = 1.37
= = 10.20
= = 11.03
= 199,573 0.002 17.07
= = 2.43

11,330 11,335 0.125 27.94
= = 21.96
= = 18.18
= = 20.93
= = 35.02
= 94,310 0.005 29.36
= = 21.10
= = 2.50
= = 19.92
= = 21.63
= = 20.48
= = 2.60
= = 20.41
= = 19.99
= = 21.00

H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33 31
selected IP = 800 and P = 16, i.e. each subpopulation has a size
PS = 50, and we have maintained the migration interval MI = 10
iterations. With this configuration, we have solved 6 times each
of the 124 benchmark problems using a termination condition
based on the number of successive iterations without improve-
ment. Based on pilot testing, we have fixed this number at 5 itera-
tions if a = 3 and at 50 if a = 5, 7, 9.

Moreover, due to the very different computational environ-
ments of the computational experiments provided in the literature,
when displaying the results we have applied a correcting factor to
the processing time in order to allow the comparison of computing
times. This factor b is established as the ratio between the clocks of
the machines on which the programs were run. It is worth pointing
out that, although we had a multi-processor computer at hand,
only one processor was used in our tests.
Table 3
Comparing the RKEA and the BBEA.

Name a RKEA

% Error Min. dev. Corrected

eil51 5 1.15 0.55
eil51 7 0.55
eil51 9 0.35
st70 5 2.65
st70 7 1.70
st70 9 1.90
eil76 5 0.08 3.10
eil76 7 2.35
eil76 9 2.30
pr76 5 0.09 2.95
pr76 7 4.75
pr76 9 2.90
rat99 5 1.10 0.76 13.55
rat99 7 9.25
rat99 9 9.75
kroA100 5 0.02 8.05
kroA100 7 8.45
kroA100 9 9.85
kroB100 5 0.06 0.02 7.70
kroB100 7 0.14 13.35
kroB100 9 7.95
kroC100 5 0.12 8.35
kroC100 7 7.03
kroC100 9 9.05
kroD100 5 0.45 0.29 9.30
kroD100 7 0.04 10.95
kroD100 9 10.75
kroE100 5 0.31 0.23 8.45
kroE100 7 8.15
kroE100 9 9.45
eil101 5 0.85 0.34 6.80
eil101 7 11.15
eil101 9 8.60
pr107 5 0.09 10.45
pr107 7 0.01 24.60
pr107 9 16.00
pr136 5 0.37 0.19 27.50
pr136 7 0.06 107.25
pr136 9 39.95
pr144 5 0.71 0.52 30.70
pr144 7 40.05
pr144 9 82.75
kroA150 5 0.54 0.15 57.70
kroA150 7 0.01 74.30
kroA150 9 52.70
kroB150 7 56.30
kroB150 9 58.80
pr152 9 109.20
rat195 5 2.60 2.25 137.35
rat195 7 0.39 0.32 327.35
kroB200 5 0.67 0.11 165.15
kroB200 7 0.05 261.05
Tables 1 and 2 display the comparison with the best solution
provided in the literature. The first and second columns show the
names of the problems. The third column indicates the value of
the optimum solution and the reference in which it is provided.
Problems marked with an asterisk show the objective function va-
lue of the best solution known in the literature. The fourth column
shows the computing time provided in the corresponding refer-
ence divided by the correcting factor b. This factor is b = 4.15 for
Ref. [17] and b = 1.27 for Ref. [26]. The fifth and sixth columns dis-
play the minimum and the maximum of the objective function va-
lue of the solution obtained in the six runs of each problem. The
= symbol means that the best result in the literature (third column)
has been yielded by the BBEA. It is worth noting that in 115 out of
the 124 problems (92.74%), the best known result in the literature
has been matched in the six runs. Moreover, in the six runs of the
BBEA

time (second) % Error Min. dev. Time (second)

1.64
1.67
1.88
2.61
2.35
2.72
3.06
3.06
3.57
3.22
3.02
3.19
4.23
4.61
4.86
4.23
4.37
5.40
4.44
4.94
5.72
4.48
4.61
5.33
5.60
5.19
5.52
5.25
4.68
5.94
4.54
5.34
5.45
4.99
5.30
5.35

0.02 0.02 22.17
9.27
8.62

0.03 0.03 10.09
10.44

9.78
16.02
10.02
11.23

9.49
11.33
12.57

0.13 0.09 27.94
21.96
20.41
19.99

Table 4
Results for larger benchmark problems.

Name a Min Max % Error Time (second)

tsp225 3 11,748 = 4.33
tsp225 5 19,200 = 30.67
tsp225 7 20,413 = 39.83
tsp225 9 15,806 = 25.17
pr226 3 241,107 = 7.00
pr226 5 383,055 = 19.50
pr226 7 469,493 = 20.50
pr226 9 470,711 = 21.50
gil262 3 7134 = 8.33
gil262 5 11,235 = 34.17
gil262 7 12,497 = 40.00
gil262 9 9749 = 44.33
pr264 3 147,405 = 7.67
pr264 5 238,135 238,190 0.012 40.83
pr264 7 285,545 = 64.50
pr264 9 256,842 = 39.33
a280 3 7737 = 9.33
a280 5 12,655 = 31.83
a280 7 14,109 = 57.83
a280 9 10,742 = 39.67
pr299 3 144,573 = 11.83
pr299 5 232,065 232,070 0.000 72.50
pr299 7 260,209 = 56.67
pr299 9 213,804 = 56.67
lin318 3 126,087 = 12.33
lin318 5 202,140 = 57.33
lin318 7 229,449 = 51.67
lin318 9 177,089 = 52.83
rd400 3 45,843 = 16.67
rd400 5 72,565 72,590 0.017 239.50
rd400 7 79,960 = 117.50
rd400 9 59,496 = 117.00
fl417 3 35,583 = 236.00
fl417 5 56,880 56,900 0.007 141.33
fl417 7 70,983 70,987 0.004 160.33
fl417 9 72,767 = 141.17
pr439 3 321,651 = 29.50
pr439 5 514,700 514,905 0.013 320.00
pr439 7 609,582 609,878 0.032 263.33
pr439 9 473,540 473,659 0.008 178.33
pcb442 3 152,334 = 19.50
pcb442 5 242,105 242,195 0.014 225.17
pcb442 7 266,359 266,499 0.030 222.83
pcb442 9 195,736 195,783 0.005 141.33
d493 3 105,006 = 45.50
d493 5 166,880 166,950 0.025 306.17
d493 7 185,364 185,569 0.041 399.17
d493 9 151,786 151,801 0.007 216.67
si535 3 145,359 = 79.17
si535 5 241,800 241,825 0.007 289.17
si535 7 194,976 = 190.33
si535 9 90,693 = 303.17
pa561 3 8289 = 45.67
pa561 5 12,825 12,850 0.104 552.17
pa561 7 13,331 13,339 0.031 491.33
pa561 9 8952 9027 0.320 451.50
u574 3 110,715 = 35.50
u574 5 175,475 175,795 0.088 391.50
u574 7 192,895 = 307.50
u574 9 146,604 146,660 0.012 407.83
rat575 3 20,322 = 28.17
rat575 5 32,400 32,435 0.054 379.17
rat575 7 34,734 34,770 0.039 459.17
rat575 9 24,770 = 344.00
p654 3 103,929 = 410.33
p654 5 167,230 167,305 0.013 346.83
p654 7 195,797 195,801 0.000 729.33
p654 9 197,333 197,353 0.002 366.50
d657 3 146,739 = 51.17
d657 5 231,660 = 696.00
d657 7 263,072 = 858.17
d657 9 207,622 = 512.33
u724 3 125,730 = 57.50
u724 5 200,555 200,880 0.095 1281.50

32 H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33
problem pr152, a = 5, the BBEA has provided a solution better than
the best known solution. The seventh column shows the percent-
age of error defined as 100� ð�f � fbest�knownÞ=fbest�known, where �f is
the average of the objective function value of the solution yielded
by the BBEA in the 6 runs of the problem. When the BBEA yields
the best known solution in all runs, there is no error, hence the sev-
enth column is empty. For the problem pr152, a = 5 this error is
negative, meaning that the BBEA provides a better solution. For
the problems in which the best known result has not been
achieved in all the six runs, the error ranges from 0.001% to
0.125%, which is a remarkably close fit. The average computing
time in seconds in the six runs is shown in the eighth column. It
ranges from 0.20 to 40.88 seconds, with an average of
7.17 seconds.

Table 3 presents the data that allow us to compare the two evo-
lutionary algorithms, the RKEA and the BBEA. The first and second
columns show the names of the problems. Note that Renaud et al.
[25] restrict their tests to 52 benchmark instances which had been
exactly solved by Labbé et al. [17], hence only these benchmark
problems are included. The third and the sixth columns display
the percentage of error as defined above. Notice that the RKEA re-
sults were obtained by successively running the algorithm five
times, whereas the BBEA was run six times. The fourth and the sev-
enth columns present the minimum deviation defined as
100 � (fbest � fbest�known)/fbest�known, where fbest is the best value of
the objective function yielded by the corresponding algorithm.
When the corresponding algorithm yields the optimum solution
in all runs, there is no error, hence the %Error column is empty.
Similarly if the algorithm reaches the optimum solution in any
run, the minimum deviation column is empty. Finally, the fifth
and the eighth columns show the average computing times for
the algorithms RKEA and BBEA, respectively. Original computing
times for the RKEA have been divided by the correcting factor
b = 4. It should be noted that the RKEA was stopped after 5 succes-
sive iterations without improvement, whereas for the BBEA the
number of successive iterations without improvement was estab-
lished at 50 if a = 5, 7, 9.

Summarizing data in Table 3, in 49 out of 52 instances, the BBEA
reaches the optimum solution in all the six runs. The RKEA pro-
vides the optimum in all the five runs in 29 out of the 52 instances
and reaches the optimum in at least one of the five runs in 41 out of
the 52 instances. Moreover, the average minimum deviation from
the optimum is 0.0026 and 0.0996, respectively for the BBEA and
the RKEA. Also, the average of the percentage of error is 0.0034
against 0.1906. Finally, concerning the computing times, the aver-
age (per run) computing time is 7.378 against 36.560. Hence, we
can conclude that the BBEA outperforms the RKEA.

4.3. Solving larger problems

Taking into account the efficiency of the BBEA when applied to
solving instances of the RSP with a number of nodes between 50
and 200, we have considered it useful to study its performance
in larger problems. These RSP instances have been derived from
the EUC-2D and EXPLICIT TSPLIB problems tsp225 to rat783 fol-
lowing the same idea as in [17,22]. We have used the same algo-
rithm configuration and the same termination condition
described in the previous subsection. Again, each problem has been
solved six times.

The results are presented in Table 4. The first and second col-
umns indicate the names of the problem. The third column indi-
cates the objective function value of the best solution obtained in
the six runs of each problem. Similarly, the fourth column displays
the maximum of the objective function value of the solution pro-
vided by the BBEA in the six runs of each problem. The = symbol
means that both values are equal. The fifth column shows the per-

Table 4 (continued)

Name a Min Max % Error Time (second)

u724 7 220,301 220,709 0.066 1237.50
u724 9 167,025 167,266 0.047 798.00
rat783 3 26,418 = 54.17
rat783 5 42,490 42,645 0.143 1346.17
rat783 7 46,789 46,841 0.056 1156.33
rat783 9 33,636 33,660 0.024 1135.50

H.I. Calvete et al. / European Journal of Operational Research 231 (2013) 22–33 33
centage of error computed as 100� ð�f � fminÞ=fmin, where fmin is the
value contained in column three and �f is the average of the objec-
tive function values of the six solutions. Finally, the last column
displays the average computing time involved in seconds.

Notice that for most of the smaller problems, the BBEA provides
the same solution in all the six runs. When the algorithm does not
provide in all the six runs the same solution, the percentage of er-
ror ranges from 0.000 to 0.320, thus confirming the accuracy of the
algorithm. Moreover, the computing time ranges from 4.33 sec-
onds to less than 10 minutes for most problems. Only some prob-
lems with more than 650 nodes need up to 23 minutes to provide a
solution. Confirming the results obtained in the previous subsec-
tion, we have also observed that applying the additional improve-
ment LKH is only of interest for a = 3. For problems with a = 5,7,9
there are no differences whether the LKH is applied or not except
for a = 5 and the problems si535, rat575 and rat783 in which there
are slight differences. In problem si535-5, the minimum computed
is 241,700, in problem rat575-5 it is 32,395 and in problem rat783-
5 it is 42,485.

5. Conclusions

A fast and efficient evolutionary algorithm for the RSP has been
presented in this paper. It is based on a new formulation of this
problem as a binary bilevel programming problem with one leader
and two independent followers. The algorithm is based on an
encoding scheme which handles the nodes on the ring. A computa-
tional study has allowed us to conclude that applying local search
after the usual crossover and mutation operators vastly improves
the performance of the algorithm. Also, the computational results
show that the algorithm outperforms the heuristic algorithms pro-
posed in the literature in terms of the number of benchmark prob-
lems which are solved optimally. In fact, in 92.74% of benchmark
problems, the best known result in the literature has been matched
in the six runs. Moreover, for one of the test problems, the algo-
rithm has provided a solution better than the best known solution
in all the six runs. The computing time can be considered very
short (it ranges from 0.20 to 40.88 seconds, with an average of
7.17 seconds). In fact the computing times are much lower than
those reported in the literature, even when we take into account
the correcting factor due to the different characteristics of the com-
puters used. The algorithm has also been tested on a set of larger
benchmark problems (up to 783 nodes) and the computational re-
sults are very satisfactory in terms of accuracy and computing
time. Future work involves the application of the underlying ideas
of the problem reformulation proposed in this paper to other com-
binatorial problems. Sharing the decision process can help to im-
prove the computing times in solving the problems.
Acknowledgments

The authors gratefully acknowledge the anonymous referees for
their valuable suggestions to improve the presentation of the
paper.

References

[1] M. Affenzeller, S. Wagner, S. Winkler, A. Beham, Genetic algorithms and
genetic programming: modern concepts and practical applications, Chapman
& Hall/CRC, 2009.

[2] R. Baldacci, M. Dell’Amico, Heuristic algorithms for the multi-depot ring star
problem, European Journal of Operational Research 203 (1) (2010) 270–281.

[3] R. Baldacci, M. Dell’Amico, J.J. Salazar González, The capacitated m-ring star
problem, Operations Research 55 (6) (2007) 1147–1162.

[4] J.F. Bard, Practical Bilevel Optimization, Algorithms and Applications, Kluwer
Academic Publishers, Dordrecht, Boston, London, 1998.

[5] J. Bean, Genetic algorithms and random keys for sequencing and optimization,
Journal of Computing 6 (1994) 154–160.

[6] H.I. Calvete, C. Galé, Linear bilevel multi-follower programming with
independent followers, Journal of Global Optimization 39 (3) (2007) 409–417.

[7] H.I. Calvete, C. Galé, Linear bilevel programs with multiple objectives at the
upper level, Journal of Computational and Applied Mathematics 234 (4) (2010)
950–959.

[8] H.I. Calvete, C. Galé, Modeling and solving linear bilevel problems with
multiple objectives at the lower level, Omega - The International Journal of
Management Science 39 (1) (2011) 33–40.

[9] R. Chion, T. Weise, Z. Michalewicz (Eds.), Variants of Evolutionary Algorithms
for Rear-World Applications, Springer, Berlin, 2012.

[10] B. Colson, P. Marcotte, G. Savard, An overview of bilevel programming, Annals
of Operations Research 153 (2007) 235–256.

[11] S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers.,
Dordrecht, Boston, London, 2002.

[12] T.C.S. Dias, G.F. de Sousa Filho, E.M. Macambira, L.A.F. Cabral, M.H.C. Fampa, An
efficient heuristic for the ring star problem, in: C. Alvarez, M. Serna (Eds.),
Experimental Algorithms, Lecture Notes in Computer Science, Springer Verlag,
2006, pp. 24–35 (No. 4007).

[13] K. Helsgaun, Effective implementation of the Lin–Kerninghan traveling
salesman heuristic, European Journal of Operational Research 126 (2000)
106–130.

[14] J.H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI, 1975.

[15] D.S. Johnson, L.A. McGeoch, Experimental analysis of heuristics for the stsp, in:
G. Gutin, A. Punnen (Eds.), The Traveling Salesman Problem and Its Variations,
Kluwer Academic Publishers, Dordrecht, 2002, pp. 369–443.

[16] S. Kedad-Sidhoum, V.H. Nguyen, An exact algorithm for solving the ring star
problem, Optimization 59 (1) (2010) 125–140.

[17] M. Labbé, G. Laporte, I. Rodríguez Martín, J.J. Salazar González, The ring star
problem: Polyhedral analysis and exact algorithm, Networks 43 (3) (2004)
177–189.

[18] G. Laporte, A concise guide to the traveling salesman problem, Journal of the
Operational Research Society 51 (2010) 35–40.

[19] A. Liefooghe, L. Jourdan, E.G. Talbi, Metaheuristics and cooperative approaches
for the bi-objective ring star problem, Computers and Operations Research 37
(6) (2010) 1033–1044.

[20] S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling
salesman problem, Operations Research 21 (2) (1973) 498–516.

[21] Z. Michalewick, Genetic Algorithms + Data Structures = Evolution Programs,
third ed., Springer, Berlin, 1996.

[22] J.A. Moreno Pérez, J.M. Moreno Vega, I. Rodríguez Martín, Variable
neighborhood tabu search and its application to the median cycle problem,
European Journal of Operational Research 151 (2) (2003) 365–378.

[23] Z. Naji-Azimi, M. Salari, P. Toth, An integer linear programming based heuristic
for the capacitated m-ring-star problem, European Journal of Operational
Research 217 (1) (2012) 17–25.

[24] G. Reinelt, Tsplib – a traveling salesman problem library, Journal of Computing
3 (1991) 376–384.

[25] J. Renaud, F.F. Boctor, G. Laporte, Efficient heuristics for median cycle
problems, Journal of the Operational Research Society 55 (2) (2004) 179–186.

[26] L. Simonetti, Y. Frota, C.C. de Souza, The ring-star problem: a new integer
programming formulation and a branch-and-cut algorithm, Discrete Applied
Mathematics 159 (16) (2011) 1901–1914.

[27] R. Tanese, Distributed genetic algorithms, in: J.D. Schaffer (Ed.), Proceedings of
the 3rd International Conference on Genetic Algorithms, Morgan Kaufmann,
1989, pp. 434–439.

http://refhub.elsevier.com/S0377-2217(13)00412-8/h0005
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0005
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0005
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0005
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0010
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0010
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0015
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0015
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0020
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0020
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0020
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0025
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0025
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0030
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0030
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0035
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0035
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0035
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0040
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0040
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0040
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0045
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0050
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0050
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0055
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0055
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0055
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0060
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0065
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0065
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0065
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0070
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0070
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0070
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0075
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0080
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0080
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0085
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0085
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0085
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0090
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0090
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0095
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0095
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0095
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0100
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0100
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0105
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0110
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0110
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0110
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0115
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0115
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0115
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0120
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0120
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0125
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0125
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0130
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0130
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0130
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0135
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0135
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0135
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0135
http://refhub.elsevier.com/S0377-2217(13)00412-8/h0135

	An efficient evolutionary algorithm for the ring star problem
	1 Introduction
	2 A bilevel formulation for the RSP
	3 BBEA: A bilevel programming based evolutionary algorithm to solve the RSP
	3.1 Chromosome encoding and population handling
	3.2 Crossover, mutation and local search
	3.3 Fitness evaluation and survivor selection

	4 Computational results
	4.1 Selecting the configuration of the algorithm
	4.2 Comparing the BBEA with the results provided in the literature
	4.3 Solving larger problems

	5 Conclusions
	Acknowledgments
	References

