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1. Introduction

Spanning tree problems with degree-related objective functions
or constraints are widely studied in the field of network design. In
such problems, we generally look for spanning trees that optimize
or respect certain properties related to the degree of the vertices, in
order to model cost factors or restrictions deriving from the under-
lying real-world applications.

In the Minimum Branch Vertices Problem (or MBV), we look for
the spanning tree with the minimum number of vertices (called
branch vertices) with a degree higher than two.

This problem has great relevance, for instance, in the context of
multicast on optical networks. On such networks, the optical signal
can be split and therefore sent from a source to multiple destina-
tions by using an appropriate network device (switch). Multicast
communications can therefore be performed through a spanning
tree of the network (light-tree), by placing a switch on each branch
vertex. For several reasons (such as budget constraints or signal
quality preservation, among others) it can be important to deter-
mine the spanning tree which requires the minimum number of
switches, that is, the optimal solution for the MBV problem.

Indeed, many switch devices can only duplicate laser beams;
therefore, the actual number of devices to be located on a branch
vertex is related to the degree of the node. For this reason, the
problem of minimizing the degree sum of the branch vertices of
any spanning tree of the network (Minimum Degree Sum Problem
or MDS) has been proposed in the literature.

However, as can be noted from Fig. 1, if d(u, T) is the degree of a
branch node that is used to propagate information, the exact num-
ber of required devices is d(u, T) � 2. More in general, in this con-
text, the optimization problem consists in minimizing the degree
sum of the branch vertices less the cardinality of the set of branch
vertices multiplied by two. In this paper we show for the first time
that this problem, which models the considered underlying appli-
cation more accurately than MDS, is equivalent to the well known
Minimum Leaves Problem (ML), i.e. the problem of finding the span-
ning tree with the minimum number of degree-1 vertices. This will
be proved in Section 2.

The aim of this paper is therefore to propose ML as a relevant
problem in the field of optical network design and to show that
it is closely related to MDS and MBV, by demonstrating some the-
oretical properties linking their three objective functions. These
objectives are also pursued by presenting a unified memetic algo-
rithm that makes use of a single set of rules to perform crossover,
mutation and local search operations for the three problems. An
extensive experimental analysis proves the effectivity of the pro-
posed approach.

MBV has been first introduced in Gargano, Hell, Stacho, and
Vaccaro (2002) where the problem was shown to be NP-Hard.
In Carrabs, Cerulli, Gaudioso, and Gentili (in press) the authors
present four different mathematical formulations and compare
the results of different relaxations, solving the lagrangian dual
by means of a standard subgradient method and an ad hoc finite
ascent algorithm. In Gargano and Hammar (2003) and Gargano,
Hammar, Hell, Stacho, and Vaccaro (2004), the authors give
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Fig. 1. Example subtree. Switches s1, . . . ,s4 need to be located on node u to transmit information from t to v1, . . . ,v5.
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conditions for the existence of spanning spiders (i.e. spanning tree
containing at most one branch vertex) and, more in general,
spanning trees with a bounded number of branch vertices. An-
other problem related to MBV is the degree-constrained minimum
spanning tree. Given an edge-weighted graph G = (V, E) and a va-
lue b(i) P 1, "i 2 V, the aim is to find a spanning tree with min-
imum weight such that the degree of each node i is bounded by
b(i). In Ribeiro and de Souza (2002), the authors solve the prob-
lem by presenting a VNS metaheuristic that embeds a Variable
Neighborhood Descent (VND) strategy for local search. An
improvement of this algorithm is described in de Souza and
Martins (2008). The new algorithm uses guiding strategies based
on the Second Order algorithm in the shaking phase and the
Skewed approach to avoid degeneration into a multistart heuris-
tic. A branch-and-cut method for solving the problem is dis-
cussed in Caccetta and Hill (2001). In Duhamel, Gouveia, Moura,
and Souza (2011), the authors present a generalization of the prob-
lem which considers a non-linear stepwise cost function on
every node. They present two linear programming formulations
as well as a hybrid GRASP/VND metaheuristic embedding a Path
Relinking strategy applied at the end of each GRASP iteration.
MDS has been presented and analyzed in Cerulli, Gentili, and
Iossa (2009), which also contains some mathematical formula-
tions and heuristic procedures for both MBV and MDS. Other
heuristic approaches for MBV and MDS have been recently pro-
posed in Sundar, Singh, and Rossi (2012). The ML problem was
proven to be NP-Hard and hard to approximate in Lu and Ravi
(1996). In Salamon and Wiener (2008), the authors introduce
some approximation algorithms for the related problem of max-
imizing the number of internal nodes (of course, the two prob-
lems have identical optimal solutions). In Fernandes and
Gouveia (1998), given an edge-weighted graph and a natural
number k P 1, the authors study the problem of finding the
minimum weight spanning tree with exactly k leaves. Two
mathematical formulations derived from the minimum weight
spanning tree problem as well as upper bounding and lower
bounding schemes are presented.

The sequel of the paper is organized as follows. Section 2
contains the formal definition of the studied problems, and the
demonstrations of several relations among them. Section 3
introduces some mathematical formulations for each of the three
problems, and Section 4 describes the memetic algorithm that
we propose to solve them. Section 5 includes the results of the
extensive computational tests we performed to compare our
memetic approach with the mathematical formulations solved by
means of the CPLEX solver. Finally, Section 6 presents some final
remarks.
2. Problems definitions and relations

2.1. Notation

Let G = (V, E) be a connected undirected input graph, and T = (V,
E0) be a subgraph of G. Let V(T)i # V, i P 0 be the set of vertices
with degree i in T. Moreover, define V(T)B = Vn{V(T)1 [ V(T)2}; that
is, if T is a spanning tree, V(T)B is the set of its branch vertices.

Moreover, for each j 2 V, let d(j, T) be the degree of j in T. Note
that if j 2 V(T)i, then d(j, T) = i. Finally, for each set of vertices
X # V, let D(X, T) be the degree sum of the vertices of X in T
ðDðX; TÞ ¼

P
j2Xdðj; TÞÞ.

In order to better clarify the introduced notation, consider the
tree T in Fig. 2. We have that V(T)1 = {a, b, c, d, h}, V(T)2 = {g},
V(T)3 = {e}, V(T)4 = {f}, V(T)B = {e, f}. Moreover, for example, d(g,
T) = 2, D({a, b, f}, T) = 6, D(V(T)B, T) = D({e, f}, T) = 7.

2.2. Definitions

We can now formally define the three problems studied in this
paper.

Minimum Branch Vertices Problem (MBV).
Find a spanning tree T of G such that the number of branch ver-
tices is minimized, that is, such that the set V(T)B has the min-
imum cardinality.
Minimum Degree Sum Problem (MDS).
Find a spanning tree T of G such that the degree sum of the
branch vertices is minimized, that is, such that D(V(T)B, T) is
minimized.
Minimum Leaves Problem (ML).
Find a spanning tree T of G such that the number of degree-1
vertices is minimized, that is, such that the set V(T)1 has the
minimum cardinality.



Fig. 2. Example tree T.
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2.3. Relations among the problems

In Cerulli et al. (2009) the authors proved that, though being
strictly related, MDS and MBV are not equivalent. This was shown
by presenting an example graph admitting two distinct optimal
solutions for MBV, one of which is also optimal for MDS, while
the other is not. However, it was not proved whether an optimal
solution for MDS is always optimal for MBV. Here we provide evi-
dence that this is not true, and therefore that optimal solutions for
the two problem can be completely distinct.

Consider the example graph in Fig. 3(a). The optimal solution
for the MBV problem consists in a spanning tree with a single
branch vertex, as shown in Fig. 3(b). However, the optimal solution
value of MDS for this graph is six, that is also the degree sum of the
two branch vertices of the tree shown in Fig. 3(c), which of course
is not an optimal solution for MBV.

It can also be easily shown that the ML problem is not equiva-
lent to neither MBV nor MDS. For example, given the graph in
Fig. 4(a), the optimal solution value for MBV is one, and the optimal
solution value for MDS is five; Fig. 4(b) shows an optimal tree for
both the problems. This solution has five degree-1 vertices, while
the optimal ML solution value for this instance is four; the related
optimal solution is shown in Fig. 4(c). This solution is not optimal
for the other two problems, having two branch vertices with a total
degree sum equal to six.

Now, consider the following propositions:

Proposition. Given a connected undirected graph G = (V, E) and a
spanning tree T = (V, E0) of G, the following equation holds:

DðV ; TÞ ¼ 2jV j � 2: ð1Þ
Proof. Since any spanning tree T of G has exactly jVj � 1 edges and
any edge of T increases the degree of two nodes by one, if follows
that
Fig. 3. MBV and MDS a
DðV ; TÞ ¼ 2jE0j ¼ 2ðjV j � 1Þ ¼ 2jV j � 2: ð2Þ

h

Proposition. Given a connected undirected graph G = (V, E) and a
spanning tree T = (V, E0) of G, the following equation holds:

DðVðTÞB; TÞ ¼ 2jV j � 2� jVðTÞ1j � 2jVðTÞ2j: ð3Þ
Proof. It is straightforward to observe that
DðVðTÞB; TÞ ¼ DðV ; TÞ � DðVðTÞ1; TÞ � DðVðTÞ2; TÞ; ð4Þ
DðVðTÞ1; TÞ ¼ jVðTÞ1j; ð5Þ
DðVðTÞ2; TÞ ¼ 2jVðTÞ2j: ð6Þ

By substituting (1), (5) and (6) inside (4), we obtain (3). h
Proposition. Given a connected undirected graph G = (V, E) and a
spanning tree T = (V, E0) of G, the following equation holds:

jVðTÞ1j ¼ DðVðTÞB; TÞ � 2jVðTÞBj þ 2: ð7Þ
Proof. By reformulating (3) we have
jVðTÞ1j ¼ 2ðjV j � jVðTÞ2jÞ � 2� DðVðTÞB; TÞ; ð8Þ

it is also easy to note that

jV j � jVðTÞ2j ¼ jVðTÞBj þ jVðTÞ1j: ð9Þ

By substituting (9) in (8) and reformulating, we obtain (7). h

We can use (7) to show that ML is a problem of interest in the
field of optical network design. As already said in Section 1, many
switch devices can only duplicate light signals. Consider a span-
ning tree T = (V, E0) which is used for multicast communications
on a graph G = (V, E). Let u be a given vertex which is reached by
the signal; no switch devices are needed in u if d(u, T) = 1 (i.e., u
is a leaf) or d(u, T) = 2 (u just propagates the signal coming from
its parent in T to its child). If u is a branch vertex, the signal enter-
ing in u must be propagated to its d(u, T) � 1 P 2 children; without
loss of generality let us call them v1, . . . ,vd(u, T)�1. As exemplified in
Fig. 1, this can be accomplished using d(u, T) � 2 devices (s1, . . . ,sd(u,

T)�2): the signal is sent from u to s1 and each si propagates it to vi

and to either si+1 if i < d(u, T) � 2 or vi+1 if i = d(u, T) � 2. By iterating
this reasoning for each branch vertex, we have that the number of
required switch devices is D(V(T)B, T) � 2jV(T)Bj, which is the right
hand side of (7) minus a constant factor of 2. Therefore ML can be
used to find the spanning tree which requires the minimum num-
ber of switch devices.
re not equivalent.



Fig. 4. MBV, MDS and ML are not equivalent.
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2.3.1. Unified objective function
The relations among the three problems can be further high-

lighted by rewriting their objective functions in terms of a para-
metric unified objective function, as we will show in the following.

The MBV objective function can be reformulated as

min jVðTÞBj ¼minðjV j � jVðTÞ1j � jVðTÞ2jÞ; ð10Þ

since jVj is a constant value,

min jVðTÞBj ¼ �maxðjVðTÞ1j þ jVðTÞ2jÞ þ jV j: ð11Þ

Moreover, using (3) the MDS objective function can be reformulated
as

min DðVðTÞB; TÞ ¼minð2jV j � 2� jVðTÞ1j � 2jVðTÞ2jÞ; ð12Þ

since 2jVj � 2 is a constant value,

min DðVðTÞB; TÞ ¼ �maxðjVðTÞ1j þ 2jVðTÞ2jÞ þ 2jV j � 2: ð13Þ

Finally, it is also easy to note that the ML objective function can be
reformulated as

min jVðTÞ1j ¼ �max�jVðTÞ1j: ð14Þ

We can then use the following objective function to find optimal
solutions for the three problems

maxðajVðTÞ1j þ bjVðTÞ2jÞ; ð15Þ

where

� for MBV: a = 1, b = 1;
� for MDS: a = 1, b = 2;
� for ML: a = � 1, b = 0.
3. Mathematical formulations

We present three mathematical formulations for each of the
three considered problems. To impose the selection of a spanning
tree T of the input graph, two formulations for each of the prob-
lems are flow-based, while the remaining three use the well-
known Miller–Tucker–Zemlin (MTZ) subtour elimination con-
straints (see Miller, Tucker, & Zemlin, 1960). The formulations for
MBV were originally proposed in Carrabs et al. (in press). Formula-
tions proposed in the literature for problems that impose hard con-
straints on node degrees, such as the degree-constrained spanning
tree problem, cannot be naturally adapted to the problems pre-
sented in this work. The section also presents a mixed integer-con-
tinuous relaxation for each model. The formulations are defined on
directed graphs, therefore we consider a directed version of G that
contains both arcs (u, v) and (v, u) for each edge (u, v) 2 E; let
Gd = (V, Ed) be this graph. An arbitrary node s 2 V is selected as root
node of T.

The models are presented in Sections 3.1–3.3 while relaxations
are discussed in Section 3.4.
3.1. MBV formulations

In Sections 3.1–3.3, the three formulations for MBV are pre-
sented and analyzed.
3.1.1. MBV Singlecommodity (SC) formulation

min
X
v2V

yv ; ð16Þ

s:t:
X
ðu;vÞ2Ed

xuv ¼ 1 8v 2 V n fsg; ð17Þ

X
ðu;vÞ2Ed

xuv ¼ n� 1; ð18Þ

X
ðs;vÞ2Ed

fsv �
X
ðv;sÞ2Ed

fvs ¼ jV j � 1; ð19Þ

X
ðv;uÞ2Ed

fvu �
X
ðu;vÞ2Ed

fuv ¼ �1 8v 2 V n fsg; ð20Þ

X
ðv;uÞ2Ed

xvu þ
X
ðu;vÞ2Ed

xuv 6 dðv ;GÞyv þ 2 8v 2 V ; ð21Þ

xuv 6 fuv 6 ðjV j � 1Þxuv 8ðu;vÞ 2 Ed; ð22Þ
yv 2 f0;1g 8v 2 V ; ð23Þ
xuv 2 f0;1g 8ðu; vÞ 2 Ed; ð24Þ
f uv P 0 8ðu;vÞ 2 Ed: ð25Þ

Variables xuv, fuv "(u, v) 2 Ed determine whether (u, v) is part of T
and the amount of flow passing through it, respectively. Each bin-
ary variable yv "v 2 V is equal to 1 if v is a branch vertex.

The objective function (16) minimizes the number of branch
vertices. Constraints (17) make sure that each vertex except the
source has exactly one parent in T, while Constraints (18) make
sure that exactly n � 1 arcs are selected in the solution. Constraints
(19) and (20) are flow conservation constraints, imposing that ex-
actly jVj � 1 flow units are produced in s and one of them is re-
tained by each node in V n{s}. Constraints (21) impose vertex v to
be a branch if its degree is greater than two in the tree; note that
the value of yv is unconstrained if d(v, T) 6 2, however in this case
it will be set to 0 by the objective function. Finally, Constraints (22)
make sure that there is a positive amount of flow only on arcs that
belong to T.
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3.1.2. MBV Multicommodity (MC) formulation

min
X
v2V

yv ; ð26Þ

s:t: ð17Þ; ð18Þ; ð21Þ; ð23Þ; ð24Þ;X
ðv ;uÞ2Ed

f k
vu �

X
ðu;vÞ2Ed

f k
uv ¼ 0 8k 2 V ; v 2 V n fsg; v – k; ð27Þ

X
ðs;vÞ2Ed

f k
sv �

X
ðv ;sÞ2Ed

f k
vs ¼ 1 8k 2 V n fsg; ð28Þ

X
ðk;vÞ2Ed

f k
kv �

X
ðv ;kÞ2Ed

f k
vk ¼ �1 8k 2 V n fsg; ð29Þ

f k
uv 6 xuv 8k 2 V ; ðu;vÞ 2 Ed; ð30Þ

f k
uv P 0 8k 2 V ; ðu;vÞ 2 Ed: ð31Þ

For each (u, v) 2 Ed, k 2 Vn{s}, flow variable f k
uv is equal to 1 if a unit

of flow produced by s and targeted to k passes through (u, v) (that is,
if (u, v) is part of the path from s to k in the solution), 0 otherwise.
Constraints (27)–(29) are a disaggregated version of the flow conser-
vation constraints, imposing that w produces one unit of flow for
each k 2 V n{s}, and that any unit of flow entering into a node v and
targeted to k is absorbed if v = k, while is forwarded to a different
node otherwise. Constraints (30) impose that the units of flow can
only pass though arcs that are included into the solution.

3.1.3. MBV Miller–Tucker–Zemlin (MTZ) formulation

min
X
v2V

yv ; ð32Þ

s:t: ð17Þ; ð18Þ; ð21Þ; ð23Þ; ð24Þ;
ts ¼ 0; ð33Þ
tv P 1 8v 2 V n fsg; ð34Þ
ðjV j � 2Þxvu þ jV jxuv þ tu 6 tv þ ðjV j � 1Þ 8ðu;vÞ 2 Ed; ð35Þ
tv 2 f0;1; . . .g 8v 2 V : ð36Þ

Variables tv contain the values of a labeling function defined on
the nodes of Gd. The idea underlying MTZ constraints is to assign
to the root s the smallest label (as imposed by Constraints (33) and
(34)) and to impose that for each arc (u, v) selected to be part of T ver-
tex u has a smaller label than v. More in detail, Constraints (35) en-
sure that if xuv = 1, then tv = tu + 1, and are a lifted version proposed in
Desrochers and Laporte (1991) of the original MTZ constraints.

3.2. MDS formulations

With respect to the MBV formulations, an additional set of vari-
ables zv is needed in order to take into account the degree of the
branch vertices. The models use the constraints of the corresponding
MBV formulations to build a spanning tree, as well as Constraints
(21) to identify branch vertices. Moreover, Constraints (38) are used
by the three models to impose zv P d(v, T) if yv = 1 and therefore v is a
branch vertex, leaving it unconstrained if yv = 0. The objective func-
tion (37) minimizes the sum of variables zv and therefore will im-
pose zv = d(v, T) for the branch vertices, 0 otherwise.
3.2.1. MDS Singlecommodity formulation

min
X
v2V

zv ; ð37Þ

s:t: ð17Þ—ð25ÞX
ðv ;uÞ2Ed

xvu þ
X
ðu;vÞ2Ed

xuv 6 zv þ 2� 2yv 8v 2 V ; ð38Þ

zv P 0 8v 2 V : ð39Þ
3.2.2. MDS Multicommodity formulation

min
X
v2V

zv ; ð40Þ

s:t: ð17Þ; ð18Þ; ð21Þ; ð23Þ; ð24Þ; ð27Þ—ð31Þ; ð38Þ; ð39Þ:
3.2.3. MDS Miller–Tucker–Zemlin formulation

min
X
v2V

zv ; ð41Þ

s:t: ð17Þ; ð18Þ; ð21Þ; ð23Þ; ð24Þ; ð33Þ—ð36Þ; ð38Þ; ð39Þ:
3.3. ML formulations

In the ML formulations, variables yv are used to represent
whether the vertices are leaves or not in T. Again, constraints to de-
fine a tree structure are retained. Constraints (43) ensure that
yv = 1 if d(v, T) = 1. The value of yv is not constrained if it is not a
leaf, however since the objective function (45) minimizes the
sum of yv variables, it will be set to 0.

3.3.1. ML Singlecommodity formulation

min
X
v2V

yv ; ð42Þ

s:t: ð17Þ—ð20Þ; ð22Þ—ð25Þ;X
ðv;uÞ2Ed

xvu þ
X
ðu;vÞ2Ed

xuv þ yv P 2 8v 2 V : ð43Þ
3.3.2. ML Multicommodity formulation

min
X
v2V

yv ; ð44Þ

s:t: ð17Þ; ð18Þ; ð23Þ; ð24Þ; ð27Þ—ð31Þ; ð43Þ:
3.3.3. ML Miller–Tucker–Zemlin formulation

min
X
v2V

yv ; ð45Þ

s:t: Eqs: ð17Þ; ð18Þ; ð23Þ; ð24Þ; ð33Þ—ð36Þ; ð38Þ; ð39Þ; ð43Þ:
3.4. Relaxations

For all the presented formulations, we take into account a
mixed integer-continuous relaxation, obtained by relaxing inte-
grality on xuv variables.

Furthermore, as already done for example in Akgün and Tansel
(2011) and Carrabs et al. (in press), the bounds returned by the
relaxations are improved by adding the following set of
constraints:

xuv þ xvu 6 1 8ðu;vÞ 2 Ed; u < v: ð46Þ
4. Memetic algorithm

Memetic algorithms combine population-based metaheuristics
(such as genetic or other evolutive algorithms) and more tradi-
tional local search schemes. The idea is to obtain a good compro-
mise between the respective strengths of these approaches, in
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particular with respect to diversification to explore new regions of
the search space, and intensification of the search in promising re-
gions. For a survey on memetic algorithms for discrete optimiza-
tion, refer to Hao (2012).

Our memetic algorithm (or MA in the following) combines a ge-
netic algorithm with a local search step.

Genetic algorithms (GA) are randomized metaheuristic tech-
niques based on the biological process of natural selection that
have been successfully applied to many combinatorial optimiza-
tion problems. A genetic algorithm emulates the evolutionary pro-
cess on a population composed of solutions (chromosomes). While
starting populations are often created randomly, new individuals
are iteratively formed by recombining together two or more older
chromosomes, or by perturbing a single one; the best chromo-
somes have generally better chances of being selected in these
steps. Therefore, new solutions are likely to inherit good character-
istics from old solutions, and, by repeating this process over a suf-
ficient number of generations, eventually near-optimal solutions
can be reached. For an introduction to genetic algorithms, see for
example (Reeves, 2010). Genetic algorithms have been applied
with success on Spanning Tree problems; see, for example, (Neu-
mann, 2007; Zhou & Gen, 1999).

The main elements that must be provided in order to imple-
ment a GA are:

� A representation scheme for each chromosome. Our algorithm
considers only feasible solutions, therefore each chromosome
is a spanning tree and is represented internally as a list of its
edges.
� A function to evaluate each chromosome (fitness function). Our

algorithm evaluates the chromosomes using the parametric
objective function (15). Depending on the problem on which
we intend to focus, the appropriate values for parameters a
and b are used.
� Rules to derive new solutions, by combining two parent solu-

tions (crossover) and by perturbing a single individual (muta-
tion). Our crossover and mutation operators are described in
Sections 4.2 and 4.3 respectively.
� Termination criteria for the procedure. In our case, the algo-

rithm ends when a given number of iterations without
improvements has been performed.

A high level outline of the procedure is given in Algorithm 1.
Each step reported in Algorithm 1 will be explained in detail in
the remaining part of this section. The algorithm description makes
use of various input parameters, whose setting during our experi-
mental analysis is discussed in Section 5.

Algorithm 1. Memetic Algorithm
1: Build a random population P
2: while iterations without improvements 6max-it do
3: choose two parent chromosomes T1, T2

4: perform crossover on T1 and T2 obtaining T3

5: perform a mutation on T3 obtaining T 03
6: perform a local search starting from T 03, obtaining T 003
7: insert T 003 in P substituting an older chromosome Ti

8: end while
4.1. Parents selection and child insertion policies

As reported in Line 3 of Algorithm 1, at each iteration, two chro-
mosomes are selected for the crossover phase. Our algorithm uses
tournament selection, which is a scheme commonly used by GAs in
order to promote good individuals.

We implemented a simple tournament selection which can be
summarized as follows:

� Select randomly h chromosomes from the population P; let T1

be the one with the best fitness function value among them.
� Select randomly h

2 chromosomes from Pn{T1}; let T2 be the one
with the best fitness function value among them.
� Select T1, T2 as parents for the crossover phase.

Ties are broken randomly. The idea underlying the imple-
mented tournament scheme is to promote the selection of at least
a parent chromosome with a good fitness value, while a higher de-
gree of diversity is left for the selection of the other parent. Of
course, the chosen value for parameter h influences both the con-
vergence rate of the algorithm and its capacity to escape from local
minima.

The new chromosome T 003 that will result after the phases re-
ported in Lines 4–6 will replace an older one; therefore the popu-
lation size jPj is constant throughout every phase of the algorithm.
The substituted element is also selected using a tournament
mechanism:

� Select randomly k chromosomes from P; let Ti be the one with
the worst fitness function value among them.
� Substitute Ti with T 003 in P.

4.2. Crossover

The crossover operator builds a new individual from two par-
ents. In classical GAs, crossover is performed by simple recombina-
tion of the information contained in the parents. For example,
supposing that in a GA chromosomes are represented as lists,
two children might be obtained from two parents by swapping be-
tween them all the data contained after a given position (crossover
point). Our crossover, instead, creates new individuals which inher-
it ‘‘good’’ characteristics from the parents, but are not a direct
recombination of them.

More in detail, given the parent chromosomes T1 and T2, we
start by defining two weight functions w1 and w2 on the edges of
the input graph G = (V, E); each wi is based on the characteristics
of Ti. Finally, the new spanning tree T3 is built by finding a Mini-
mum Spanning Tree of the weighted graph Gw = (V, E, w), where

wðu; vÞ ¼ w1ðu; vÞ þw2ðu;vÞ 8ðu; vÞ 2 E:

The aim of the weight functions is to penalize or promote the
selection in T3 of the edges of E, using three key ideas:

� Strongly promote the selection of chains coming from the par-
ents; this is an obvious choice since we would like to obtain
the highest possible number of vertices with degree 62 in the
final solution. The longer is a chain, the more its edges are
promoted.
� promote the selection of edges connected to vertices that are

branch in the parents; as the procedure converges, some branch
vertices are likely to be perceived as required. Edges actually
belonging to the parents are more promoted than new edges
connected to such vertices.
� Penalize the selection of edges connected to vertices with

degree 2 in the chains, in order to avoid new branch vertices.

These guidelines might suggest both to penalize and to promote
the same edge. We represent penalizing and promoting weights for
each edge (u, v) and parent Ti = (V, Ei) using three positive input
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parameters M, X, x, such that M > 4X and X > 4x. More in detail,
wi is computed as follows:

1. Initialize wi(u, v) = 0 "(u, v) 2 E.
2. For each u 2 V(Ti)B, add �X to wi(u, v) "(u, v) 2 Ei.
3. For each u 2 V(Ti)B, add �x to wi(u, v) "(u, v) 2 EnEi.
4. Remove all edges connected to branch vertices from Ti, obtain-

ing the forest Fi ¼ V ; E0i
� �

.
5. For each ðu;vÞ 2 E0i, let l(u, v) be the length of the chain it

belongs to in Fi, and add �Ml(u, v) to wi(u, v).
6. For each u 2 V(Fi)2, add 2x to wi(u, v) 8ðu;vÞ 2 E n E0i.

A positive value for wi(u, v) means that the selection of (u, v) is
penalized according to parent Ti, while a negative value means that
it is considered a useful edge (recall that the weights are used to
compute a minimum spanning tree).

The steps described above are illustrated on the tree shown
in Fig. 5. In particular, Fig. 5(b) shows the negative weights
applied to promote edges connected to the branch vertex 2.
In Fig. 5(c) the negative weights associated with chains are
added, and finally Fig. 5(d) includes the penalizing weights
for the edges connected to nodes with degree 2 in Fi. It can
be noted that each edge with a positive weight would add
at least one branch vertex if included in Fi; in particular, the
promoting weight assigned to (2,6) for being connected to
branch vertex 2 is counterbalanced by its penalization deriving
from vertex 6.

The chosen values for parameters x, X and M are reported in
Section 5. By imposing M > 4X, we make sure that edges belonging
to chains are always promoted with respect to other edges (the
smallest weight that can be assigned to an edge that is not in a
chain is �4X, associated to an edge belonging to both parents
and connected to two branch vertices in each of them). For a sim-
ilar reasoning, we also impose X > 4x.
4.3. Mutation

Given the new individual T3 resulting from the crossover, the
mutation phase operates by applying two different mutation oper-
ators M1, M2. M1 is always executed, while M2 is executed after M1

with probability pm2. The operators work as follows:
Fig. 5. Weighting function exampl
� M1: A leaf node of T3 is randomly selected and connected to
another random node. The resulting cycle is broken randomly
obtaining a new spanning tree.
� M2: Randomly eliminates two edges, trying to promote the

elimination of branch vertices by repeating the random choice
up to a fixed number of iterations, itM2 . The resulting three com-
ponents are rejoined by randomly selecting two new edges,
obtaining the new tree.

Mutation M2 is illustrated in Fig. 6, where two branch vertices
are removed by selection edges (2,4) and (5,8), and a new branch
vertex is created when edges (1,7) and (6,9) (supposing that they
exist in G) are chosen to rejoin the three components.
4.4. Local search

At the end of each iteration of the genetic algorithm, a local
search is performed on the new chromosome T 03 obtained after
the mutation phase. Similarly to the M1 operator, each iteration
of the local search tries to switch one of the edges belonging to
the current solution with a new one; however, instead of selecting
edges randomly, we look for an improvement of the original tree.
The improvement is evaluated according to a heuristic function
that promotes the introduction of new nodes whose degree is
not greater than two, and that strongly penalizes the introduction
of new branch vertices. Additional edges added to old branch ver-
tices are also penalized, using values that are inversely propor-
tional to the node degree. More in detail, given a subgraph H of
G, we define the following functions:

1. Let im(x, H) be a function defined on the nodes of H, such that
im(x, H) is equal to: 0 if d(x, H) 6 2, M if d(x, H) = 3, 1/d(x, H) if
d(x, H) > 3.

2. Let IM((u, v), H) be a function defined on the edges of H such
that IM((u, v), H) = im(u, H) + im(v, H).

Let (u0, v0) be an edge of T 03; moreover, let ðu00;v 00Þ R T 03 be an
edge of G with an endpoint in each of the two connected compo-
nents that would be created by removing (u0, v0) from T 03. We use
the IM function to evaluate if replacing (u0, v0) with (u00, v00) would
be a convenient choice as follows:
e for the crossover operation.



Fig. 6. Mutation M2 example.
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1. Let H ¼ T 03 [ fðu00;v 00Þg.
2. If IM((u00, v00), H) < IM((u0, v0), H) then T 003 ¼ H n fðu0;v 0Þg is an

improvement of T 03.

Each iteration of the local search looks for an improvement, by
considering all the possible edge substitutions that can be used to
obtain a new tree. Each iteration accepts the first improvement
found, and the local search phase ends when no improvements
are available.

Two local search iterations are shown in Fig. 7. Starting from the
tree with two branch vertices in Fig. 7(a), removing (3,4) and
rejoining the components using edge (8,9) (supposing that it exists
in the graph) produces a new tree that is an improvement of the
previous one, as shown in Fig. 7(b). Note that due to the weighting
function, the degree of vertex 3 is lowered from 4 to 3, even if the
degree of vertex 9 increases from 4 to 5. On the resulting tree,
assuming that edge (5,7) also exists in the graph, it allows to de-
crease again the degree of vertex 3 by removing edge (3,5), as illus-
trated in Fig. 7(c), producing the tree with a single branch vertex
shown in Fig. 7(d).
5. Computational results

In this section, we describe the computational results that we
obtained by applying the proposed MA for the three problem vari-
ants on a set of test instances. The SC and MTZ mathematical for-
mulations introduced in Section 3 were used to obtain optimal
solutions as well as lower bounds for the more complex instances.
The MC formulations results are not reported since they did not
provide solutions in reasonable computational time for most of
the considered test instances.
5.1. Instances description

In order to test the performance of our memetic algorithm, we
considered a wide set of test instances which belong to two main
groups, identified as Type 1 and Type 2 in the following.

The instances belonging to the first group (Type 1), generated
according to parameters originally proposed in Carrabs et al. (in
press) for the MBV problem, are designed to be sparse in order to
require a significant number of branch vertices. We generated in-
stances with 14 different values for the number of nodes jVj be-
tween 150 and 1000. The number of edges is generated
according to the following formula: ðjV j � 1Þ þ i� 1:5�

ffiffiffiffiffiffi
jV j

pl mj k

with i = 1, 2, 3, 4, 5. We randomly generated five instances for each
choice of V and i, therefore the total number of Type 1 instances is
350.

Furthermore, in order to test our approaches on more chal-
lenging scenarios, we defined instances belonging to Type 2.
The instances are generated by merging together short subtours
composed of four nodes each. The construction of such in-
stances starts from a first four nodes tour (see Fig. 8(a)). Then,
two non-connected nodes of the tour are randomly selected,
connected and used to construct a new subtour together with
two new nodes, as illustrated in Fig. 8(b). The construction
goes on by iteratively adding couple of nodes which are used
to produce new tours together with randomly chosen couple
of nodes belonging to previous tours. Couple of nodes already
belonging to the graph could be randomly chosen more than
once, therefore, not every iteration connects two previously dis-
joint nodes (as in the example in Fig. 8(c)), leading to diversity
in terms of nodes degree and overall number of edges. The
construction of tours ends when the desired number of nodes
jVj is reached; finally, jVj/2 random edges are added to the
graph to further increase diversity. Instances were generated
for 10 different values of jVj between 50 and 1500, generating
10 instances for each choice, for a total of 100 Type 2
instances.
5.2. Parameters and testing environment

Regarding our memetic algorithm, after a tuning phase we
chose the following values for the parameters, which seemed to
provide a good tradeoff among solution quality and computational
time: jPj = 1000, max-it = 25,000, h = 8, k = 3, M = 21, X = 5, x = 1,
pm2 = 0.5, itm2 = 5. The MA has been coded in C++. The IBM ILOG
CPLEX 12 solver was used to solve the mathematical formulations,
considering a time limit of 1 hour for each instance. All tests have
been executed on an Intel Xeon 2Ghz workstation with 8 gigabytes
of RAM.



Table 1
Genetic/models comparison for MBV on Type 1 instances.

Instances Memetic Model

jVj Sol Time Sol Time # Inst Type

150 23.28 5.29 22.80 3.74 25 EX-MTZ
160 25.68 6.04 25.04 41.53 25
170 27.25 6.99 26.67 22.51 24
180 29.96 7.49 29.08 8.60 25
190 32.60 8.43 32.12 79.13 25
200 34.43 9.04 33.61 4.48 23
250 45.64 16.09 44.60 13.16 25
300 58.56 22.67 57.36 14.15 25
350 70.65 33.73 69.35 123.57 23
400 83.32 47.27 81.84 105.92 25
450 96.39 55.26 94.74 188.58 23
500 109.96 67.84 108.00 285.76 24
750 207.21 130.37 203.11 680.47 19

1000 278.23 275.73 272.32 243.11 23 MR-SC

Fig. 7. Tree improvements in local search.

(a) (b) (c)
Fig. 8. Type 2 instances construction example.
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5.3. Results

Tables 1–3 present comparison between MA and mathematical
formulations results on Type 1 datasets, while Tables 4–6 summa-
rize these results for Type 2 datasets. Results are averages of the
objective function values and computational times in seconds over
all instances with the same value of jVj.

For each scenario, comparisons are made with respect to exact
results if one among the SC or MTZ models allow to obtain more
than half of the optimal solutions within the considered time limit
(that is, if at least 13 out of 25 exact solutions were obtained for
Type 1 instances, or 6 out of 10 for Type 2). Otherwise, the lower
bounds given by the mixed relaxations are used for the compari-
sons. The SC relaxation provided better or equal lower bounds with
respect to the MTZ one every instance (see the discussion in Sec-
tion 5.3.1); therefore, the mixed relaxation of SC is used, unless it
fails to provide more than half of the solutions of a given scenario
within the 1-hour time limit, in which case the MTZ relaxation is
used instead. The specific formulation used for the comparison
on each scenario is reported under the type column in Tables 1–
6, where EX and MR stand for exact and mixed relaxation, respec-
tively. The number of actual instances solved by the considered
model for each scenario is reported in the # inst column. When this
number is lower than the size of the scenario, averages are only
evaluated on the instances that were solved by the model.

We now analyze the results on Type 1 instances, as reported in
Tables 1–3. On such instances, the MTZ formulation is overall able
to find more solutions than the SC one and converges in faster
times, therefore it was used for our comparisons on exact solu-
tions. In particular, it is able to find 311 out of 325 optimal solu-
tions on the instances with up to 750 nodes for MBV, 293 out of
300 optimal solutions on the instances with no more than 500
nodes for MDS, and all the 350 optimal solutions for ML. It is then
possible to accurately verify the performances of the memetic
algorithm on these instances. It can be noted that the MA returns
very high quality solutions for all the three problems. More in de-
tail, for MBV, on instances up to jVj = 500 the gap among the aver-
age solutions returned by the MA and the optimal ones (that have
on average up to 108 branch vertices) is never higher than 2 branch



Table 5
Genetic/models comparison for MDS on Type 2 instances.

Instances Memetic Model

jVj Sol Time Sol Time # Inst Type

50 8.80 0.98 8.70 0.42 10 EX-SC
100 22.90 3.06 22.50 3.35 10
200 45.30 12.25 43.10 64.47 10
300 70.90 31.14 67.70 134.50 10
400 95.00 54.57 89.44 724.32 9
500 134.17 84.70 126.50 438.35 6

750 192.70 247.22 171.48 486.82 10 MR-SC
1000 293.00 481.89 260.20 1569.58 6

1250 355.80 743.00 316.90 14.37 10 MR-MTZ
1500 409.00 1342.58 361.10 23.82 10

Table 2
Genetic/models comparison for MDS on Type 1 instances.

Instances Memetic Model

jVj Sol Time Sol Time # Inst Type

150 98.04 5.99 96.92 1.77 25 EX-MTZ
160 107.44 6.74 106.52 3.29 25
170 115.46 7.46 114.38 6.14 24
180 125.64 8.50 124.56 10.12 25
190 136.64 9.51 135.60 16.45 25
200 141.60 10.54 140.32 19.22 25
250 191.64 16.56 190.12 31.70 25
300 247.21 23.54 245.21 45.86 24
350 289.43 34.25 286.78 28.10 23
400 346.60 48.35 343.96 21.54 25
450 398.83 63.48 395.83 47.46 23
500 450.33 73.02 446.71 298.56 24

750 844.00 156.46 835.00 675.76 16 MR-SC

1000 1154.48 297.29 1142.57 369.17 24 MR-MTZ

Table 3
Genetic/models comparison for ML on Type 1 instances.

Instances Memetic Model

jVj Sol Time Sol Time # Inst Type

150 50.52 5.23 50.40 0.14 25 EX-MTZ
160 55.40 5.78 55.12 0.09 25
170 58.52 6.73 58.20 0.17 25
180 64.92 7.77 64.60 0.22 25
190 70.72 8.08 70.36 0.90 25
200 73.08 9.38 72.80 0.12 25
250 98.16 14.74 97.68 0.18 25
300 124.40 24.85 123.36 0.31 25
350 147.12 28.83 146.00 0.25 25
400 175.72 36.43 174.52 0.32 25
450 198.76 54.02 197.64 0.48 25
500 228.24 60.47 226.44 0.33 25
750 437.00 99.10 437.00 0.38 25

1000 595.00 180.40 595.00 0.71 25

Table 4
Genetic/models comparison for MBV on Type 2 instances.

Instances Memetic Model

jVj Sol Time Sol Time # Inst Type

50 1.60 0.93 1.60 0.18 10 EX-SC
100 3.60 2.91 3.50 1.01 10
200 6.80 10.79 6.30 3.75 10
300 10.20 26.99 8.90 42.96 10
400 14.10 45.58 11.70 111.18 10
500 18.63 77.69 15.88 461.56 8
750 27.13 156.67 22.13 1047.16 8

1000 39.00 371.63 32.20 526.39 10 MR-SC
1250 50.22 536.68 41.56 454.50 9
1500 57.20 1001.68 47.20 987.00 10

Table 6
Genetic/Models comparison for ML on Type 2 instances.

Instances Memetic Model

jVj Sol Time Sol Time # Inst Type

50 7.40 0.97 7.40 0.15 10 EX-MTZ
100 17.30 2.86 17.30 0.75 10
200 32.40 9.70 32.20 2.51 10
300 51.50 20.66 51.30 7.26 10
400 66.30 38.95 65.70 21.19 10
500 88.50 62.21 88.00 24.01 10
750 136.00 153.02 135.20 124.00 10

1000 196.50 438.70 194.75 466.89 8
1250 256.17 615.09 252.83 826.64 6

1500 284.90 1143.89 274.20 2077.56 10 MR-SC
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vertices. With jVj = 750, the MA averages solutions that are 2.01%
higher than the average optimum, while on instances with
jVj = 1000, where the comparison is obtained with the lower
bounds given by MR-SC, this percentage gap is equal to 2.17%.

The percentage gap is always consistently below 1.16% for the
MDS problem, even for scenarios when relaxed solutions have to
be taken into account, and below 0.85% for the ML problem.

Regarding computational times, it can be noted that they are
reasonable for the MA procedure regardless of the considered
problem, averaging under 6 seconds for the smaller instances, un-
der 300 seconds for the bigger ones for MBV and MDS, and under
200 seconds for the ML problem. However, while the mathematical
models for the MBV and MDS problem become more burdensome
as the size of the problem increases, and cannot be used in reason-
able time for the highest values of jVj as shown in Tables 1 and 2,
ML could be solved very efficiently using the proposed models,
therefore our proposed memetic approach results to be unneces-
sary for this problem on Type 1 instances. This motivated our
search for more challenging test scenarios, which led to the defini-
tion of Type 2 instances.

As shown in Tables 4–6, the MA reported good solutions on all
scenarios where comparisons with exact solutions could be made.
The EX-SC model was used for the first 7 scenarios for MBV and for
the first 6 scenarios for MDS, since for several datasets EX-MTZ re-
turned optimal solutions for less instances (see the discussion in
Section 5.3.1). The maximum average gap among exact and heuris-
tic solutions is 5 for MBV, 7.67 for MDS and 3.34 for ML (for scenar-
ios where optimal solutions average to 22.13, 126.50 and 252.83,
respectively). Solution quality is particularly high for ML, whose
percentage gap is equal to 1.32% for jVj = 1250 and below 1% for
smaller instances.

In terms of running time, the MA averages under 1 seconds for
the smaller instances, and up to 1001.68 seconds for MBV,
1342.58 seconds for MDS and 1143.89 seconds for ML on instances
with jVj = 1500. For instances with up to 1000 nodes, the average
running time is never higher than 500 seconds. The mathematical
models become ineffective to find optimal solutions on scenarios
with jVj = 1000 for MBV, jVj = 750 for MDS and jVj = 1500 for ML.

5.3.1. Mathematical formulations comparison
In Tables 7–9 we compare the performances of the MTZ and

Single-Commodity formulations on some sample scenarios belong-
ing to Type 2. More in detail, we report the results for the instances
with jVj = 400 and 500 for MBV and MDS, and of the ones with
jVj = 500 and 700 for ML. The results on these scenarios are largely



Table 7
MBV models comparison.

Instances EX MR

jVj MTZ time SC time MTZ time SC time MTZ sol SC sol

400 6.57 30.79 0.45 7.61 11.00 11.00
TL 35.91 0.61 7.39 10.00 11.00
2.80 16.15 0.42 7.72 14.00 15.00
8.42 49.52 0.97 10.87 11.00 11.00

19.48 287.66 1.16 16.87 11.00 11.00
7.77 24.02 0.60 9.25 11.00 12.00
3.01 49.54 0.31 6.61 15.00 16.00
7.20 61.40 0.61 13.39 9.00 9.00

2019.27 262.93 1.29 14.83 10.00 10.00
55.14 293.86 2.10 35.44 11.00 11.00

500 TL 2588.00 6.52 149.39 15.00 16.00
TL 375.16 0.77 15.06 14.00 16.00
TL TL 1.52 65.80 15.00 15.00
47.21 141.47 0.90 14.38 19.00 20.00

5.57 93.08 0.85 12.91 16.00 16.00
12.55 236.37 0.81 8.44 14.00 14.00

3.20 61.47 0.76 22.16 16.00 16.00
3.43 42.16 0.84 11.17 16.00 16.00

13.78 154.74 1.02 22.11 13.00 13.00
TL TL 2.06 397.23 13.00 13.00

Table 9
ML models comparison.

Instances EX MR

jVj MTZ time SC time MTZ time SC time MTZ sol SC sol

500 3.91 8.20 0.80 10.81 83.00 91.00
13.90 18.27 1.16 20.92 66.00 76.00
14.99 68.88 1.34 4.52 70.00 73.00
19.47 7.86 0.37 7.03 87.00 93.00
29.23 15.99 0.47 14.04 86.00 89.00
45.50 15.93 0.82 8.79 96.00 98.00
12.10 6.49 0.44 25.19 120.00 122.00
23.53 42.76 0.51 30.90 81.00 83.00
28.49 24.75 0.70 6.99 66.00 71.00
49.02 103.98 0.54 13.67 72.00 76.00

750 652.66 246.11 1.36 89.45 105.00 117.00
63.77 116.53 1.51 40.28 113.00 122.00
72.75 137.10 1.83 23.21 135.00 140.00
24.13 220.95 1.12 70.31 118.00 120.00
62.68 40.90 1.91 25.41 151.00 153.00
77.28 52.39 1.02 79.91 138.00 145.00
42.41 53.79 1.04 78.99 136.00 143.00
28.91 54.70 1.24 15.37 141.00 143.00

123.48 141.92 1.12 373.97 121.00 122.00
91.91 204.26 1.53 68.61 114.00 118.00

Table 8
MDS models comparison.

Instances EX MR

jVj MTZ time SC time MTZ time SC time MTZ sol SC sol

400 TL 409.71 1.05 11.96 80.00 80.01
TL 162.35 0.78 18.08 81.00 83.01
2637.52 1031.34 0.75 8.54 77.50 79.51
50.83 136.32 1.02 32.64 79.00 79.04
270.22 3269.10 2.25 152.45 86.00 86.05
61.98 37.81 0.85 10.77 95.00 97.02
72.27 163.65 0.76 14.66 122.00 124.02
510.03 278.05 1.11 37.79 75.00 75.05
TL TL 7.96 217.97 74.00 74.10
3081.47 1030.58 6.51 157.21 77.00 77.03

500 TL TL 24.49 388.49 120.00 120.01
TL 723.12 1.32 51.70 96.00 100.08
TL TL 16.18 657.21 99.00 99.02
72.33 84.30 1.11 14.19 125.00 127.04
TL 1285.86 1.18 133.28 118.00 118.04
111.58 168.69 2.33 14.14 123.00 123.02
59.44 314.38 0.95 150.06 151.00 151.01
111.52 53.72 1.35 17.31 112.00 112.03
2841.39 TL 6.01 17.78 92.50 92.52
TL TL 11.97 281.21 99.00 99.03
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representative of the behavior of the models on the whole Type 2
dataset.

For each problem and each instance, we compare the running
time required to solve the MTZ and SC mathematical models, as
well as their mixed relaxations (EX and MR columns, respectively).
For the mixed relaxations, we also compare the quality of the re-
turned lower bounds. A TL value means that the 1-hour time limit
was reached.

It can be seen that the MTZ formulation returns fewer optimal
solutions than SC for MBV and MDS, which led to the use of this
second formulation for the comparisons in Tables 4 and 5.

For the ML problem, both formulations are able to find all the
solutions within the time limit, with MTZ overall converging
slightly faster.

Regarding the mixed relaxations, it can be noted that, as previ-
ously said, for all the problems the SC formulation returns equal or
better bounds, at the expense of longer computational times.
6. Conclusions

In this paper, we show that finding a spanning tree with the
minimum number of leaves is a relevant problem in the context
of multicast communications on optical networks. In particular,
we demonstrate that it can be used to model the problem of min-
imizing the number of required light-splitting devices more accu-
rately than two problems already proposed in the literature to
solve the same issue (namely, the Minimum Branch Vertices and
the Minimum Degree Sum Problems). Moreover, we propose a uni-
fied memetic procedure that makes use of a common set of rules to
produce accurate solutions for the three problems, as shown by our
computational tests.

Future research will be aimed at obtaining a better character-
ization of the similarities among the three problems, looking for
possible dominance relations under particular assumptions. Fur-
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ther efforts will be also spent at producing improved resolution ap-
proaches and test instances coming from real-world applications.
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