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a b s t r a c t

We consider the asymmetric bottleneck traveling salesman problem on a complete directed graph on n
nodes. Various lower bound algorithms are proposed and the relative strengths of each of these bounds
are examined using theoretical and experimental analysis. A polynomial time ⌈n=2⌉�approximation
algorithm is presented when the edge-weights satisfy the triangle inequality. We also present a very
efficient heuristic algorithm that produced provably optimal solutions for 270 out of 331 benchmark test
instances. Our algorithms are applicable to the maxmin version of the problem, known as the maximum
scatter TSP. Extensive experimental results on these instances are also given.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let G¼ ðV ; EÞ be a directed or undirected graph with n¼ jV j and
m¼ jEj. For each edge ði; jÞAE, a nonnegative cost cij is prescribed.
Without loss of generality, we assume that G is complete. The n�n
matrix C ¼ ðcijÞn�n is called the cost matrix. Let ΠðGÞ be the
collection of all (directed) Hamiltonian cycles in G. Then the
bottleneck traveling salesman problem (BTSP) [20] is to find a
Hamiltonian cycle (tour) in G whose largest edge cost is as small as
possible, i.e.

Minimize maxfcij : ði; jÞAHg

subject to HAΠðGÞ: ð1Þ

Akin to the traveling salesman problem (TSP), BTSP instances are
classified as either symmetric (i.e. cij ¼ cji for all i; jAV) or asym-
metric (i.e. cijacji for some i; jAV).

BTSP is a special case of the minmax combinatorial optimization
problem [37]. For a complete discussion on the complexity of the
BTSP we refer to the book chapter by Kabadi and Punnen [26]. In
particular, the BTSP is NP-hard, and, unless P¼NP, no polynomial
time ϵ�approximation algorithm exists for the problem for any
ϵ41 [14,33,43]. Much like the TSP, polynomial time approximation
algorithms with guaranteed performance ratios exist for BTSP on
specially structured problem data [6,14,22,26,33]. Moreover, sev-
eral special cases of the problem can be solved to optimality in
polynomial time [26].

Garfinkel and Gilbert discussed a branch and bound based exact
algorithm to solve the BTSP and reported computational results
with a construction heuristic on randomly generated problems of
sizes up to 100 nodes [18]. Timofeev [47] reported experimental
results on problems of similar size but with a heuristic algorithm.
Sergeev proposed a dynamic programming approach [45] while
Carpento et al. reported experimental results with a branch and
bound algorithm on problems of size up to 200 nodes [11].
Ramakrishnan et al. presented experimental results with a thresh-
old heuristic on 72 symmetric TSPLIB problems of size up to 783
cities [40] and Ahmad [1] reported experimental results using
algorithms based on lexicographic search for symmetric TSPLIB
instances with less than 300 cities. In a small computational study
with less than 100 cities, Ahmad [2] reported experimental results
on asymmetric BTSP instance using a lexicographic search based
algorithm. Very recently, LaRusic et al. [29] reported extensive
experimental results on the symmetric version of BTSP on almost
all available test problems (TSPLIB, Johnson–McGeoch random
instances, VLSI and National TSP instances up to 31,623 nodes)
and obtained optimal solutions for most of these instances.

In this paper, we focus on the asymmetric version of the BTSP
which is not thoroughly investigated in the literature. The best
known performance ratio of a polynomial time approximation
algorithm for the symmetric TSP with cost matrix satisfying
triangle inequality is 3

2 [12] whereas for the asymmetric TSP it is
Oðlog nÞ [17]. Reducing this gap is a well known open problem. In
the case of BTSP, it is well known that the symmetric version can
be approximated with a performance ratio of 2 whenever the edge
weights satisfy the triangle inequality [14,26,33] and this is the
best possible bound for a polynomial time algorithm (unless
P¼NP) for this class of cost matrices. For the asymmetric BTSP,
no polynomial time approximation algorithm with bounded
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performance ratio is known even with triangle inequality assump-
tion on the cost matrix. We give a polynomial time approximation
algorithm for asymmetric BTSP with performance ratio ⌈n=2⌉
whenever the edge costs satisfy the triangle inequality, and
generalize this result to the case where edge costs satisfying the
τ�triangle inequality.

Further, extending the algorithms for the symmetric version
reported in [29], we develop a binary search based heuristic for the
asymmetric BTSP and report results of extensive computational
experiments on all available benchmark test instances for the asym-
metric TSP. To the best of our knowledge, no such extensive
computational study on asymmetric BTSP is available in the literature.
Our algorithm produced optimal solutions for 270 out of 331
problems considered and this is achieved within a very reasonable
computational time. We establish optimality certificate in the major-
ity of instances by developing various lower bounding schemes that
produce very tight bounds. Extensive theoretical and experimental
comparisons of these lower bounds are also given. The optimality of
the remaining problems is established by an exact optimization
scheme which is obtained by modifying our heuristic algorithm.

The maxmin version of the BTSP is called the maximum scatter
traveling salesman problem (MSTSP) [5] which is defined as follows:

Maximize minfcij : ði; jÞAHg
subject to HAΠðGÞ: ð2Þ

Arkin et al. [5] showed that the symmetric version of MSTSP is
NP-Complete, and no constant-factor approximation algorithm
exists for the problem unless P¼NP. They also provided a
2-approximation algorithm for the MSTSP with a symmetric cost
matrix satisfying the triangle inequality and discussed applications
of the model in sequencing rivet operations when fastening sheets
of metal together in the aircraft industry among others. Kabadi and
Punnen [26] obtained a 2τ�approximation algorithm for the
MSTSP whenever the cost matrix satisfies the τ�triangle inequality
and this is the best possible bound for such cost matrices.

The MSTSP can be formulated as a BTSP using the transforma-
tion dij ¼M�cij where D¼ ðdijÞn�n is the cost matrix for the
equivalent BTSP and M is a sufficiently large number. While this
transformation preserves optimality, it does not preserve
ϵ�optimality. However, we show that the heuristic developed for
the BTSP works reasonably well in practice for the MSTSP under
this transformation.

The paper is organized as follows. Section 2 discusses approx-
imation algorithms for the BTSP. In Section 3 we consider lower
bounds for the asymmetric BTSP and Section 4 discusses our
primary heuristic algorithm, which can easily be modified into an
exact BTSP solver. Extensive computational results are reported
and discussed in Section 5. Section 6 presents computational
results on MSTSP, and concluding remarks are given in Section 7.

For any directed graph G δþ ðvÞ and δ�ðvÞ, respectively, denote
the in-degree and the out-degree of vertex v. Since we assume that
G is a complete digraph, an instance of BTSP is completely defined
by the cost matrix C. For that reason, we use the terminology BTSP
on G and BTSP on C interchangeably. Also, for simplicity, a tour in G
with cost matrix C is sometimes referred to as a tour in C. A lower
bound for a problem means a lower bound for the optimal
objective function value of the problem. Finally, for any spanning
subgraph S of G, we denote CmaxðSÞ ¼maxfcij : ði; jÞASg.

2. Approximation algorithms

Approximation algorithms for TSP is a thoroughly investigated
research area and the behavior of its symmetric and asymmetric
versions are quiet different in terms of approximability. When the
edge costs satisfy the triangle inequality, the symmetric version

has a 3
2�approximation algorithm [12] while the best known

performance ratio for the asymmetric version is Oðlog nÞ
[17,27,28]. The behavior of the BTSP in terms of approximability
appears even more intriguing. The symmetric version can be
approximated within a factor of 2 whenever the cost matrix
satisfies the triangle inequality and this is the best possible
performance bound (unless P¼NP). For the asymmetric version
no ϵ�approximation algorithm is reported in the literature for any
ϵ41 even if the edge costs satisfy the triangle inequality. It is easy
to see that no polynomial time approximation algorithm with a
data independent performance ratio exists for BTSP (unless P¼NP)
on an arbitrary cost matrix [33]. Thus we restrict our attention in
this section to asymmetric instances where the edge weights
satisfy the τ�triangle inequality. Note that a cost matrix
C ¼ ðcijÞn�n satisfies τ�triangle inequality if cijrτðcikþckjÞ for all
i; j; kAV .

The tth power of a graph (not necessarily complete) G is the
graph Gt ¼ ðV ; EtÞ, where ðu; vÞAEt whenever a path from u to v

exists in G with at most t edges.

Theorem 1. Let C be the cost matrix associated with a complete
digraph G satisfying τ�triangle inequality for some τ41

2 and let H0 be
an optimal solution to the BTSP on G. Let S be a spanning subgraph of
G such that CmaxðSÞrCmaxðH0Þ. If the graph St, 1rton and integer t,
contains a Hamiltonian cycle H, then

CmaxðHÞ
CmaxðH0Þ

r

t if τ¼ 1
τ

τ�1
2τt�1�τt�2�1
� �

if τ41

τ
τ�1

τt�1þτ�2
� �

if τo1

8>>>><
>>>>:

Theorem 1 above was originally proved by Kabadi and Punnen
[26] for the symmetric BTSP case. However, the proof is almost
identical for the asymmetric version and hence we skip the
detailed proof.

Our approximation algorithmwas inspired by the 2-approximation
algorithm for BTSP on a complete undirected graphs with edge-
costs satisfying the triangle inequality discussed in [33,26,14,22]. A
formal description of our approximation algorithm for BTSP on a
complete directed graph G is given below.

Algorithm Approx-BTSP:

� Step 1: Compute a bottleneck strongly connected spanning
subgraph S of G.

� Step 2: Find St for t ¼ ⌈n=2⌉.
� Step 3: Output any hamiltonian cycle in St.

To establish the complexity and performance ratio of algorithm
Approx-BTSP we use the following well known theorem of
Ghouilà-Houri [19].

Theorem 2 (Ghouilà-Houri [19]). If G is a directed graph on n
vertices and minfδþ ðvÞ; δ�ðvÞgZn=2 for every vertex vAG, then G
is Hamiltonian.

Theorem 3. Algorithm Approx-BTSP runs in polynomial time and
guarantees an ϵ�optimal solution for the asymmetric BTSP whenever
the edge-costs satisfy the τ�triangle inequality, where

ϵ¼

n
2

l m
if τ¼ 1;

τ
τ�1

2τ⌈n=2⌉�1�τ⌈n=2⌉�2�1
� �

if τ41;

τ
τ�1

τ⌈n=2⌉�1þτ�2
� �

if τo1:

8>>>>><
>>>>>:

Proof. Let H0 be an optimal solution to the BTSP on G. Since S is a
strongly connected spanning subgraph of G, we have CmaxðSÞr
CmaxðH0Þ. Thus by Theorem 1, the performance ratio holds. We now
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show that the algorithm is polynomially bounded. Step 1 can be
computed in Oðn2Þ time [35]. S⌈n=2⌉ [32] can be obtained in Oðn3Þ time
using an all-pair shortest path algorithm with unit edge costs. Schaar
and Wojda [44] guarantees that S⌈n=2⌉ is Hamiltonian and satisfies the
condition of Ghouilà-Houri's theorem. Bondy and Thomassen [9] gave
an Oðn4Þ algorithm for finding Hamiltonian cycles in graphs satisfying
the conditions of Theorem 2 [9]. Thus a Hamiltonian cycle in S⌈n=2⌉ can
be obtained in polynomial time. □

3. Lower bounds for the asymmetric BTSP

It is well known that an asymmetric TSP instance on n nodes
can be formulated as a symmetric TSP on 2n nodes [25]. Using a
somewhat similar transformation, Ramakrishnan et al. [40]
showed that an asymmetric BTSP instance on n nodes can be
formulated as symmetric BTSP instance on 2n nodes with an
additional constraint. We consider a variation of the transforma-
tion of Ramakrishnan et al. [40] where the additional constraint is
treated implicitly. This allows us to use known lower bounds for
the symmetric BTSP on asymmetric instances, as well as later in
the paper allows us to use symmetric TSP heuristics and solvers in
the construction of an asymmetric BTSP heuristic.

Consider an asymmetric BTSP instance on a directed graph
G¼ ðV ; EÞ with n vertices and cost matrix C. Construct the complete
undirected graph G ¼ ðV ; EÞ where V ¼ f1;2;…;n;nþ1;nþ2;
…;2ng. For each edge (i,j) of G create an edge ði; jþnÞ in G with
cost cij. Also introduce edges ði; iþnÞ for each iAV with cost �1.
The remaining edges are of weight 1. Thus the cost matrix
C ¼ ðcijÞ2n�2n of G is given by

cij ¼

�1 if i¼ jþn or j¼ iþn

ci;j�n if irn and j4n

ci�n;j if i4n andjrn

1 otherwise:

8>>><
>>>:

ð3Þ

The edges of cost �1 are called fixed edges in the sense that
they must be included in any symmetric BTSP solution on G to
make the transformation valid. Ramakrishnan et al. used an
additional constraint to enforce these fixed edges into a solution
[40]. We discuss how to force these edges into the solution later.
Any tour in the directed graph G with asymmetric cost matrix C
corresponds to a unique tour in the directed graph G with the
symmetric cost matrix C where all edges of cost �1 are included,
and vice versa. For i; jAf1;…;ng; ia j, let the edge ði; jÞ in G be
represented by the edge ði; jþnÞ in G. The fixed edges ði; iþnÞ in G
represent moving between the ‘out-edges’ and ‘in-edges’ of node i
in G. All other edges in G are of infinite cost so as to effectively
exclude them from consideration as they do not correspond to
valid tour in G.

Consider a tour π ¼ ðπ1;π2;π3;…;πnÞ of the asymmetric
instance. This corresponds to the tour π ¼ ðπ1;π2þn;π2;π3þn;

π3;…;πn;π1þnÞ in the symmetric instance (and vice versa). There-
fore, we have a one-to-one mapping between tours of the asym-
metric instance and tours of the symmetric instance containing all
the fixed edges and excluding any edges of weight 1. Moreover,
the BTSP objective values of π and π are identical. This transforma-
tion is effectively used in our heuristics for the BTSP discussed in
Section 4.

Let us now discuss some polynomial schemes to compute good
quality lower bounds for the optimal objective function of the
BTSP. Some of the lower bounds we discuss here are well known,
but we present them for the purpose of comparison and
completion.

3.1. 2-Max bound (2MB)

This simple bound, described in [11,40], finds the smallest in-
edge and out-edge costs incident on every node and selects the
largest of all these values over all nodes. It is clearly a lower bound
for the BTSP and is computed in O(m) time.

3.2. Bottleneck assignment problem (BAP) bound

The optimal objective function value of the bottleneck assign-
ment problem with cost matrix C is a lower bound for the BTSP
[11,18,39] on C. The BAP finds a permutation ϕ of f1;…;ng such
that max1r irnfciϕðiÞg is minimized, i.e.

minimize max
i ¼ 1;…;n

fciϕðiÞg

subject to ϕAΦðnÞ

where ΦðnÞ is the set of all permutations of f1;2;…;ng.
The BAP can be solved Oðm ffiffiffi

n
p

log kÞ time [3] using the binary
search version of the threshold algorithm, where k is the number
of distinct costs in C. This is the implementation we used in our
computational experiments. The best known algorithm for solving
the BAP is a combination of three algorithms as described in [10].

3.3. Bottleneck biconnected spanning subgraph problem (BBSSP)

The first algorithm to solve this problem was published by
Timofeev [47] and later an almost identical algorithm was pro-
posed independently by Parker and Rardin [33] and Sarvanov [43]
to solve this problem and its optimal objective function value gives
a good lower bound for the symmetric BTSP (see [29]). This simple
algorithm was used in our computational experiments which runs
in Oðm log nÞ time. The Oðmþn log nÞ algorithm by Punnen and
Nair [38] and an O(m) algorithm by Manku [31] however have
better worst case complexity.

The BBSSP bound can be applied on an asymmetric BTSP
instance after constructing the equivalent symmetric instance G
with cost matrix C as formulated by Eq. (3). The BBSSP on C gives a
lower bound on the optimal objective function value of the BTSP on
C. We denote this lower bound by BBSSPðC Þ.

One can also compute another lower bound by solving the
BBSSP on the symmetric relaxation Ĉ of the asymmetric cost
matrix C where Ĉ ¼ ðĉ ijÞn�n is defined as

ĉ ij ¼minfcij; cjig: ð4Þ
Let BBSSPðĈ Þ be the optimal objective function value of this

bottleneck problem. It is easy to verify that the BBSSPðĈ Þ is a lower
bound on the optimal objective function value of BTSP on C.

3.4. Bottleneck strongly connected spanning subgraph problem
(BSCSSP) bound

Since a directed Hamiltonian tour in G is strongly connected, the
optimal objective function value of BSCSSP on G with cost matrix C
gives a lower bound for the BTSP on G with cost matrix C. Punnen
[35] proposed an Oðminfmþn log n;m log nngÞ algorithm to solve
this problem, where log nn is the iterative logarithm of n, as well as
a simpler Oðm log kÞ implementation. For our experiments, we use
the simpler Oðm log kÞ implementation.

3.5. Bidirectional bottleneck path (BBP) bound

Carpaneto et al. [11] considered a lower bound for the asym-
metric BTSP using two bottleneck path computations as follows:
for any node iAV , find the tree of bottleneck paths T1 from i to
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every other node in V, as well as the tree of bottleneck paths T2 to i
from every other nodes in V. The maximum edge-weight in T1 and
T2, i.e. maxfcij : ði; jÞAT1 [ T2g, is a lower bound for the asymmetric
BTSP and this can be identified efficiently [36]. It is easy to see that
this bound is identical to the BSCSSP bound. We summarize this
observation in the following lemma for future reference.

Lemma 4. The BBP bound and the BSCSSP bounds are identical.

3.6. Strengthening the lower bounds

Many of the lower bounds discussed so far can be strengthened
by repeated applications of the following scheme on a sequence of
related graphs. For iAV and ði; jÞAE; ðk; iÞAE consider the graph Gi

jk
obtained by deleting all arcs incident on node i except (i,j) and (k,i).
Let βi

jk be a lower bound for BTSP on Gi
jk. Define

βi ¼minfβi
jk : j; kAV \fig; jakg:

Theorem 5. β¼maxiAVβ
i is a lower bound for the BTSP.

Proof. We first show that for any iAV , βi is a lower bound for the
BTSP on G. Let Fijk be the family of all hamiltonian cycles in Gi

jk.

These are precisely all the tours in G using edges (i,j) and (k,i). Then

ΠðGÞ ¼ ⋃
jAV ;ja i

⋃
kAV ;ka i;j

Fijk ð5Þ

By definition
βi
jkrmaxfcpq : ðp; qÞAHg for all HAFijk ð6Þ

Thus, in view of (5) we have
βirmaxfcpq : ðp; qÞAHg for all HAΠðGÞ ð7Þ
Since (7) is true for all iAV we conclude
β¼max

iAV
βirmaxfcpq : ðp; qÞAHg for all HAΠðGÞ □

Using Theorem 5, one may strengthen any of the lower bounds
discussed so far. For example, consider solving the BAP lower

bound on Gi
jk, where arcs not in Gi

jk are given a sufficiently large
cost so as to exclude them from consideration. Computing βi

requires solving the BAP Oðn3Þ times (once for each i; j; kAV), and
results in an overall complexity of Oðn5:5Þ time. Similar techniques
strengthen the BSCSSP or the BBSSP bounds in complexity Oðn5Þ.
However, a careful implementation exploiting the special proper-
ties of the lower bounds achieves significant computational
advantage. We illustrate this by showing that if βi

jk is used as the
BSCSSP lower bound (equivalently the BBP bound) on Gi

jk, then β
can be identified in Oðn3:792Þ time. We call the resulting strength-
ened lower bound the enhanced BBP bound or simply the
EBBP bound.

The algorithm for computing the EBBP bound works as follows.
For each node i, construct the graph Gi ¼ G\fig and solve the all-pair
bottleneck path problem on Gi. Let Pi be the resulting matrix of all-
pair bottleneck path distances in Gi. Using Pi the bottleneck values
of paths from node i to all other nodes in Gi

jk is easily identified by
scanning row j of Pi and comparing with cij. Likewise, the values of
bottleneck paths from all nodes in Gi

jk to node i are identified by
scanning column k of Pi and comparing with cki. Thus β

i
jk and hence

βi can be identified in Oðn2:792Þ time [48]. The value β is the largest
value of βi obtained. A formal description of the algorithm is given
below.

Theorem 6. Algorithm EBBPðG;CÞ correctly identifies the lower
bound β in Oðn3:792Þ time when βi

jk is the BBP lower bound in Gi
jk.

Proof. Let T1 be the tree of bottleneck paths from node i to all
other nodes in Gi

jk. Similarly, let T2 be the tree of bottleneck paths
from all nodes in Gi

jk to node i. Clearly

βi
jk ¼maxfcpq : ðp; qÞAT1 [ T2g: ð8Þ

Note that Pi is the all-pair bottleneck path matrix on Gi ¼ G\fig.
Then the jth row of Pi gives bottleneck distances from node j to all
other nodes in Gi. Now

αi
j ¼maxfPi

jl : lAV\fi; jgg
¼maxfcpq : ðp; qÞAT1�ði; jÞg

Algorithm 1. EBBPðG;CÞ.
Input: A graph G¼ ðV ; EÞ with cost matrix C.
Output: A lower bound on the BTSP objective value.
for iAV do

Gi←ðV\fig; E\fðu; vÞAE : u¼ i or v¼ igÞ; =n remove i from G n=

Pi← all� pairs� bottleneck� pathsðGiÞ;
=nPi is a matrix of bottleneck distances; i:e: row j of Pi

gives bottleneck path distances from jAV\fig to all other nodes in Gi: n=

for ði; jÞAE do

αi
j←maxfPi

jl : lAV\fi; jgg; =n max bottleneck edge from j n=

for ðk; iÞAE do

γik←maxfPi
lk : lAV\fi; kgg; =n max bottleneck edge to kn=

βi
jk←maxfαi

j; γ
i
k; cij; ckig;

������
end

��������������
end
βi←minfβi

jk : j; kAV\figg;

���������������������������������
end

β←maxfβi
: iAVg;

return β;
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Similarly, the kth column of Pi gives the bottleneck distances from
each node l of Gi to node k. Thus

γik ¼maxfPi
lk : lAV\fi; kgg

¼maxfcpq : ðp; qÞAT2�ði; kÞg

Hence, from Eq. (8) we have

βi
jk ¼maxfαi

j; γ
i
k; cij; ckig

Thus the algorithm correctly computes βi
jk;β

i and hence β.
To analyze the complexity, note that Pi can be identified in

Oðn2:792Þ time [48] for each iAV . All other computations for fixed i
takes Oðn2Þ time. Since these computations are repeated for each
iAV , the overall complexity of the algorithm is Oðn3:792Þ. □

In our computational testing of this algorithm we used a
variation of the Floyd–Warshal algorithm for all-pairs shortest
paths (see [3]) which has a worst case complexity of Oðn3Þ to
compute the matrix Pi. Using this algorithm in algorithm EBBPB(G,
C) results in a moderately higher complexity of Oðn4Þ, but with the
advantage of easy implementation.

3.7. Analysis of the lower bounds

Let us now examine the relative strengths of the lower bounds
discussed. Two lower bounds A and B are said to be non-dominated
if there exists instances where A4B and there exists instances
where B4A. The lower bound A dominates the lower bound B if
AZB for all instances of the asymmetric BTSP.

Theorem 7. The BSCSSP lower bound (equivalently the BBP lower
bound) dominates the BBSSPðC Þ bound.

Proof. Let δ be the optimal objective function value of the BSCSSP
bound on a graph G¼ ðV ; EÞ with cost matrix C. Thus the directed
graph G

!δ
¼ ðV ; EδÞ where Eδ ¼ fði; jÞAE : cijrδg is an optimal solu-

tion to the BSCSSP bound. Consider the undirected graph con-
structed from G

!δ
using the 2n-node symmetric transformation of

Eq. (3). Discard all arcs of cost 1 from this graph and call the
resulting graph G. Note that G is bipartite with the partite vertex
sets V1 ¼ f1;2;…;ng and V2 ¼ fnþ1;nþ2;…;2ng and has no arcs of
cost more than δ. It suffices to show that G is biconnected.
G must contain a cut-vertex r if it is not biconnected. Suppose

rAV1. Let G1 and G2 be two connected components of G\frg.
Then there exist vertices uþnAG1 and vþnAG2 such that edges

ðr;uþnÞ and ðr; vþnÞ are in G. By construction of G, G
!δ

must

contain edges (r,u) and (r,v). Since G
!δ

is strongly connected, it
must contain a path from u to r and a path from v to r. Thus there
must exist a path in G from u to rþn that does not contain r
and a path from v to rþn that does not contain r. Since r is a cut-
vertex, both u and v must be in the same component. Since uþn

and vþn are in different components, u, v are in the same
component, and ðu;uþnÞ and ðv; vþnÞ are the edges of G, this
shows that a cut vertex cannot belong to the set V1. The same logic
shows that a cut vertex cannot belong to the set V2, thus G must be
biconnected. □

Theorem 8. The EBBP lower bound dominates the 2MB, BSCSSP, BBP,
BBSSPðC Þ, and BBSSPðĈ Þ lower bounds.

Proof. Let S be an optimal solution to the BSCSSP bound. Since
each node of S will have at least one in-edge and one out-edge, the
BSCSSP bound is at least as good as the 2MB. Since the EBBP bound
is obtained by additional restriction on the BBP bound, it is as good
as the BBP bound. Since the BSCSSP bound and the BBP bound are
equivalent, the EBBP bound is at least as good as the BSCSSP bound.
Thus, in view of Theorem 7, the EBBP bound is at least as good as
the BBSSPðC Þ. It remains to show that EBBP lower bound dominates
the BBSSPðĈ Þ lower bound.
We prove this using the method of contradiction. If possible let

there exists an instance of BTSP, say on a graph G¼ ðV ; EÞ with cost
matrix C, such that the EBBP bound, say β, is strictly less than the
BBSSPðĈ Þ bound. Consider that the spanning subgraph Gβ consists
of all arcs in G with cost no more than β. By Lemma 4 Gβ is strongly
connected. Since β is less than the BBSSPðĈ Þ bound, Gδ must have a
cut-vertex, say i. Thus Gδ\fig will have at least two components. For
ði; jÞAE and ðk; iÞAE let Gi

jk be the subgraph of G obtained by
deleting all edges incident on i except (i,j) and (k,i) and let βi

jk be
the BBP (equivalently BSCSSP) lower bound on Gijk. Let βi ¼
minfβi

jk : j; kAV\fig; jakg ¼ βi
uv, say. Note that by definition

β¼maxfβi
: iAVg and hence βZβi

uv. Thus Gi
uv is a strongly con-

nected spanning subgraph of Gβ . Let w be a node which is not in
the same connected component of Gβ\fig as the node u. Then there is
no path from u to w in Gi

uv. This contradicts the strong connectivity
of Gi

uv and hence the result. □

Theorem 9. The BAP, BBSSPðC Þ, BSCSSP, BBP, and EBBP bounds
dominate the 2MB.

Proof. Let s¼ ðsð1Þ;sð2Þ;…; sðnÞÞ be an optimal solution to BAP
with objective function value z. Note that s generates a cycle cover
Q of G such that maxfcij : ði; jÞAQg ¼ z. Since Q contains all nodes of
G and each node has an incoming arc and an outgoing arc, 2MB
cannot be larger than z.
For a strongly connected graph, each vertex has at least one

incoming arc and at least one outgoing arc, the BSCSSP bound and
BBP bound are no worse than the 2MB. By Theorem 8 EBBP bound
dominates the 2MB.
Let B be an optimal solution to the BBSSP on G with cost matrix

C . (See the construction of G in Section 3.) Without loss of
generality assume that B contains all edges of cost �1. Thus each
vertex jþn, j¼ 1;…;n in B has an edge ði; jþnÞ; ia j incident on it
representing the incoming arc (i,j) at vertex j in G which also
represents the outgoing arc at vertex i in G. Since B is biconnected,

Table 1
Comparison of lower bounds.

2MB BAP BBSSPðC Þ BBSSPðĈ Þ BSCSSP BBP EBBP Complexity

2MB ¼ ▴ ▴ ✓ ▴ ▴ ▴ Oðn2Þ
BAP ◀ ¼ ✓ ✓ ✓ ✓ ✓ Oðn2:5Þ
BBSSPðC Þ ◀ ✓ ¼ ✓ ▴ ▴ ▴ Oðn2Þ
BBSSPðĈ Þ ✓ ✓ ✓ ¼ ✓ ✓ ▴ Oðn2Þ
BSCSSP ◀ ✓ ◀ ✓ ¼ ¼ ▴ Oðn2Þ
BBP ◀ ✓ ◀ ✓ ¼ ¼ ▴ Oðn2Þ
EBBP ◀ ✓ ◀ ◀ ◀ ◀ ¼ Oðn3:792Þ
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Table 2
Asymmetric BTSP lower bound summary on problem groups. The number listed under each bound name is the number of problems
that bound, which gave the tightest lower bound in that problem group.

Problem set (# of problems) 2MB BAP BBSSPðC Þ BBSSPðĈ Þ BSCSSP EBBP

coin (6) 0 0 6 1 1 6
crane (6) 4 4 0 4 6 6
disk (6) 6 6 0 5 6 6
rtilt (6) 2 2 0 2 6 6
shop (6) 5 5 0 5 6 6
stilt (6) 2 3 0 2 5 6
super (6) 6 6 5 6 6 6
balas (5) 0 0 0 0 5 5
tsplib: no ftv, r100 nodes (6) 1 1 2 2 5 6
tsplib: no ftv, 4100 nodes (4) 0 4 0 0 0 0
tsplib: ftv, r100 nodes (9) 7 7 1 7 8 9
tsplib: ftv, 4100 nodes (8) 2 8 0 2 2 3
ftv180 (1) 0 1 0 0 0 0
uk66 (1) 0 0 1 0 0 1
ran500 (5) 5 5 0 5 5 5
ran1000 (5) 5 5 0 5 5 5

Total (86) 45 57 15 46 66 76

Table 3
Asymmetric BTSP initial experimental results on selected problems.

Problem Size Opt. sol. p q Best gap (%) Avg gap (%) Worst gap (%) Avg time (s)

oin100.2 100 207 10 0 0.00 0.97 2.42 15.58
5 5 0.00 0.48 1.45 16.95

rtilt100.0 100 260,342 10 0 10.46 13.64 18.12 47.34
5 5 9.43 12.88 18.16 47.55

rtilt100.1 100 291,040 10 0 0.00 5.29 10.44 29.31
5 5 0.00 9.65 17.33 41.22

rtilt100.2 100 227,248 10 0 20.70 28.57 36.99 51.01
5 5 22.29 28.76 33.63 48.99

rtilt100.3 100 236,920 10 0 16.30 30.93 44.80 52.03
5 5 22.79 29.48 44.78 54.63

rtilt100.4 100 294,367 10 0 5.78 8.32 12.01 49.96
5 5 7.99 9.19 11.96 58.21

rtilt316.10 100 152,510 10 0 71.68 104.74 127.82 384.90
5 5 96.33 101.68 110.68 490.10

shop100.0 100 2232 10 0 0.00 0.16 1.16 8.06
5 5 0.00 0.06 0.58 5.57

shop316.10 316 2311 10 0 0.00 0.66 2.29 47.75
5 5 0.00 1.11 2.34 92.42

stilt100.0 100 382,208 10 0 3.72 11.20 23.61 43.25
5 5 7.43 11.20 20.96 45.81

stilt100.2 100 377,720 10 0 6.71 9.78 14.50 48.29
5 5 5.56 11.80 19.12 48.93

stilt100.3 100 401,976 10 0 1.88 9.81 22.74 44.22
5 5 2.24 7.04 19.50 42.77

stilt100.4 100 347,440 10 0 19.19 29.28 38.72 49.34
5 5 24.40 29.43 38.10 52.61

stilt316.10 316 226;504n 10 0 77.64 92.67 110.02 333.25
5 5 83.18 91.39 99.89 352.84

ftv55 55 64 10 0 0.00 0.78 4.69 2.00
5 5 0.00 0.63 3.13 2.35

ftv110 111 39 10 0 0.00 5.90 10.26 15.10
5 5 0.00 7.95 10.26 19.03

ftv120 121 39 10 0 10.26 10.26 10.26 25.65
5 5 0.00 5.38 10.26 16.85

ftv130 131 39 10 0 0.00 77.69 141.03 34.21
5 5 0.00 27.18 135.90 21.42

ftv140 141 41 10 0 109.76 124.88 129.27 65.83
5 5 0.00 86.10 129.27 53.34

ftv150 151 37 10 0 2.70 59.73 151.35 48.11
5 5 0.00 57.30 140.54 51.01

rbg323 323 12 10 0 16.67 26.67 50.00 86.75
5 5 16.67 20.00 50.00 94.78

rbg358 358 14 10 0 0.00 5.71 7.14 71.85
5 5 0.00 4.29 7.14 75.06

rbg403 403 20 10 0 5.00 7.00 15.00 94.72
5 5 5.00 5.50 10.00 110.60
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the degree of node i, i¼ 1;…;2n is at least 2, the BBSSPðC Þ is no
worse than the 2MB. □

Theorem 10. The following pairs of bounds are non-dominated:

(a) The BAP bound and any of the bounds BBSSPðĈ Þ, BBSSPðC Þ,
BSCSSP, BBP, or EBBP.

(b) The BSCSSP or BBP bound and the BBSSPðĈ Þ bound.
(c) The BBSSPðĈ Þ bound and the BBSSPðC Þ bound.
(d) The 2MB and the BBSSPðĈ Þ bounds.

Proof. Consider the following cost matrices:

C1 ¼

� 3 9 1 1
2 � 1 9 9
9 9 � 1 9
9 9 9 � 1
1 1 9 9 �

2
6666664

3
7777775
; C2 ¼

� 2 9 9 1
2 � 1 9 9
9 9 � 1 9
9 1 9 � 3
1 9 9 9 �

2
6666664

3
7777775
;

C3 ¼

� 1 3 3 3
3 � 1 2 3
1 3 � 3 1
3 3 1 � 3
2 3 3 1 �

2
6666664

3
7777775
; C4 ¼

� 3 3 1 1
3 � 3 1 3
2 1 � 1 3
3 3 3 � 3
3 3 1 1 �

2
6666664

3
7777775
:

The table below provides the lower bound values for each of these
four cost matrices.

Bound C1 C2 C3 C4

2MB 1 1 1 3
BAP 3 1 2 3

BBSSPðĈ Þ 1 2 2 1

BBSSPðC Þ 1 2 1 3
BSCSSP 1 2 1 3
EBBP 2 3 2 3
BTSP 3 3 3 3

Table 4

Complete asymmetric BTSP results (Part 1/2). Lower Bound (LB) algorithms: (a) 2MB, (b) BAP, (c) BBSSPðĈ Þ, (d) BBSSPðC Þ, (e) BSCSSP, (f) EBBP. Best/average/worst results
reported from 10 trials for each problem.

Problem Size Tight LBs Best LB Best LB time Best LB sol. Opt. sol. Best gap (%) Avg. gap (%) Worst gap (%) Avg. Bin. steps Avg. # LK calls Avg. time (s)

coin100.0 100 c f BBSSPðĈ Þ 0.00 253 253 0.00 0.00 0.00 0.00 2.50 0.97

coin100.1 100 c f BBSSPðĈ Þ 0.00 219 219 0.00 0.00 0.00 0.00 1.60 0.42

coin100.2 100 c f BBSSPðĈ Þ 0.00 203 207 0.00 0.48 1.45 10.80 46.20 16.95

coin100.3 100 c f BBSSPðĈ Þ 0.02 232 232 0.00 0.00 0.00 0.00 2.40 0.85

coin100.4 100 c d e f BBSSPðĈ Þ 0.00 214 214 0.00 0.00 0.00 0.00 1.00 0.11

coin316.10 316 c f BBSSPðĈ Þ 0.05 227 227 0.00 0.00 0.00 0.00 3.60 6.51

crane100.0 100 a b d e f 2MB 0.00 173,390 173,390 0.00 0.00 0.00 0.00 1.00 0.12
crane100.1 100 a b d e f 2MB 0.00 152,923 152,923 17.80 17.80 17.80 14.00 60.00 25.34
crane100.2 100 a b d e f 2MB 0.00 214,843 214,843 0.00 0.00 0.00 0.00 1.00 0.11
crane100.3 100 e f BSCSSP 0.00 145,622 145,622 0.00 0.00 0.00 0.00 1.90 0.65
crane100.4 100 e f BSCSSP 0.02 171,484 171,484 0.00 0.00 0.00 0.00 1.00 0.20
crane316.10 316 a b d e f 2MB 0.00 119,345 120,333 0.00 0.00 0.00 16.00 62.00 128.23
disk100.0 100 a b d e f 2MB 0.00 508,034 508,034 0.00 0.00 0.00 0.00 1.00 0.12
disk100.1 100 a b d e f 2MB 0.00 473,495 473,495 0.00 0.00 0.00 0.00 1.00 0.11
disk100.2 100 a b d e f 2MB 0.00 382,677 382,677 1.08 1.08 1.08 13.00 32.00 10.78
disk100.3 100 a b d e f 2MB 0.00 453,657 453,657 0.00 0.00 0.00 0.00 1.00 0.13
disk100.4 100 a b d e f 2MB 0.00 415,696 415,696 0.00 0.00 0.00 0.00 1.00 0.20
disk316.10 316 a b e f 2MB 0.01 309,801 309,801 0.00 0.00 0.00 0.00 1.00 0.85
rtilt100.0 100 e f BSCSSP 0.00 260,342 260,342 9.43 12.88 18.16 12.80 79.30 47.55
rtilt100.1 100 a b d e f 2MB 0.00 291,040 291,040 0.00 9.65 17.33 11.50 68.60 41.22
rtilt100.2 100 e f BSCSSP 0.00 227,248 227,248 22.29 28.76 33.63 13.00 79.30 48.99
rtilt100.3 100 e f BSCSSP 0.00 236,920 236,920 22.79 29.48 44.78 12.80 81.80 54.63
rtilt100.4 100 e f BSCSSP 0.00 294,367 294,367 7.99 9.19 11.96 13.00 83.40 58.21
rtilt316.10 316 a b d e f 2MB 0.01 152,510 152,510 96.33 101.68 110.68 16.00 131.50 490.10
shop100.0 100 a b d e f 2MB 0.00 2232 2232 0.00 0.06 0.58 1.10 9.00 5.57
shop100.1 100 e f BSCSSP 0.01 2608 2608 0.00 0.00 0.00 0.00 1.00 0.11
shop100.2 100 a b d e f 2MB 0.00 3620 3620 0.00 0.00 0.00 0.00 1.00 0.10
shop100.3 100 a b d e f 2MB 0.00 2526 2526 0.00 0.00 0.00 0.00 1.00 0.39
shop100.4 100 a b d e f 2MB 0.00 2792 2792 0.00 0.00 0.00 0.00 1.00 0.10
shop316.10 316 a b d e f 2MB 0.00 2311 2311 0.00 1.11 2.34 6.50 30.70 92.42
stilt100.0 100 e f BSCSSP 0.00 382,208 382,208 7.43 11.20 20.96 12.80 75.20 45.81
stilt100.1 100 a b d e f 2MB 0.00 491,416 491,416 0.00 0.00 0.00 0.00 4.10 2.57
stilt100.2 100 e f BSCSSP 0.00 377,720 377,720 5.56 11.80 19.12 12.80 80.10 48.93
stilt100.3 100 a b d e f 2MB 0.00 401,976 401,976 2.24 7.04 19.50 12.90 69.80 42.77
stilt100.4 100 e f BSCSSP 0.00 347,440 347,440 24.40 29.43 38.10 12.80 85.00 52.61
stilt316.10 316 bf BAP 0.80 226,504 ? 83.18 91.39 99.89 16.40 102.10 352.84
super100.0 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super100.1 100 a b d e f 2MB 0.00 11 11 0.00 0.00 0.00 0.00 1.00 0.09
super100.2 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super100.3 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super100.4 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super316.10 316 a b c d e f 2MB 0.00 9 9 0.00 0.00 0.00 0.00 1.00 0.48
ftv180 181 b BAP 0.03 35 37 0.00 0.00 0.00 8.00 27.50 25.08
uk66 66 c f BBSSPðĈ Þ 0.00 170 170 0.00 0.00 0.00 0.00 1.00 0.05
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Statement (a) is true by cost matrices C1 and C2. The remaining
statements are true by cost matrices C3 and C4. □

Table 1 summarizes relative strengths of the lower bounds
discussed. A ‘◀’ in the table indicates that the bound representing
the row dominates the bound representing the column. A ‘▴’ in the
table indicates that the bound representing the column dominates
the bound representing the row. An ‘¼ ’ sign indicates that the two
bounds are equivalent and a ‘✓’ indicates that they are non-
dominated.

4. A heuristic algorithm for the asymmetric BTSP

We now discuss our main heuristic algorithm for the asym-
metric BTSP. The algorithm is similar to the one developed for the
symmetric version in [29] with appropriate amendments to handle
the asymmetry and specialized lower bounding schemes. The
notable difference between theoretical approximability of the
symmetric and asymmetric versions of the BTSP necessitates a
systematic experimental analysis using asymmetric instances to
understand the practical level of difficulty in solving the asym-
metric BTSP in comparison to the symmetric BTSP.

Our heuristic is an approximate version of the threshold
algorithm studied for various bottleneck problems [15]. The main
ingredient of this algorithm is a feasibility test: “Given an integer δ
and a complete directed graph G, determine if G has a hamiltonian
tour with bottleneck value no more than δ and, if yes, produce such a
hamiltonian tour in G.” Obviously, this is an NP-hard problem, so we
explore ways to solve this approximately.

Consider the cost matrix Cδ ¼ ðcδijÞn�n where

cδij ¼
0 if cijrδ;
cij otherwise:

(
ð9Þ

Solve a standard asymmetric TSP on G with cost matrix Cδ. The
feasibility test has an ‘yes’ answer if and only if the optimal
objective function value of the TSP is zero. By solving the TSP
using a heuristic, we can answer the feasibility test in an approx-
imate way. There are several ways to improve the accuracy of this
approximation. One way is to employ different TSP heuristics on
cost matrix Cδ. A more reasonable way is to apply the best known
TSP heuristic on different, but equivalent, cost matrices generated
using built-in randomness.

To achieve this goal, we construct a new cost matrix as follows.
Let z1oz2o⋯ozk be an ascending arrangement of all distinct
costs in C. Generate positive random integers r1or2o⋯ork in an

Table 5

Complete asymmetric BTSP results (Part 2/2). Lower Bound (LB) algorithms: (a) 2MB, (b) BAP, (c) BBSSP ðĈ Þ, (d) BBSSP ðC Þ, (e) BSCSSP, (f) EBBP. Best/average/worst results
reported from 10 trials for each problem.

Problem Size Tight LBs Best LB Best LB time Best LB sol. Opt. sol. Best gap (%) Avg. gap (%) Worst gap (%) Avg. bin. steps Avg. # LK calls Avg. time (s)

balas84 84 e f BSCSSP 0.00 18 18 0.00 0.00 0.00 0.00 1.00 0.07
balas108 108 e f BSCSSP 0.00 13 13 0.00 0.00 0.00 0.00 1.00 0.09
balas120 120 e f BSCSSP 0.00 22 22 0.00 0.00 0.00 0.00 1.00 0.11
balas160 160 e f BSCSSP 0.00 13 13 0.00 0.00 0.00 0.00 1.00 0.17
balas200 200 e f BSCSSP 0.02 13 13 0.00 0.00 0.00 0.00 1.00 0.39
ran500.0 500 a b d e f 2MB 0.02 24 24 0.00 0.00 0.00 0.00 1.00 1.23
ran500.1 500 a b d e f 2MB 0.02 22 22 0.00 0.00 0.00 0.00 1.10 3.73
ran500.2 500 a b d e f 2MB 0.02 23 23 0.00 0.00 0.00 0.00 1.00 2.73
ran500.3 500 a b d e f 2MB 0.02 23 23 0.00 0.00 0.00 0.00 1.00 2.43
ran500.4 500 a b d e f 2MB 0.01 28 28 0.00 0.00 0.00 0.00 1.00 1.89
ran1000.0 1000 a b d e f 2MB 0.03 18 18 0.00 0.00 0.00 0.00 1.00 4.61
ran1000.1 1000 a b d e f 2MB 0.03 17 17 0.00 0.00 0.00 0.00 1.40 7.52
ran1000.2 1000 a b d e f 2MB 0.03 17 17 0.00 0.00 0.00 0.00 1.30 9.46
ran1000.3 1000 a b d e f 2MB 0.03 19 19 0.00 0.00 0.00 0.00 1.30 8.25
ran1000.4 1000 a b d e f 2MB 0.03 19 19 0.00 0.00 0.00 0.00 1.10 7.61
br17 17 c d e f BBSSPðĈ Þ 0.00 8 8 0.00 0.00 0.00 0.00 1.00 0.01

ft53 53 e f BSCSSP 0.02 977 977 0.00 0.00 0.00 0.00 1.00 0.04
ft70 70 e f BSCSSP 0.00 1398 1398 0.00 0.00 0.00 0.00 1.00 0.05
ftv33 34 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.02
ftv35 36 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.02
ftv38 39 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.03
ftv44 45 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.03
ftv47 48 a b d e f 2MB 0.00 104 104 0.00 0.00 0.00 0.00 1.00 0.03
ftv55 56 c f BBSSPðĈ Þ 0.02 64 64 0.00 0.63 3.13 2.40 11.20 2.35

ftv64 65 a b d e f 2MB 0.00 104 104 0.00 0.00 0.00 0.00 1.00 0.05
ftv70 71 a b d e f 2MB 0.00 104 104 0.00 0.00 0.00 0.00 1.00 0.06
ftv90 91 e f BSCSSP 0.00 48 48 0.00 0.00 0.00 0.00 2.70 1.21
ftv100 101 a b d e f 2MB 0.00 53 53 0.00 0.00 0.00 0.00 1.20 0.66
ftv110 111 b BAP 0.02 39 39 0.00 7.95 10.26 7.20 33.40 19.03
ftv120 121 b BAP 0.02 39 39 0.00 5.38 10.26 4.80 26.00 16.85
ftv130 131 b f BAP 0.03 39 39 0.00 27.18 135.90 3.20 24.40 21.42
ftv140 141 a b d e f 2MB 0.00 41 41 0.00 86.10 129.27 5.60 44.20 53.34
ftv150 151 b BAP 0.02 35 37 0.00 57.30 140.54 8.10 48.30 51.01
ftv160 161 b BAP 0.02 35 37 0.00 0.00 0.00 8.00 31.90 26.14
ftv170 171 b BAP 0.03 35 37 0.00 0.00 0.00 8.00 29.40 24.24
kro124p 100 a b d e f 2MB 0.00 607 607 0.00 0.00 0.00 0.00 1.20 0.24
p43 43 e f BSCSSP 0.00 5008 5008 0.00 0.00 0.00 0.00 1.00 0.02
rbg323 323 b BAP 0.25 12 12 16.67 20.00 50.00 4.10 26.00 94.78
rbg358 358 b BAP 0.13 14 14 0.00 4.29 7.14 4.00 20.10 75.06
rbg403 403 b BAP 0.73 20 20 5.00 5.50 10.00 4.00 27.80 110.60
rbg443 443 b BAP 0.94 20 20 15.00 15.00 15.00 4.00 32.00 138.43
ry48p 48 c f BBSSPðĈ Þ 0.00 550 577 0.00 0.00 0.00 10.00 38.00 5.17
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interval [a, b]. Define the cost matrix Cδ;r ¼ ðcδ;rij Þn�n where

cδ;rij ¼
0 if cijrδ;
zlþrl otherwise; where cij ¼ zl:

(
ð10Þ

Note that the TSP with cost matrix Cδ has an optimal tour of cost
zero if and only if the TSP with cost matrix Cδ;r has an optimal tour
of cost zero. If a tour of non-zero value is constructed by the TSP
heuristic, a new matrix Cδ;r can be generated (we call this a ‘shake’
operation) and the TSP heuristic can be applied on the new cost
matrix. The process can be repeated a prescribed number of times,
or “shakes”. If after each shake the TSP heuristic outputs a non-zero
tour length, we can conclude with high probability that the answer
to the feasibility test is ‘no’. The construction of Cδ;r is designed to
discourage using edges of large cost in the solution produced by
the TSP heuristic. Each time we solve a TSP using a heuristic, the
bottleneck value of the resulting tour is also noted and upon
termination, the best such tour, say Hn, is returned. A formal
description of this ‘feasibility test’ procedure is summarized in
Algorithm 2 which we call procedure ‘IsFeasible’. In all our experi-
ments we selected the interval [a, b] as [1, n2].

Algorithm 2. IsFeasibleðn;C; δ;α; p; qÞ.

Input: A problem on n nodes with cost matrix C, integer δ,
TSP solver/heuristic α, and integers p and q, which represent

the number of iterations with cost matrix Cδ and Cδ;r ,
respectively.

Output: The 3-tuple ðfeasible; tour;max_costÞ
where feasible is a Boolean value that indicates if a
Hamiltonian cycle was found using only costs less than
or equal to δ, tour is the feasible/best tour found, and
max_cost is the largest cost in tour.

minmax_cost←1;
best_tour←∅;
for i¼ 1;…; p do

ðlength; tourÞ←αðn;CδÞ;
max_cost←maxfcij : ði; jÞAtourg;
if length¼ 0 then
jreturn ðTRUE; tour;max_costÞ;
else
if max_costominmax_cost then
minmax_cost←max_cost;
best_tour←tour;

�����
end

���������
end

������������������������
end
for i¼ 1;…; q do
Let r←fr1; r2;…; rkg be a list of random integers
such that 1rr1or2o⋯orkrn2;

ðlength; tourÞ←αðn;Cδ; rÞ;
max_cost←maxfcij : ði; jÞAtourg;
if length¼ 0 then
jreturn ðTRUE; tour;max_costÞ;
else
if max_costominmax_cost then
minmax_cost←max_cost;
best_tour←tour;

�����
end

���������
end

�����������������������������
end
return ðFALSE; best_tour;minmax_costÞ;

Let U ¼maxfcij : ði; jÞAHng where Hn is a heuristic solution to
the asymmetric BTSP with objective function value U. We try to
improve this value using a binary search over the edge costs in the
range [L, U] where L is a BTSP lower bound. The algorithm IsFeasible
is used to guide the binary search. A formal description of this
scheme is summarized in Algorithm 3.

Algorithm 3. BTSPThresholdðn;C; l;α; p; qÞ.
Input: A problem on n nodes with cost matrix C, a lower bound

l, TSP solver/heuristic α, and integers p and q, which

represent the number of iterations with cost matrix Cδ and

Cδ;r , respectively.
Output: The (optimal/heuristic conclusion) on the BTSP

objective value and tour.
ðfeasible; best_tour;max_costÞ←IsFeasibleðn;C; l;α; p; qÞ;
if feasible then return ðl; best_tourÞ;
;
Let z1oz2o⋯ozk be a list of the unique ordered costs from C

in non-increasing order;
low←l; high←k;
while lowahigh do
med←ððhigh�lowÞ=2Þþ low;

ðfeasible; tour;max_costÞ←IsFeasibleðn;C; zmed;α; p; qÞ;
if feasible then
high←median;

best_tour←tour;

�����
else
jlow←medianþ1;
end

��������������������
end
return ðzlow; best_tourÞ;

In our implementation, the asymmetric TSP heuristic α used
within procedure IsFeasible is Concorde's implementation of the
Lin–Kernighan algorithm [4,21,30] after converting the asymmetric
instance into a symmetric instance using the transformation
described in Section 3. The Lin–Kernighan heuristic should natu-
rally force the fixed edges of cost �1 into the tour with no
additional constraint necessary, but we make sure that these edges
are present to ensure any tour found in the symmetric instance is
valid for the asymmetric instance. Instead of using this transforma-
tion, one could use any asymmetric TSP heuristic but we found it
more convenient and effective to use the LK-algorithm on the
transformed problem.

5. Computational experiments

The lower bounding schemes discussed in Section 3 and the
heuristic algorithms discussed in Section 4 were coded in C with
the GNU C compiler and tested on a PC with 3.40 GHz Pentium
4 CPU and 2 GB of RAM running Microsoft Windows XP SP2
operating system and Cygwin NT 5.1. All reported running times
are in CPU seconds rounded to two decimal places and include
input and output times.

The test bed primarily consists of all available benchmark
asymmetric TSP instances studied in the literature. We first
selected 86 problems from the test instances. These are primarily
the problems considered in [16]. Details of these instances are
summarized below.

(a) 42 instances by Cirasella, Johnson, McGeoch, and Zhang that
simulate real-world applications in various fields, as described
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Table 7

Complete asymmetric MTSP results (Part 1/2). Upper Bound (UB) algorithms: (a) 2MB, (b) BAP, (c) BBSSP ðĈ Þ, d) BBSSP ðC Þ, (e) BSCSSP, (f) EBBP. Best/average/worst results
reported from 10 trials for each problem.

Problem Size Tight UBs Best UB Best UB Time Best UB sol. Opt. sol. Best gap (%) Avg. gap (%) Worst gap (%) Avg. bin.
steps

Avg. # LK calls Avg. time
(s)

coin100.0 100 b BAP 0.03 896 891 1.35 1.63 2.13 10.00 57.30 40.99
coin100.1 100 b BAP 0.03 858 858 0.00 0.59 1.05 5.60 24.80 14.51
coin100.2 100 b f BAP 0.02 974 974 1.85 2.46 2.77 10.00 56.30 34.58
coin100.3 100 b BAP 0.03 890 890 2.92 3.31 3.93 9.90 52.20 34.12
coin100.4 100 c f BBSSP ðĈ Þ 0.00 903 903 0.00 0.12 0.78 6.00 19.40 10.90

coin316.10 316 b BAP 0.59 1684 1684 2.61 3.05 3.56 10.80 63.60 293.33
crane100.0 100 b BAP 0.03 647,354 647,354 0.00 0.00 0.00 0.00 1.10 0.30
crane100.1 100 a b d e f 2MB 0.00 627,751 627,751 0.00 0.00 0.00 0.00 1.00 0.11
crane100.2 100 b BAP 0.00 645,372 645,372 0.00 0.00 0.00 0.00 1.00 0.22
crane100.3 100 b BAP 0.02 629,932 629,932 0.07 0.32 0.48 12.90 55.50 36.57
crane100.4 100 b f BAP 0.02 619,054 619,054 0.00 0.00 0.00 0.00 1.10 0.23
crane316.10 316 b BAP 0.28 664,713 664,713 1.43 2.25 2.83 16.20 90.40 385.49
disk100.0 100 b BAP 0.03 4,767,083 4,767,083 10.11 14.76 16.51 12.60 94.30 78.04
disk100.1 100 b BAP 0.03 4,882,684 4,882,684 0.28 0.30 0.36 13.00 48.50 31.31
disk100.2 100 b c f BBSSP ðĈ Þ 0.00 4,959,789 4,959,789 0.00 0.00 0.00 0.00 1.80 1.24

disk100.3 100 b BAP 0.03 4,663,663 4,663,663 0.95 2.03 2.52 12.90 74.70 57.06
disk100.4 100 a b d e f 2MB 0.00 4,849,971 4,849,971 1.61 4.32 17.20 12.70 72.70 57.94
disk316.10 316 b BAP 0.91 4,947,068 4,947,068 7.66 11.57 19.41 16.20 107.00 416.43
rtilt100.0 100 a b d e f 2MB 0.00 529,202 529,202 0.00 0.00 0.00 0.00 1.00 0.24
rtilt100.1 100 a b d e f 2MB 0.00 546,234 546,234 0.00 0.00 0.00 0.00 1.00 0.13
rtilt100.2 100 b f BAP 0.02 494,714 494,714 0.00 0.00 0.00 0.00 1.00 0.16
rtilt100.3 100 a b d e f 2MB 0.00 500,897 500,897 0.00 0.00 0.00 0.00 1.00 0.13
rtilt100.4 100 a b d e f 2MB 0.00 517,383 517,383 0.00 0.00 0.00 0.00 1.00 0.12
rtilt316.10 316 a b d e f 2MB 0.00 509,367 509,367 0.00 0.00 0.00 0.00 1.00 1.06
shop100.0 100 a b d e f 2MB 0.00 1939 1939 0.00 0.00 0.00 2.20 9.90 6.12
shop100.1 100 a b d e f 2MB 0.00 1786 1786 0.00 0.00 0.00 0.00 1.00 0.10
shop100.2 100 b BAP 0.03 2466 2466 5.15 6.25 8.72 10.70 71.40 57.33
shop100.3 100 a b d e f 2MB 0.00 2044 2044 0.00 0.00 0.00 0.00 1.00 0.37
shop100.4 100 a b d e f 2MB 0.00 2104 2104 0.00 0.00 0.00 1.10 6.80 4.07
shop316.10 316 a b d e f 2MB 0.01 1966 1966 0.00 0.00 0.00 0.00 1.10 1.06
stilt100.0 100 a b d e f 2MB 0.00 1,011,282 1,011,282 0.00 0.00 0.00 0.00 1.00 0.11
stilt100.1 100 a b d e f 2MB 0.00 1,071,396 1,071,396 0.00 0.00 0.00 0.00 1.00 0.14
stilt100.2 100 a b d e f 2MB 0.00 957,076 957,076 0.00 0.00 0.00 0.00 1.00 0.11
stilt100.3 100 b f BAP 0.03 997,468 997,468 0.00 0.00 0.00 0.00 1.00 0.12
stilt100.4 100 a b d e f 2MB 0.00 985,154 985,154 0.00 0.00 0.00 0.00 1.00 0.12
stilt316.10 316 b f BAP 0.52 990,472 990,472 0.00 0.00 0.00 0.00 1.00 0.85
super100.0 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.1 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.2 100 a b d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.3 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.4 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.10
super316.10 316 a b c d e f 2MB 0.00 17 17 0.00 0.00 0.00 0.00 1.00 0.49
ftv180 181 b BAP 0.03 180 180 0.00 0.00 0.00 0.00 1.00 0.34
uk66 66 b BAP 0.00 609 604 0.33 0.66 0.99 9.00 39.80 12.52

Table 6
Asymmetric MSTSP upper bound summary on problem groups. The number listed under each bound name is the number of problems that bound, which gave the tightest
upper bound in that problem group.

Problem set (# of problems) 2MB BAP BBSSPðC Þ BBSSPðĈ Þ BSCSSP EBBP

coin (6) 0 5 1 0 0 2
crane (6) 1 6 0 1 1 2
disk (6) 1 6 1 1 1 2
rtilt (6) 5 6 0 5 5 6
shop (6) 5 6 0 5 5 5
stilt (6) 4 6 0 4 4 6
super (6) 6 6 5 6 6 6
balas (5) 5 5 0 5 5 5
tsplib: no ftv, r100 nodes (6) 1 6 1 1 1 2
tsplib: no ftv, 4100 nodes (4) 0 4 0 0 0 0
tsplib: ftv, r100 nodes (9) 1 9 0 1 1 1
tsplib: ftv, 4100 nodes (8) 0 8 0 0 0 0
ftv180 (1) 0 1 0 0 0 0
uk66 (1) 0 1 0 0 0 0
ran500 (5) 5 5 0 5 5 5
ran1000 (5) 5 5 0 5 5 5

Total (86) 39 85 8 39 39 47
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in [13]. There are seven groups of problems, each including five
instances of 100 nodes and a single instance of 316 nodes:
○ coin: Pay phone coin collection instances.
○ crane: Random Euclidean stacker crane instances.
○ disk: Disk drive instances.
○ rtilt: Tilted drilling machine instances with additive norm.
○ shop: No-wait flow shop instances.
○ stilt: Tilted drilling machine instances with sup norm.
○ super: Approximate shortest common superstring instances.

(b) 5 scheduling instances generated by Balas that simulate an
application in a Dupont chemical plant. There are five pro-
blems in total of sizes 84, 108, 120, 160, and 200 nodes [7].

(c) All 27 TSPLIB instances are maintained by Reinelt [42]. We
subdivide them into the problems labeled “ftv” and those that
are not, as well as subdivide them into problems with 100
nodes or less and problems with more than 100 nodes.

(d) 2 real-world instances (ftv180 and uk66) and 5 random
instances with integer costs uniformly generated in the range
[1, 1000] of 500 nodes and 1000 nodes each. These were
created by Fischetti et al. [16].

We also considered the remaining 288 benchmark instances
available in the literature. The summary of the results on these

problems is given in the Appendix. The computational results are
presented in two sets. First, we compared various lower bounding
schemes discussed in Section 3 and summarized the results in
Table 2. The 86 problem instances are grouped into the 16 groups
as described earlier for a compact presentation of the results. The
number given for each bound and problem group indicates the
number of problems in that group for which the lower bound
achieved the tightest result. With the exception of the EBBP bound,
all other bounds generally take less than 1 s to run, even on
problems of 1000 vertices. As expected, the EBBP bound, being an
Oðn4Þ algorithm, is expensive to calculate, and did not provide a
tighter lower bound than the best of the other lower bounds we
tested for the asymmetric BTSP. However, if we are looking to
choose a single lower bounding scheme, the EBBP performed
consistently better.

Next, we tested Algorithm 3 on the same problem set with two
experiments to observe the effects of “shaking” (i.e. using cost
matrix Cδ;r versus cost matrix CδÞ. For one experiment, we set
p¼10 and q¼0, corresponding to 10 attempts with cost matrix Cδ

and 0 attempts with cost matrix Cδ;r , respectively; the second we
set p¼5 and q¼5. The idea was to see if splitting the effort
between both cost matrix formulations would be more beneficial
than simply using cost matrix Cδ . We make no claim that these

Table 8

Complete asymmetric MSTSP results (Part 2/2). Upper Bound (UB) algorithms: (a) 2MB, (b) BAP, (c) BBSSP ðĈ Þ, (d) BBSSP ðC Þ, (e) BSCSSP, (f) EBBP. Best/average/worst results
reported from 10 trials for each problem.

Problem Size Tight UBs Best UB Best UB time Best UB sol. Opt. sol. Best gap (%) Avg. gap (%) Worst gap (%) Avg. bin. steps Avg. # LK calls Avg. time (s)

balas84 84 a b d e f 2MB 0.00 29 29 0.00 0.00 0.00 0.00 1.00 0.06
balas108 108 a b d e f 2MB 0.00 24 24 0.00 0.00 0.00 0.00 1.00 0.09
balas120 120 a b d e f 2MB 0.00 29 29 0.00 0.00 0.00 0.00 1.60 1.04
balas160 160 a b d e f 2MB 0.00 31 31 0.00 0.00 0.00 0.00 1.00 0.18
balas200 200 a b d e f 2MB 0.00 32 32 0.00 0.00 0.00 0.00 1.00 0.23
ran500.0 500 a b d e f 2MB 0.02 1000 1000 0.00 0.00 0.00 0.00 1.10 2.06
ran500.1 500 a b d e f 2MB 0.02 997 997 0.00 0.00 0.00 0.00 1.00 1.28
ran500.2 500 a b d e f 2MB 0.02 997 997 0.00 0.00 0.00 0.00 1.00 1.43
ran500.3 500 a b d e f 2MB 0.02 998 998 0.00 0.00 0.00 0.00 1.00 1.92
ran500.4 500 a b d e f 2MB 0.00 996 996 0.00 0.00 0.00 0.00 1.00 1.08
ran1000.0 1000 a b d e f 2MB 0.06 1000 1000 0.00 0.00 0.00 0.00 1.30 9.79
ran1000.1 1000 a b d e f 2MB 0.05 1005 1005 0.00 0.00 0.00 0.00 1.10 7.55
ran1000.2 1000 a b d e f 2MB 0.06 1004 1004 0.00 0.00 0.00 0.00 1.20 5.82
ran1000.3 1000 a b d e f 2MB 0.05 1004 1004 0.00 0.00 0.00 0.00 1.00 2.60
ran1000.4 1000 a b d e f 2MB 0.05 1006 1006 0.00 0.00 0.00 2.00 6.50 50.92
br17 17 b BAP 0.00 5 5 0.00 0.00 0.00 0.00 1.00 0.02
ft53 53 b f BAP 0.00 379 379 0.00 0.00 0.00 0.00 1.00 0.06
ft70 70 b BAP 0.00 976 976 0.20 0.30 0.31 9.00 30.20 9.81
ftv33 34 b BAP 0.00 143 143 0.00 0.00 0.00 0.00 1.00 0.02
ftv35 36 b BAP 0.00 154 154 0.00 0.00 0.00 0.00 1.00 0.02
ftv38 39 b BAP 0.02 154 154 0.00 0.00 0.00 0.00 1.00 0.03
ftv44 45 a b d e f 2MB 0.00 162 162 0.00 0.00 0.00 0.00 1.00 0.03
ftv47 48 b BAP 0.00 168 168 0.00 0.00 0.00 0.00 1.00 0.03
ftv55 56 b BAP 0.00 154 154 0.00 0.00 0.00 0.00 1.00 0.05
ftv64 65 b BAP 0.00 160 160 0.00 0.00 0.00 0.00 1.00 0.05
ftv70 71 b BAP 0.00 161 161 0.00 0.00 0.00 0.00 1.00 0.09
ftv90 91 b BAP 0.02 148 148 2.70 3.04 4.05 7.00 38.30 22.67
ftv100 101 b BAP 0.03 155 155 0.65 1.81 2.58 7.10 35.70 23.17
ftv110 111 b BAP 0.02 165 165 0.00 1.03 1.82 6.90 27.40 21.22
ftv120 121 b BAP 0.02 165 165 0.00 0.00 0.00 0.00 1.20 0.87
ftv130 131 b BAP 0.02 172 172 0.00 0.00 0.00 0.00 1.00 0.17
ftv140 141 b BAP 0.02 172 172 0.00 0.00 0.00 0.00 1.10 0.46
ftv150 151 b BAP 0.03 178 178 0.00 0.00 0.00 0.00 1.00 0.23
ftv160 161 b BAP 0.02 178 178 0.00 0.00 0.00 0.00 1.00 0.19
ftv170 171 b BAP 0.02 180 180 0.00 0.00 0.00 0.00 1.00 0.94
kro124p 100 a b c d e f 2MB 0.00 2347 2347 0.00 0.00 0.00 0.00 1.00 0.15
p43 43 b BAP 0.02 17 17 0.00 1.76 5.88 1.60 11.30 2.12
rbg323 323 b BAP 0.17 23 23 8.70 8.70 8.70 4.00 24.20 78.19
rbg358 358 b BAP 0.34 21 21 0.00 0.00 0.00 0.00 1.70 4.49
rbg403 403 b BAP 0.41 19 19 0.00 0.53 5.26 2.00 11.90 43.47
rbg443 443 b BAP 0.75 18 18 0.00 0.00 0.00 0.00 2.10 8.90
ry48p 48 b BAP 0.00 1232 1232 2.27 3.20 4.30 9.80 49.90 11.43
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values are the best choices for p and q, but these choices appear to
be reasonable for the problems in our test set.

In both experiments, we set l equal to the strongest lower
bound found. Our TSP heuristic α was Concorde's implementation
of the Lin–Kernighan algorithm [4] applied on the symmetric
instance obtained using the transformation discussed in Section 3
on cost matrix Cδ and Cδ;r . We call Concorde's Lin–Kernighan
algorithm with the default parameters and five random restarts.

Optimality is generally verified by the existence of a tight lower
bound. For problems where the best found solution value was not
equal to a lower bound optimality could not be verified directly. To
test the quality of such solutions we used the exact version of
Algorithm 3 where Concorde's exact TSP solver is used in place of
α. We were unable to verify the optimality of ‘stilt316.10’ with
Concorde due to an integer overflow error, so instead we compare
heuristic results against the best lower bound.

Our heuristic algorithm 3 worked extremely well in terms of
solution quality and running time. Out of the 86 instances, the

algorithm consistently found the optimal solution to 60 of the
instances. We focused primarily on 23 selected problems in
Table 3. These are problems where a consistent solution was not
found for each of the 10 trials. We present the best, average, and
worst solution gaps found from the optimal solution value over 10
trials, i.e. if b is the (best/average/worst) bottleneck solution found
by our algorithm and bn is the optimal solution value then

gap%¼ ðb�bnÞ=bn � 100:

The average time reported includes output times, which were
negligible (generally much less than 0.10 s).

We noticed that performing shake operations (p¼5, q¼5)
generally produced solutions with a lower average and lower
worst gaps from the optimal solution. This indicates that shake
operations are a promising idea for helping the Lin–Kernighan
algorithm to find good tours. Although the results are generally
excellent, our heuristic performs poorly on the ‘rtilt’ and ‘stilt’ class
of problems. These problems have many distinct, large integer

Table 9
Heuristic results on random asymmetric matrices (amat), pay phone collection instances (coin), random Euclidean stacker crane instances (crane), and disk drive instances
(disk).

Problem Lower bound Best obj. Avg. time (s) Opt.? Problem Lower bound Best obj. Avg. time (s) Opt.?

amat100.0 50,981 50,981 0.13 Yes amat316.12 26,551 26,551 0.88 Yes
amat100.1 50,821 50,821 0.16 Yes amat316.13 21,695 21,695 1.04 Yes
amat100.2 63,674 63,674 0.13 Yes amat316.14 17,539 17,539 2.64 Yes
amat100.3 62,994 62,994 0.17 Yes amat316.15 19,952 19,952 2.07 Yes
amat100.4 55,534 55,534 0.15 Yes amat316.16 20,779 20,779 1.18 Yes
amat100.5 44,548 44,548 0.15 Yes amat316.17 26,165 26,165 0.95 Yes
amat100.6 72,650 72,650 0.15 Yes amat316.18 17,207 17,207 1.71 Yes
amat100.7 59,291 59,291 0.15 Yes amat316.19 43,608 43,608 2.36 Yes
amat100.8 55,462 55,462 0.13 Yes amat1000.20 9978 9978 15.35 Yes
amat100.9 49,928 49,928 0.13 Yes amat1000.21 10,624 10,624 15.81 Yes
amat316.10 21,896 21,896 0.98 Yes amat1000.22 6715 6715 29.15 Yes
amat316.11 20,451 20,451 1.25 Yes amat3162.30 2985 47,237 5760.72

coin100.0 253 253 14.49 Yes coin316.12 225 225 72.60 Yes
coin100.1 219 219 18.85 Yes coin316.13 245 245 66.07 Yes
coin100.2 203 207 16.18 coin316.14 278 278 88.84 Yes
coin100.3 232 232 20.84 Yes coin316.15 282 282 56.75 Yes
coin100.4 214 214 0.16 Yes coin316.16 243 243 47.92 Yes
coin100.5 244 244 18.60 Yes coin316.17 277 277 88.05 Yes
coin100.6 239 239 9.68 Yes coin316.18 277 277 66.54 Yes
coin100.7 265 265 20.47 Yes coin316.19 259 259 0.53 Yes
coin100.8 198 201 15.54 coin1000.20 278 278 341.00 Yes
coin100.9 243 243 21.38 Yes coin1000.21 327 327 422.52 Yes
coin316.10 227 227 82.78 Yes coin1000.22 245 249 279.33
coin316.11 238 238 87.09 Yes coin3162.30 260 649 4075.57

crane100.0 173,390 173,390 0.12 Yes crane316.12 132,750 132,750 2.34 Yes
crane100.1 152,923 180,146 30.65 crane316.13 102,898 102,898 0.95 Yes
crane100.2 214,843 214,843 0.14 Yes crane316.14 145,963 145,963 0.73 Yes
crane100.3 145,622 145,622 0.28 Yes crane316.15 128,548 128,548 192.00 Yes
crane100.4 171,484 171,484 0.26 Yes crane316.16 111,939 111,939 1.71 Yes
crane100.5 205,739 205,739 0.12 Yes crane316.17 102,571 102,571 1.42 Yes
crane100.6 185,071 185,071 0.17 Yes crane316.18 106,821 106,821 1.92 Yes
crane100.7 200,173 200,173 0.12 Yes crane316.19 133,399 133,399 0.86 Yes
crane100.8 205,258 205,258 0.18 Yes crane1000.20 56,343 56,343 19.44 Yes
crane100.9 192,987 192,987 23.40 Yes crane1000.21 61,720 64,450 722.66
crane316.10 119,345 120,333 136.68 crane1000.22 58,091 58,466 489.04
crane316.11 108,045 108,045 1.08 Yes crane3162.30 41,751 76,894 6234.88

disk100.0 508,034 508,034 0.12 Yes disk316.12 273,516 273,516 1.41 Yes
disk100.1 473,495 473,495 0.10 Yes disk316.13 236,394 236,394 32.21 Yes
disk100.2 382,677 386,809 10.39 disk316.14 226,920 226,920 2.64 Yes
disk100.3 453,657 453,657 0.15 Yes disk316.15 271,724 271,724 1.50 Yes
disk100.4 415,696 415,696 0.19 Yes disk316.16 249,590 249,590 7.44 Yes
disk100.5 553,069 553,069 0.21 Yes disk316.17 305,813 305,813 1.01 Yes
disk100.6 432,563 432,563 0.13 Yes disk316.18 246,356 246,356 1.37 Yes
disk100.7 550,543 550,543 0.16 Yes disk316.19 320,680 320,680 1.16 Yes
disk100.8 396,159 396,159 0.40 Yes disk1000.20 190,741 190,741 975.74 Yes
disk100.9 426,697 426,697 0.22 Yes disk1000.21 190,665 190,665 746.68 Yes
disk316.10 309,801 309,801 0.82 Yes disk1000.22 171,509 195,825 1537.19
disk316.11 259,308 259,308 1.33 Yes disk3162.30 114,028 275,891 5957.56
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costs, and appear structurally quite difficult for the Lin–Kernighan
algorithm.

We present in detail the results for all 86 problems in
Tables 4 and 5 for p¼5 and q¼5. We also identify the lower
bounds that found a tight optimal solution, as well as the best
lower bound for each problem (ties are broken by shortest running
time). The columns “Avg. bin. steps” and “Avg. # of LK calls” give
the average number of binary search steps and calls to Concorde's
Lin–Kernighan algorithm, respectively. The results are generally
quite good and computing times are reasonable.

6. The asymmetric maximum scatter traveling
salesman problem

The maxmin version of the BTSP is called the maximum scatter
traveling salesman problem (MSTSP). In Section 1 we discussed this
problem and observed that the MSTSP on cost matrix C ¼ ðcijÞn�n

can be reduced to a BTSP on cost matrix ~C ¼ ð~cijÞn�n using the
transformation ~cij ¼M�cij where M¼maxfcij : ði; jÞAEg. Although
this transformation preserves optimality, it does not preserve
theoretical approximation ratios. In this section we explore the
impact of this transformation on heuristics using experimental
analysis.

As in our presentation of results for the BTSP, Table 6 sum-
marizes the relative strengths of the lower bound algorithms
applied to cost matrix ~C (which, in the MSTSP sense, are upper
bounds to the optimal objective value on C) on the same problem
test set used in the computational results in Section 5. These
results are not unlike those we observed for the asymmetric BTSP,
with the BAP, BBSSPðĈ Þ, and BSCSSP bounds generally providing
cheap but tight upper bounds to the MSTSP.

Tables 7 and 8 report results of Algorithm 3 for p¼5 and q¼5
on each problem over 10 trials. For 63 of the 86 problems, our
algorithm had little trouble consistently finding an optimal tour.
For the remaining 23 problems, our algorithm found a tour

Table 10
Heuristic results on random two-dimensional rectilinear instances (rect), tilted drilling machine instances, additive norm (rtilt), no-wait flowshop instances (shop), and
random symmetric matrices (smat problems).

Problem Lower bound Best obj. Avg. time (s) Opt.? Problem Lower bound Best obj. Avg. time (s) Opt.?

rect100.0 223,717 223,717 12.40 Yes rect316.12 143,209 143,209 134.99 Yes
rect100.1 296,349 296,349 28.72 Yes rect316.13 116,995 116,995 104.04 Yes
rect100.2 198,319 198,319 22.94 Yes rect316.14 140,437 140,437 158.32 Yes
rect100.3 252,297 252,297 24.45 Yes rect316.15 144,858 144,858 118.90 Yes
rect100.4 246,494 246,494 27.80 Yes rect316.16 142,029 142,029 110.67 Yes
rect100.5 270,406 270,406 22.01 Yes rect316.17 121,054 121,054 110.10 Yes
rect100.6 226,069 226,069 18.40 Yes rect316.18 166,616 166,616 217.73 Yes
rect100.7 245,457 245,457 21.60 Yes rect316.19 142,134 142,134 151.49 Yes
rect100.8 259,347 259,347 27.80 Yes rect1000.20 88,925 88,925 521.58 Yes
rect100.9 199,114 200,000 22.88 rect1000.21 82,241 82,241 543.19 Yes
rect316.10 160,358 160,358 168.87 Yes rect1000.22 73,643 73,643 398.07 Yes
rect316.11 133,083 133,083 121.94 Yes rect3162.30 47,063 123,706 5241.82

rtilt100.0 260,342 286,962 38.31 rtilt316.12 162,936 272,157 337.92
rtilt100.1 291,040 291,040 33.51 Yes rtilt316.13 141,912 249,325 335.80
rtilt100.2 227,248 270,913 43.60 rtilt316.14 157,594 281,467 361.11
rtilt100.3 236,920 288,191 47.37 rtilt316.15 181,676 231,232 395.26
rtilt100.4 294,367 307,304 45.41 rtilt316.16 173,991 273,055 358.35
rtilt100.5 238,332 280,052 42.26 rtilt316.17 128,217 317,338 276.98
rtilt100.6 276,224 276,947 33.44 rtilt316.18 147,764 263,831 334.85
rtilt100.7 361,152 361,152 0.33 Yes rtilt316.19 133,664 270,363 387.19
rtilt100.8 368,500 368,500 1.24 Yes rtilt1000.20 86,549 287,949 1130.05
rtilt100.9 198,376 307,809 50.76 rtilt1000.21 86,828 323,513 1329.22
rtilt316.10 152,510 261,362 431.86 rtilt1000.22 92,692 319,739 1218.79
rtilt316.11 139,280 240,201 392.59 rtilt3162.30 47,152 391,531 3980.61

shop100.0 2232 2232 8.89 Yes shop316.12 2541 2541 0.40 Yes
shop100.1 2608 2608 0.16 Yes shop316.13 2970 2970 0.42 Yes
shop100.2 3620 3620 0.10 Yes shop316.14 2235 2235 4.38 Yes
shop100.3 2526 2526 0.40 Yes shop316.15 2459 2459 0.70 Yes
shop100.4 2792 2792 0.10 Yes shop316.16 2806 2806 0.43 Yes
shop100.5 2679 2679 0.09 Yes shop316.17 2298 2298 5.34 Yes
shop100.6 2314 2314 1.01 Yes shop316.18 2204 2204 4.23 Yes
shop100.7 2665 2665 0.09 Yes shop316.19 2811 2811 0.44 Yes
shop100.8 2621 2621 0.11 Yes shop1000.20 2041 2190 719.28
shop100.9 2276 2276 7.46 Yes shop1000.21 2709 2709 1.83 Yes
shop316.10 2311 2311 119.55 Yes shop1000.22 2057 2184 730.85
shop316.11 2907 2907 0.42 Yes shop3162.30 2407 2407 127.45 Yes

smat100.0 70,175 70,175 24.42 Yes smat316.12 34,266 34,266 152.54 Yes
smat100.1 69,636 69,636 20.17 Yes smat316.13 27,251 27,251 130.37 Yes
smat100.2 59,186 59,186 28.64 Yes smat316.14 23,203 23,203 119.50 Yes
smat100.3 73,104 73,104 24.16 Yes smat316.15 24,252 24,252 152.07 Yes
smat100.4 58,962 58,962 18.51 Yes smat316.16 28,690 28,690 180.38 Yes
smat100.5 89,297 89,297 30.22 Yes smat316.17 27,313 27,313 157.42 Yes
smat100.6 57,248 61,904 18.74 smat316.18 29,449 29,449 144.71 Yes
smat100.7 67,624 67,624 28.50 Yes smat316.19 25,414 25,414 117.88 Yes
smat100.8 66,698 66,698 22.76 Yes smat1000.20 10,371 10,371 826.19 Yes
smat100.9 71,811 71,811 25.26 Yes smat1000.21 9,360 9,360 636.71 Yes
smat316.10 21,672 21,672 147.15 Yes smat1000.22 8,817 8,817 572.56 Yes
smat316.11 23,998 23,998 147.35 Yes smat3162.30 2,959 49,035 6963.29
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generally within 3% of optimality. As in previous cases, if our
algorithm did not find a tour whose largest cost is equal to the best
upper bound obtained, we confirm optimality using the exact
version of Algorithm 3 where Concorde's exact TSP solver is
selected as solver α.

7. Conclusions and discussion

We developed algorithms for solving the asymmetric versions
of BTSP and MSTSP and studied their efficacy using experimental
and theoretical analysis. An ⌈n=2⌉�approximation algorithm for
the asymmetric BTSP is given for instances where edge costs satisfy
the triangle inequality and this is the first heuristic for the problem
with bounded performance ratio. Several lower bound algorithms
for BTSP are given and analyzed using theoretical and experimental
comparisons. We also give effective heuristics to solve BTSP and

MSTSP in practice. Results of systematic experiments are reported
on a test bed consisting of benchmark problems.

It would be interesting to explore ϵ�approximation algorithms
for the asymmetric BTSP for constant ϵ on instances where the
edge costs satisfy the triangle inequality. This question is relevant
since the symmetric version has a 2-approximation algorithm
when the edge costs satisfy the triangle inequality.

Appendix

Tables 9–11 present summarized results for the additional 288
benchmark instances. All results are the average of 10 trials with
each problem and parameters settings are as discussed in the
paper. Times reported are in CPU seconds (Table 12).

Table 11
Heuristic results on tilted drilling machine instances, sup norm (stilt), approx. shortest common superstring instances (super), shortest-path closure of amat (tmat), and
shortest-path closure of smat (tsmat).

Problem Lower bound Best obj. Avg. time (s) Opt.? Problem Lower bound Best obj. Avg. time (s) Opt.?

stilt100.0 382,208 404,808 31.09 stilt316.12 291,320 432,260 386.30
stilt100.1 491,416 491,416 3.34 Yes stilt316.13 179,462 365,846 302.48
stilt100.2 377,720 392,728 35.26 stilt316.14 198,152 430,308 281.13
stilt100.3 401,976 410,408 35.13 stilt316.15 232,104 379,108 298.41
stilt100.4 347,440 389,296 45.20 stilt316.16 290,738 370,896 372.58
stilt100.5 456,788 456,788 1.64 Yes stilt316.17 196,896 391,892 247.78
stilt100.6 417,056 417,056 1.10 Yes stilt316.18 244,688 418,088 355.59
stilt100.7 494,360 494,360 2.12 Yes stilt316.19 212,268 367,686 287.51
stilt100.8 522,748 522,748 0.49 Yes stilt1000.20 121,812 466,364 986.35
stilt100.9 321,884 383,838 38.75 stilt1000.21 117,542 460,732 1295.38
stilt316.10 226,504 401,968 336.37 stilt1000.22 127,000 456,270 1236.09
stilt316.11 235,910 424,144 268.78 stilt3162.30 66,552 569,890 4127.88

super100.0 10 10 0.09 Yes super316.12 9 9 0.48 Yes
super100.1 11 11 0.09 Yes super316.13 9 9 0.48 Yes
super100.2 10 10 0.09 Yes super316.14 9 9 0.48 Yes
super100.3 10 10 0.09 Yes super316.15 9 9 0.52 Yes
super100.4 10 10 0.09 Yes super316.16 9 9 0.48 Yes
super100.5 10 10 0.09 Yes super316.17 9 9 0.47 Yes
super100.6 10 10 0.09 Yes super316.18 9 9 0.49 Yes
super100.7 10 10 0.09 Yes super316.19 9 9 0.49 Yes
super100.8 10 10 0.09 Yes super1000.20 8 8 12.07 Yes
super100.9 10 10 0.09 Yes super1000.21 8 8 12.07 Yes
super316.10 9 9 0.49 Yes super1000.22 8 8 10.63 Yes
super316.11 9 9 0.47 Yes super3162.30 7 9 1905.87

tmat100.0 50,981 50,981 0.11 Yes tmat316.12 26,551 26,551 0.48 Yes
tmat100.1 50,821 50,821 0.12 Yes tmat316.13 20,090 20,090 0.62 Yes
tmat100.2 63,674 63,674 0.11 Yes tmat316.14 17,539 17,539 0.70 Yes
tmat100.3 62,994 62,994 0.13 Yes tmat316.15 19,952 19,952 0.59 Yes
tmat100.4 55,534 55,534 0.15 Yes tmat316.16 20,779 20,779 0.61 Yes
tmat100.5 35,793 35,793 0.12 Yes tmat316.17 26,165 26,165 0.56 Yes
tmat100.6 72,650 72,650 0.22 Yes tmat316.18 17,207 17,207 0.62 Yes
tmat100.7 59,291 59,291 0.11 Yes tmat316.19 43,608 43,608 0.48 Yes
tmat100.8 55,462 55,462 0.14 Yes tmat1000.20 9978 9978 2.02 Yes
tmat100.9 49,928 49,928 0.17 Yes tmat1000.21 10,624 10,624 1.84 Yes
tmat316.10 21,896 21,896 0.58 Yes tmat1000.22 6715 6715 2.11 Yes
tmat316.11 18,240 18,240 0.59 Yes tmat3162.30 2985 2985 12.95 Yes

tsmat100.0 44,258 44,258 44.31 Yes tsmat316.12 21,337 21,337 276.18 Yes
tsmat100.1 42,415 42,415 43.65 Yes tsmat316.13 24,463 24,463 206.42 Yes
tsmat100.2 37,786 37,786 34.48 Yes tsmat316.14 21,042 21,042 240.87 Yes
tsmat100.3 40,608 40,608 36.24 Yes tsmat316.15 21,767 21,767 208.61 Yes
tsmat100.4 48,184 48,184 40.81 Yes tsmat316.16 28,690 28,690 225.90 Yes
tsmat100.5 54,108 54,108 42.30 Yes tsmat316.17 27,099 27,099 247.76 Yes
tsmat100.6 54,157 54,486 46.66 tsmat316.18 24,829 24,829 178.47 Yes
tsmat100.7 45,189 45,189 41.46 Yes tsmat316.19 15,023 15,023 263.81 Yes
tsmat100.8 64,065 64,065 29.83 Yes tsmat1000.20 8104 8104 291.85 Yes
tsmat100.9 61,244 61,244 43.66 Yes tsmat1000.21 6823 6823 886.82 Yes
tsmat316.10 20,537 20,537 239.36 Yes tsmat1000.22 7578 7578 658.42 Yes
tsmat316.11 22,643 22,643 287.11 Yes tsmat3162.30 2544 2544 1885.18 Yes
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Global statistics of experimental results on BTSP. The column “% optimal” shows that the percentage of problems in the class where optimality is guaranteed.
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amat 100 430 3162 0.13 5760.72 243 24 95.8
balas 84 200 134 0.7 0.39 0.17 4 100
br 17 17 17 0.01 0.01 0.01 1 100
coin 100 430 3162 0.16 4075.57 247.15 24 83.3
crane 100 430 3162 0.12 6234.88 327.54 24 79.1
disk 100 430 3162 0.10 5957.56 386.67 24 87.5
ft 53 70 61 0.01 0.04 0.03 2 100
ftv 33 181 97 0.02 53.34 13.42 18 100
kro 124 124 124 0.24 0.24 0.24 1 100
p 43 43 43 0.02 0.02 0.02 1 100
ran 500 1000 750 1.23 9.46 4.94 10 100
rect 100 430 3162 12.4 5241.8 347.11 24 91.6
rgb 323 443 381 75.06 138.43 104.71 4 25
rtilt 100 430 3162 0.33 3980.61 483.61 24 12.5
ry 48 48 48 5.17 5.17 5.17 1 100
shop 100 430 3162 0.09 730.85 72.25 24 91.6
smat 100 430 3162 18.74 6963.29 445.39 24 91.6
stilt 100 430 3162 0.49 4127.88 457.36 24 20.8
super 100 430 3162 0.09 1905.87 81.09 24 95.8
tmat 100 430 3162 0.11 12.95 1.08 24 100
tsmat 100 430 3162 29.83 1885.18 27.84 24 95.8
uk 66 66 66 0.05 0.05 0.05 1 100
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