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Abstract

An extension of the basic image reconstruction problem in discrete
tomography is considered: given a graph G = (V, E) and a family P of
chains Pi together with vectors h(Pi) = (h1

i , ..., h
k
i ), one wants to find a

partition V 1, ..., V k of V such that for each Pi and each color j, |V j∩Pi| =
hj

i . An interpretation in terms of scheduling is presented.
We consider special cases of graphs and identify polynomially solvable
cases; general complexity results are established in this case and also in
the case where V 1, ..., V k is required to be a proper vertex k-coloring of
G. Finally we examine also the case of (proper) edge k-colorings and
determine its complexity status.
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1 Introduction

Discrete tomography deals with the reconstruction of discrete objects from their
projections.

The reader is referred to the book of Hermann and Kuba [15] for an overview
of problems in discrete tomography.

Here we shall consider a graph coloring problem which generalizes a basic
image reconstruction problem in discrete tomography defined below.

We are given a connected graph G = (V,E) and a collection P of p subsets
Pi of vertices of G. We are also given a set of colors 1, 2, . . . , k as well as a
collection H of p vectors h(Pi) = (h1

i , . . . , h
k
i ) ∈ Nk (i = 1, . . . p).

We have to find a k-partition V 1, V 2, . . . , V k of V such that

|Pi

⋂
V j | = hj

i for all i ≤ p and all j ≤ k. (1)

This problem will be called Λ(G, k,P,H). It is clear that in this formulation
the structure of G plays no role.

We shall from now on consider a family of chains µi in G; we will denote by
Pi the (ordered) set of vertices in µi and the length of µi will be |Pi|. Whenever
no confusion may arise, we shall identify µi with its vertex set Pi. We will then
call |Pi| the length of Pi. In the case where the structure of G plays no role,
it is not restrictive to start from chains µi (instead of arbitrary subsets Pi of
vertices as above): we can indeed link the vertices of a Pi to form a chain µi.

The k-partition need not be a coloring of G where adjacent vertices have dif-
ferent colors. We will talk indifferently of k-partition or k-coloring to describe a
partition of the vertex set into k subsets (color classes); whenever we will have
the usual requirement of having different colors on adjacent nodes, we will call
this a proper k-coloring. The corresponding reconstruction problem associated
to proper k-colorings will be denoted Λ∗(G, k,P,H).

Let us now consider the special case where G = (V,E) is a grid graph; its
vertex set is V = {xrs | r = 1, . . . ,m; s = 1, . . . , n} and its edge set is

E = {[xrs, xr,s+1]| s = 1, . . . , n− 1; r = 1, . . . ,m}
⋃

{[xrs, xr+1,s]| r = 1, . . . ,m− 1; s = 1, . . . , n}

If xrs is located in row r and column s of the grid, then by taking for P
the collection of chains Pr = {xr1, . . . , xrm} for r = 1, . . . ,m and Pm+s =
{x1s, . . . , xms} for s = 1, . . . , n, Λ(G, k,P,H) is exactly the basic image recon-
struction problem in discrete tomography; here hj

r (resp. hj
m+s) is the number

of occurrences of color j in row r (resp. in column s) (i.e. (h1
r, ..., h

k
r ) and

(h1
m+s, ..., h

k
m+s) are the horizontal and the vertical projections, respectively).

This problem is also known as colored matrix reconstruction problem.
For k = 2 the problem consists of reconstructing a (0, 1)-matrix from its

vertical and horizontal projections, i.e., number of occurrences of 1 in each row
and in each column; this case is solved in polynomial time [18].

1



For k = 4, this problem is NP−complete [7]; for k = 3 the complexity status
is open but some special cases were solved in polynomial time [8, 9].

In this paper we will consider some extensions and variations of this basic
problem by taking more general classes of graphs G such that trees, bipartite
graphs, planar graphs, cacti.

As an application of Λ(G, k,P,H) let us mention the following problem con-
sisting in scheduling the refurbishment of the stations in a city subway network.
The network is represented by a graph G = (V,E) where the vertices are the
stations. Each metro line is associated with a chain Pi. Assuming that the ren-
ovation operation of every single station takes one month, we want to schedule
these operations while taking into account the following requirements: in month
j, the number of stations in metro line Pi which will be closed for renovation is
hj

i . The problem of assigning a date (month) for the renovation of every station
with the above constraints is precisely Λ(G, k,P,H) if the whole refurbishment
has to take place in a period of k months. In some cases, it is desired to avoid
closing two consecutive stations along the same metro line; the assignment of
dates is then a proper k-coloring of the underlying graph G and the problem is
Λ∗(G, k,P,H).

In addition to the above mentioned application, our problem may be viewed
in a different context related to constraint satisfaction in logic. Essentially we
are given a collection of n Boolean variables as well as a collection of clauses Pi

(each one of them involves a subset of the Boolean variables). It is required to
find an assignment of values True or False to each Boolean variable in such a way
that in each clause Pi the number of variables with value False is exactly (or at
most) a given number hF

i . Notice that here we have a number k of colors which
is 2. The general k-coloring case would then correspond to k-valued logical
variables.

After preliminaries given in Section 2, we will consider the basic problem
Λ(G, k,P,H) in Section 3 with the case k = 2 (difficult and easy cases) and
the general case k ≥ 3. Then Section 4 will be dedicated to the case of proper
colorings, i.e. to Λ∗(G, k,P,H). In Section 5 we will consider line graphs. This
amounts to replacing the vertex colorings by edge colorings. Again we will
consider general k-colorings and also proper k-colorings. Finally Section 6 will
present a summary of the results obtained in this paper.

2 Preliminaries

For graph theoretical terms not defined here, the reader is referred to [3].

In the following we assume that several basic conditions for a solution to
exist are verified, in particular

∑
j hj

i = |Pi|, for all i = 1, . . . , p. In addition, if

we want to determine proper colorings, we have to assume that hj
i ≤ d

|Pi|
2 e for

all i,j. It follows that there is at most one color such that hj
i = d |Pi|

2 e if |Pi| is
odd and at most two colors such that hj

i = |Pi|
2 if |Pi| is even. These colors will
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be called saturating for Pi.

We need some more definitions and notations for P. For a family P = (Pi |
i = 1, ..., p) of subsets Pi of a set V , we call cover index of P and denote by
c(P) the maximum number of members of P which may cover a single element
of V (i.e. which have a non empty intersection).

For instance in the basic reconstruction problem of discrete tomography we
have c(P) = 2.

A family P = (Pi | i = 1, ..., p) of subsets Pi of a set V is called nested if for
any Pi, Pf ∈ P, we have either Pi ⊆ Pf or Pf ⊆ Pi or Pi

⋂
Pf = ∅.

Consider now a partition of P into nested families. One can look for a
partition into the smallest possible number of nested families. This number,
denoted by Nest(P), is called the nesticity of P.

Fact 2.1 [12] One can determine in polynomial time if for a family P we have
Nest(P) ≤ 2.

Proof of fact 2.1: Assign a vertex to each Pi ∈ P and link by an edge Pi

and Pf whenever Pi

⋂
Pf 6= ∅, Pi 6⊆ Pf and Pf 6⊆ Pi. The resulting graph is

bipartite iff Nest(P) ≤ 2. 2

Observe that c(P) and Nest(P) are unrelated: we may have c(P) > Nest(P)
or c(P) < Nest(P). In fact, for P = ({a, b}, {a, c}, {b, c}), we have c(P) =
2, Nest(P) = 3 and for P ′ = ({a, b, c}, {a, b}), we have c(P ′) = 2, Nest(P ′) = 1.

3 Arbitrary colorings

In this section we establish some complexity results and we exhibit some cases
which can be solved in polynomial time for Λ(G, k,P,H).

Notice that whenever the k-colorings are not required to be proper, we can
assume that for each edge e there is at least one chain µi which uses e; otherwise
the edge can be removed. Notice that it may happen that we get a disconnected
graph; in such a case the problem is decomposed.

We shall start with the case where we have k = 2 colors.

3.1 Difficult problems for k = 2

Let us first give two statements which do not refer to the nature of the underlying
graph G.

Theorem 3.1 Λ(G, 2,P,H) is NP−complete if P is a 3-uniform family
(|Pi| = 3 for i = 1, . . . , p) which is 3-regular (each vertex is in exactly three
P

′

i s).

Proof: We use a reduction from X3C (exact cover by 3-sets) which is
known to be NP -complete [11]. In P one has to find a set of disjoint P

′

i s which
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cover exactly the ground set. Or equivalently, we have to find a set S of vertices
such that each Pi contains exactly one vertex of S.
Let h1

i = 1, h2
i = 2 for each Pi; then there is a partition V 1, V 2 of the ground

set satisfying (1) if and only if there is a set S of vertices containing exactly one
vertex of each Pi. In this case S = V 1 and the other vertices form V 2. 2

Theorem 3.2 Λ(G, 2,P,H) is NP−complete if Nest(P) = 3.

Proof: We use a transformation of the 3-dimensional matching problem
which is known to be NP -complete [11]. To state a 3-dimensional matching
problem, we introduce a collection of points with coordinates (α, β, γ) with
α, β, γ ∈ {1, 2, . . . , q} and 3 families formed by all disjoint chains parallel to the
coordinate axes; this gives P with Nest(P) = 3 = c(P).

We set h1
i = 1, h2

i = |Pi| − 1 for each Pi in P. Then there exists a matching
of size q if and only if there exists a partition V 1, V 2 of the set of points which
satisfies (1). 2

Notice that it follows from this transformation that Λ(G, k,P,H) remains
NP−complete for k = 2 and c(P) = 3.

Theorem 3.3 Λ(G, 2,P,H) is NP−complete when G is bipartite of maximum
degree ≤ 4 and each color occurs at most 3 times in each Pi (hj

i ≤ 3,∀i =
1, . . . , p, ∀j = 1, 2) and |Pi

⋂
Pf | ≤ 1 for all 1 ≤ i, f ≤ p (i 6= f).

Proof: The transformation is from the NP−complete problem ONE −
IN − THREE 3SAT which is defined as follows [11]:

INSTANCE: A set U of variables, a collection C of clauses over U such that
each clause c ∈ C has |c| = 3 variables.

QUESTION: Is there a truth assignment for U such that each clause in C
has exactly one true literal ?

This problem is also NP-complete in the case where there is no negated
literal.

We build a graph by associating with each variable x occurring s times
vertices x1, x12, x2, x23, x3, ..., xs−1,s, xs and edges [x1, x12], [x12, x2], [x2, x23], ...,
[xs−1,s, xs]. For each clause cl = {x, y, z} we know the number of occurrences of
its variables in clauses c1, ..., cl−1; so assume cl = {xd, ye, zf} which means that
in cl x has its dth occurrence, y its eth occurrence and z its f th. We introduce
vertices ul and wl with edges [xd, ul], [ul, ye], [ye, wl], [wl, zf ]. Clearly the graph
obtained is bipartite. Now we define P.
For each variable x, each edge [x1, x12], [x12, x2], ..., [xs−1,s, xs] becomes a chain
P

′

i with h(P
′

i ) = (1, 1). For each clause cl = {xd, ye, zf} we introduce a chain
P

′′

i = {xd, ul, ye, wl, zf} with h(P
′′

i ) = (3, 2) and also chains P ∗
l = {ul}, P ∗∗

l =
{wl} with h(P ∗

l ) = h(P ∗∗
l ) = (1, 0).

The family P of chains obtained verifies clearly |Pi

⋂
Pf | ≤ 1 for all i, f ≤ p

(i 6= f). Furthermore no vertex of G has degree more than four.

4



If an instance of ONE− IN −THREE 3SAT has answer ‘yes’, then assigning
color 1 to vertices ul, wl (for all l) and to x1, x2, ..., xs if variable x is ‘true’ or to
x12, x23, ..., xs−1,s otherwise and giving color 2 to the remaining vertices gives
a positive answer to the corresponding instance Λ(G, 2,P,H). Conversely if
an instance of Λ(G, 2,P,H) is positive, then all vertices ul, wl (for all l) have
color 1, so for each chain P

′′

i = {xd, ul, ye, wl, zf} there is exactly one vertex in
{xd, ye, zf} with color 1. Furthermore from the requirements on the chains P

′

i ,
for each variable x, all vertices x1, x2, ..., xs have the same color. So assigning
the value ‘true’ to x if x1, x2, ..., xs have color 1 or value ‘false’ otherwise we get
a positive answer to ONE − IN − THREE 3SAT . 2

Theorem 3.4 Λ(G, 2,P,H) is NP-complete when G is a tree with maximum
degree 3.

Proof: Again, we reduce from the NP -complete problem ONE−IN−THREE
3SAT with no negated literal, already defined. We denote by x1, . . . , xν the
variables and by c1, . . . , cα the clauses. We construct a tree as follows: there
is a main path Π with ν + α vertices. Each one of the ν first vertices of Π
is linked by an edge to a leaf, the ith leaf being labeled by xi (we shall speak
of a variable leaf ). Each one of the α next vertices of Π is linked to a clause
gadget (so that, in our tree, there is one gadget for each clause): the gadget for
a clause ch = xi ∨ xj ∨ xk is a tree with 5 vertices (labeled ah, bh, xi, xj and
xk), xi, xj and xk being the 3 leaves, and ah being linked to Π by an edge. The
edges inside the gadget are [ah, xi], [ah, bh], [bh, xj ] and [bh, xk] (see Fig. 1 for
an example). Note that the tree constructed so far has maximum degree 3.

x1
x2x3

a1b1x1 x2 x3 x4
x2

x3x4

a2b2

Figure 1: The tree constructed for the instance (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

It remains to describe the collection P. First, in the gadget of clause ch = xi∨
xj∨xk, there is a chain Ph = {ah} with h(Ph) = (1, 0), a chain P

′

h = {xi, ah, bh}
with h(P

′

h) = (2, 1), and a chain P
′′

h = {xj , bh, xk} with h(P
′′

h ) = (1, 2). Then,
the path Π is a chain in P with h(Π) = (ν+α, 0). Eventually, for each occurrence
of a variable xi in a clause cr there is a chain from the variable leaf i to the leaf
xi in the clause gadget of cr. Let us denote by P r

i this chain. If the leaf xi in
the clause gadget of cr is linked to ar then we have h(P r

i ) = (|P r
i | − 1, 1) else

we have h(P r
i ) = (|P r

i | − 2, 2).
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Now, the important point is that, because of all the chains of the form Ph,
P

′

h and P
′′

h , there are only 3 ways of coloring each clause gadget (see Fig. 2:
black vertices have color 1, white vertices have color 2).

x i
x jxk

ah
bh

(a)

x i
x jxk

ah
bh

(b)

x i
x jxk

ah
bh

(c)

Figure 2: The 3 possible colorings for the clause gadget of ch = xi ∨ xj ∨ xk

Moreover, because of all the chains of the form P r
i , given one of the 3 possible

colorings of the clause gadget of ch = xi∨xj∨xk, one and only one of the variable
leaves labeled xi, xj and xk has color 1: xi in the coloring of Fig. 2(a), xj in the
coloring of Fig. 2(b), xk in the coloring of Fig. 2(c). Hence, given a solution for
Λ(G, 2,P,H) on this instance, we can easily obtain a solution for the associated
satisfiability instance, by assigning true to variables whose variable leaves have
color 1 and false to the others. Conversely, given a truth assignment, assign color
1 to variable leaves associated with true variables and color 2 to the others, and
color each clause gadget with respect to the only variable equal to true in the
associated clause. It follows from the above discussion that we obtain a valid
coloring. 2

In the above construction, by contracting Π into a single vertex v, and all
the ah into v (i.e., a1 = . . . = aα = v) we obtain :

Theorem 3.5 Λ(G, 2,P,H) is NP-complete in trees of diameter at most 4
when |Pi| ≤ 4 for each Pi in P, hj

i ≤ 3 (i ≤ p, j = 1, 2) and |Pi ∩ Pf | ≤ 2 for
each Pi and Pf (Pi 6= Pf ) in P (i, f ≤ p).

3.2 Polynomially solvable cases with k = 2

We recall that the basic image reconstruction problem in discrete tomography
is polynomially solvable for k = 2 when the P ′

is are the rows and the columns
of the associated grid graph G. Remember that in this special case we have
c(P) = 2.

More generally, we can state:

Theorem 3.6 Λ(G, 2,P,H) is polynomially solvable if c(P) = 2.

Proof: We construct a multigraph G′ as follows: Assign a vertex Pi to each
chain Pi in P. Each vertex of G, which is in Pi and in Pf is represented by an
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edge in G′ between Pi and Pf . Each vertex, which is covered by a unique Pi is
associated to an edge in G′ between vertex Pi and a new vertex P

′

i . So there is
a one-to-one correspondence between the vertices of G and the edges of G′.

Then a solution, if there is one, will correspond to a subset F of edges of
G′ such that for each vertex Pi, F has h1

i edges adjacent to Pi (there is no
restriction for the vertices P

′

i ).
In G′, the edges of F will give V 1 in G and the edges not in F will correspond

to V 2 in G. There are polynomial algorithms (see [16]) to construct such subsets
F if they exist or to decide that there is no solution. 2

One can derive the following from results in [12].

Theorem 3.7 Λ(G, 2,P,H) is polynomially solvable if Nest(P) = 2.

Proof: Starting from the inclusion tree of each one of the two nested families
covering P, one can build a network flow model where a compatible integral flow
will define the subset V 1 ⊆ V and V 2 = V − V 1 will be obtained immediately
as shown in [12].

Assume P can be decomposed into nested subfamilies A and B. We represent
both families by the inclusion tree of their subsets Pi. A source a (resp. a sink
b) is linked to all maximal (inclusionwise) subsets of A (resp. B). We link each
l ∈ V to the unique minimal subset Ar of A (resp. Bs of B) which contains l by
an arc (Ar, l) (resp. (l, Bs)). The network is obtained by orienting all remaining
edges from a to b. The arc entering (resp. leaving) each Pi in A (resp. B) has
a capacity and a lower bound of flow equal to h1

i . The arcs adjacent to the
vertices corresponding to the elements of V have capacity 1 and a lower bound
of flow equal to 0.

In Figure 3 an example is given for a set V = {1, 2, . . . , 7} and a family P with
Nest(P) = 2. Here A = ({1, 2}, {3, 4, 5}, {6, 7}) and B = ({1, 3, 6}, {2, 4}, {5, 7},
{1, 3, 5, 6, 7}). The values h1

i are shown in brackets.

[2]

[2]
[3]

a b

1 2

3 4
5

1
2
3
4

5
6

7
6
7

1 3 6

2 4

5 7

1 3 5 6 7
[1]

[1]   [1]
[1]

Figure 3: The network associated with a family P with Nest(P) = 2
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There is a one-to-one correspondence between the feasible integral flows
from a to b and the subset V 1 of vertices in a coloring (V 1, V 2) satisfying the
requirements. 2

Theorem 3.8 Let G be an arbitrary graph and P a family of chains Pi such
that any Pi has at most two vertices belonging to some other chains of P. Then
Λ(G, 2,P,H) can be solved in polynomial time.

Proof: We shall transform the problem into a 2SAT problem which is
known to be polynomially solvable [2].
We associate a binary variable x to every vertex of G which belongs to at
least two chains Pi. Notice that we may assume that min{h1

i , h
2
i } ≥ 1, i ≤

p, otherwise there is only one color occurring in Pi and the problem can be
reduced. We first remove all vertices which belong to exactly one Pi (these will
be considered later). Now each Pi contains one or two vertices. For each Pi

which has exactly two vertices, say x, y, which belong to other chains, we write
a clause ci as follows.
If h1

i = 2, h2
i = 1, we set ci = x

∨
y (this means that at least one of the vertices

x, y must have color one) and if h1
i = 1, h2

i = 2, we set ci = x̄
∨

ȳ (at least one of
x, y must have color 2). If min{h1

i , h
2
i } ≥ 2, we do nothing (since x and y can get

any color). Finally when h1
i = h2

i = 1, we introduce a constraint x = ȳ (because
x and y must get different colors). For any Pi which has exactly one vertex
belonging to more than one chain in P, we do nothing since by assumption
(min{h1

i , h
2
i } ≥ 1) this vertex can have any color. We define C =

∧q
i=1 ci and

using the equality constraints x = ȳ we may substitute variable ȳ to variable x.
We are left with a 2SAT instance. It has a solution if and only if Λ(G, 2,P,H)
has a solution.
From a solution of 2SAT , we derive a partition V 1, V 2 of the vertices associated
to the binary variables. The bicoloring V 1, V 2 of the vertices of G belonging to
more than one chain of P is given by V 1 = {v| v is true}, V 2 = {v| v is false}.
For each Pi it is possible to assign color 1 or 2 to the uncolored yet vertices so
that the number of occurrences of color j is hj

i (for j = 1, 2). This will provide
the required coloring of G.
Conversely if Λ(G, 2,P,H) has a solution, then by setting x = true (resp.
x = false) for all variables corresponding to the vertices x which are in more
than one chain and have color 1 (resp. color 2), we will satisfy all clauses in C
(as well as the equality constraints). 2

Theorem 3.9 If G = (V,U) is a tree where all arcs have an orientation and
each Pi ∈ P is an oriented path, then Λ(G, 2,P,H) can be solved in polynomial
time.

Proof: Notice that the incidence matrix (paths × vertices) of such a graph
is totally unimodular. So if we write the system Ax = b, 0 ≤ x ≤ 1 where
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aiv = 1 if path Pi contains vertex v (or aiv = 0 else) and bi = h1
i , then we may

check in polynomial time with a linear programming solver whether the system
has a solution; if it is the case there is an integral solution (since A is totally
unimodular) which gives V 1, and V 2 = V − V 1 which form a partition of V
satisfying all requirements. 2

3.3 The case k ≥ 3

Let us first consider the special case where all Pi’s have size |Pi| ≤ 2.

Theorem 3.10 For any graph G and any P such that every |Pi| ≤ 2, Λ(G, k,P,H)
can be solved in polynomial time.

Proof: Consider Λ(G, k,P,H). Eliminate all Pi’s such that hj
i = 2 for some

color j ≤ k (these have a unique coloring) and apply the reductions implied by
these eliminations. We also apply the reductions due to chains Pi with |Pi| = 1.
Consider a pair Pi, Pj with |Pi ∩ Pj | = 1. Let Πl be the set of colors j with
hj

l > 0. If Πi ∩ Πj = ∅, there is no solution; if |Πi ∩ Πj | = 1, then assign this
color to the vertex in Pi∩Pj and the rest of Pi, Pj is also determined. We apply
these reductions until either we get a contradiction or we have a collection of
connected components C1, ..., Cr where in each connected component all Pi’s
have the same set Πi of possible colors (remember that |Pi| = 2 and |Πi| = 2).
Then our problem has a solution if and only if every connected component is
bipartite. 2

For the case where the number of colors is k = 3, we have the following:

Theorem 3.11 Λ(G, 3,P,H) is NP−complete when | Pi |= 3, hj
i = 1 for i =

1, . . . , p, j = 1, 2, 3 and c(P) = 2.

Proof: We use a transformation from edge 3-coloring of a 3-regular graph
G

′
. This problem is known to be NP -complete [13].
We will construct a graph G and a family P of chains in G. We will associate

a chain Pi in G to each vertex wi of G
′
; each edge [wi, wf ] of G

′
is associated

with a vertex vif ≡ vfi of V (G). Pi will be a chain in G containing the three
vertices corresponding to the three edges adjacent to wi in G′. If in G′ vertex
wi is adjacent to wr, ws, wt (r < s < t) then in G Pi = {vir, vis, vit} and the
corresponding chain will be formed by edges [vir, vis], [vis, vit].

We set hj
i = 1 for i = 1, . . . , p and j = 1, 2, 3. Then there is an edge 3-

coloring of G′ iff there is a partition V 1, V 2, V 3 of V (G) such that for each
Pi, |Pi

⋂
V j | = 1 = hj

i for any i, j. 2

Theorem 3.11 is best possible since from Theorem 3.10 the problem is easy
when |Pi| ≤ 2 for all i ≤ p.
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Remark 3.1 According to Brooks theorem (see [3]), the chromatic number
χ(G) of a 3-regular connected graph G is 3 unless G is either a clique on four
nodes (in which case χ(G) = 4) or a bipartite graph (in which case χ(G) = 2).
Since edge 3-coloring is NP -complete in 3-regular graphs [13], we can state:
edge 3-coloring in a 3-regular graph G is NP -complete even if χ(G) = 3.
Conversely, note that if a connected graph G is edge 3-colorable then ∆(G) ≤ 3
and thus either G is a clique on four nodes or χ(G) ≤ 3.

3.4 The case where G is a chain or a tree and k > 2

We will now consider Λ(G, k,P,H) where G is a tree, each Pi is a chain of G
and furthermore for any two chains Pi, Pf in P we have |Pi

⋂
Pf | ≤ 1. In such

a case we have the following:

Lemma 3.1 If G is a tree and if the family P of chains of G satisfies |Pi

⋂
Pf | ≤

1 for all i, f ≤ p, then there is an order (which we call canonical order) of chains
such that for any q > 1

|Pq

⋂
(
q−1⋃
i=1

Pi)| ≤ 1

Proof: Notice first that we can assume |Pi| ≥ 2 for each i ≤ p. This implies
that we cannot have Pi ⊂ Pf for any i, f ≤ p (i 6= f). Now G has a pendent
vertex contained in exactly one chain Pi of P. This chain will be called P1; we
remove it from P as well as all vertices belonging to P1 only. Now we can find
another pendent vertex of the remaining tree G′ and this determines P2. We
will thus find a numbering of the chains of P which satisfies the requirements.
2

We will describe below an algorithm for solving Λ(G, k,P,H) in a tree
G = T ; in this procedure (called FFC) we will have to determine for each
vertex of T the “forced” colors as well as the “forbidden” colors; such a proce-
dure will also be able to detect contradictions in the data which imply that no
solution exists. A color c is said to be forced (resp. forbidden) for a vertex v if
there exists no feasible solution where v has a color c′ 6= c (resp. where v has
color c).
The procedure FFC which makes a repeated use of a maximum flow in a bipar-
tite graph can be sketched as follows.

Procedure FFC (Forced and Forbidden Colors): Let us consider a
chain Pi and let us denote by x1, ..., xν the vertices in Pi. Let Πi be the set of
colors required in Pi : Πi = {j | hj

i > 0}. For each vertex xl, l = 1, ..., ν, πl

denotes the set of possible colors for xl, i.e. πl =
⋂

i|xl∈Pi
Πi.

We construct the following bipartite graph G = (X, Y,E) with X = {x1, ..., xν},
Y = Πi and [xl, j] ∈ E iff j ∈ πl; the capacity of [xl, j] is equal to 1. To get a
network N , we add a source s with an arc of capacity 1 from s to each vertex in
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X and a sink t with an arc from each vertex j in Y to t; the capacity of (j, t) is
equal to hj

i for all j ∈ Y . Any integral flow from s to t saturating the arcs out
of s gives a possible coloring of the vertices in Pi. To any edge [xl, j] ∈ E which
is saturated in every maximum flow corresponds a forced color j for xl. To any
edge [xl, j] ∈ E with a flow equal to 0 in every maximum flow corresponds a
color j forbidden for xl.
Note that it is easy to determine all the edges saturated (resp. with no flow)
in every maximum flow. For each edge [xl, j] in E, suppress [xl, j] (resp. force
a flow from s to t through [xl, j]) and compute a new maximum flow in the
obtained network. If the value of this flow is lower than the original maximum
flow, then [xl, j] is saturated (resp. with no flow) in every maximum flow.

Procedure FFC either finds the forbidden colors or a forced color for a vertex
v or concludes that there is no more forbidden color nor forced color. If the set
πv of possible colors for v is πv = {1, ..., k} initially for each vertex v, we notice
that finding a forced color c for v reduces πv to a set πv = {c} and finding the
forbidden colors ci1 , ..., ciq

for v replaces πv by πv = πv − {ci1 , ..., ciq
}.

Since we will apply FFC as long as forbidden or forced colors can be found, it
will be called at most |V |k times.
Clearly we remove all vertices which have a forced color and we update the
values hj

i accordingly as well as the sets Πi.
At the end of the repeated applications of FFC we will either have discovered a
contradiction (πv = ∅ for some vertex v) or obtained for each vertex v a set πv

with | πv |≥ 2.

Theorem 3.12 If G is a tree and P a family of chains of G satisfying |Pi

⋂
Pf | ≤

1 for any i, f ≤ p (i 6= f), then Λ(G, k,P,H) can be solved in polynomial time.

Proof: We start by applying the FFC procedure; it may happen that one
has to remove some vertices with forced colors; in such a case we get a forest
and we apply the procedure on each connected component separately.
Wlog we consider a tree G and we construct a canonical order P1, ..., Pp of the
chains of P. Since we apply procedure FFC until there are no more forced colors
and neither forbidden colors, we have the following:

Fact 3.1 If in a chain Pi a single arbitrary vertex v has been given a possible
color c ∈ πv, there exists an assignment of possible colors c(w) ∈ πw to all
remaining vertices w of Pi such that Pi has exactly hj

i vertices of color j (1 ≤
j ≤ k).

It is then possible to color the vertices of G by considering the chains P1, ..., Pp

in the canonical order (starting from any vertex of P1). Clearly we will be able
to extend the coloring to all vertices of G since, having colored the vertices of
P1, ..., Pi, the chain Pi+1 has exactly one vertex which is already colored (with
a color in πv).

11



The whole procedure is polynomial:
FFC consists of applying for each chain Pi a maximum flow algorithm in a
bipartite network with |Pi| vertices on the left and k vertices on the right.
To find the forbidden colors and the forced colors, we have to find at most
|Pi|k times an augmenting chain (this takes O(|Pi|k) time); globally we have a
complexity O((|Pi|k)2) for getting the forbidden colors and the forced colors.
For a maximum flow we have O((|Pi| + k)3) (see [1]). Hence an application of
FFC has a complexity O((|Pi| + k)3 + (|Pi|k)2). Since we apply FFC at most
|V |k times, we have O(((|Pi|+ k)3 +(|Pi|k)2)|V |k) and since |Pi| ≤ |V | we have
finally O(((|V |+ k)3 + (|V |k)2)|V |k). 2

Proposition 3.1 If G is a cycle and if the family P is such that |Pi

⋂
Pf | ≤ 1

for any i, f ≤ p with i 6= f , then Λ(G, k,P,H) can be solved in polynomial time.

Proof: We take a consecutive numbering of the chains Pi as in the case
where G is a tree so that |Pi

⋂
Pi+1| = 1 for all i ≤ p − 1 and in addition

|Pp

⋂
P1| = 1; let v0 ∈ Pp

⋂
P1.

We simply consider the following problems Oj (for j = 1, ..., k): find a feasible
coloring such that v0 has color j.
This amounts to removing v0 and updating the hj

i accordingly; this is simply
Λ(G− v0, k,P ′,H ′) where G− v0 is a chain. 2

More generally if G is a cactus, i.e., a connected graph where any two cycles
have at most one common vertex, then we can proceed as for a tree in the
following special case: let us assume that each Pi belongs to exactly one cycle
(or to a chain not contained in a cycle). Each cycle C has some vertices which
may belong to other cycles or to external chains; we shall assume that all these
vertices are necessarily endpoints of chains Pi.
It is not difficult to see that we can number the Pi’s in P in such a way that for
all f ≤ p |Pf

⋂
(
⋃f−1

i=1 Pi)| ≤ 1 (except for the last Pi’s which “close” a cycle in
G).
We can work separatly on each cycle C and determine the possible colors for the
last vertex, i.e. the vertex connecting C to some cycle or some external chain
covered by chains Pi with smaller indices.
We proceed as in the case of trees by applying an FFC procedure first and then,
in case no contradiction has occurred, we will be in the situation where we have
either a single Pi (contained in an external chain) to color where exactly one
vertex is already colored or we reach a cycle (with exactly one vertex already
colored). In the first case we proceed as before and in the second one, we have
that the cycle can be colored by extending the coloring from the vertex which
has been colored and we continue. This will finally color the whole graph.
As in the case of trees, the procedure will give a feasible coloring or exhibit a
contradiction.
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4 Proper colorings

Having discussed Λ(G, k,P,H) we shall examine the case where the k−partition
is a proper k−coloring (Λ∗(G, k,P,H)).

Here we shall assume that for every edge e = [x, y] in G, there is a chain
µi which uses e; this implies in particular {x, y} ⊂ Pi. This assumption is
not restrictive: let e = [x, y] be an edge which is not covered by any µi

in the collection defined in Λ∗(G, k,P,H). We replace e by a chain µe =
(x1

e = x, u1
e, x

2
e, u

2
e, ..., x

k−1
e , uk−1

e , xk
e = y) where x2

e, ..., x
k−1
e are new vertices and

u1
e, ..., u

k−1
e are new edges; we set Pe = {x1

e, ..., x
k
e} and hj

e = 1 for j = 1, ..., k.
Clearly there is a proper k-coloring of the resulting graph G∗ which is solution of
Λ∗(G∗, k,P,H) if there is a proper k-coloring which is solution of Λ∗(G, k,P,H)
because x and y will necessarily get different colors in any feasible coloring of
G∗.

4.1 Solvable cases of proper colorings

Let us now consider some cases for which polynomial time algorithms can be
found.

Fact 4.1 Λ∗(G, 2,P,H) is polynomially solvable.

Justification : notice that in each Pi with odd |Pi|, the vertices have
necessarily forced colors. So we can assume that there are only paths of even
length and each vertex may be colored with color 1 or 2. The problem then
consists in verifying whether the graph is bipartite or not, which can be done
in polynomial time.

We obtain from Theorem 3.12 and its proof:

Corollary 4.1 Λ∗(G, k,P,H) can be solved in polynomial time if G is a tree,
P is such that |Pi

⋂
Pf | ≤ 1 for i, f ≤ p (i 6= f) and hj

i ≤ 1 for all i ≤ p, j ≤ k.

From now on we will have to consider repeatedly proper k−colorings of
chains Pi of G (with possibly k > 2 and with hj

i occurrences of color j in chain
Pi). So we will start by stating some elementary properties of such colorings.

We recall that a color j is saturating in a chain P if hj = d |P |
2 e. The set of

colors j such that hj > 0 will be denoted by Π.

Remark 4.1 If P is an odd chain with a saturating color a, then a occurs
necessarily at both endpoints of P in any coloring.

Remark 4.2 If P is an even chain with a saturating color a, then a occurs
necessarily at least at one endpoint of P in any coloring.

Lemma 4.1 Let P be a chain to be colored and assume there is no saturating
color in Π. For any two colors e, d in Π, one can find a proper k−coloring of
P where e and d occur at the endpoints of P . In case hd ≥ 2, we can have a
coloring with d occurring at both endpoints.
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Proof: Let P = {1, 2, ..., n} and let d, e be the colors which have to occur
at the ends. Assume first that n is even. Start from the left, assigning hd times
color d to vertices 1, 3 . . . , 2hd − 1 and from the right, assign he times color e
to vertices n, n − 2, . . . , n − 2(he − 1). It remains max {0, n − 2he − 2hd + 2}
adjacent vertices in the center. We can find max{0, n

2 − he − hd + 1} non
adjacent vertices among them. Together with the vertices 2, 4, . . . , 2hd − 2 and
n− 1, n− 3, n− 2he + 3, this gives n

2 − 1 non adjacent vertices.
If n is odd, we choose a color f 6= d, e (which exists since there is no saturating
color). We color vertex n with e and we decrease he by one. Then we apply the
previous coloring, with color f replacing color e, to P ′ = P −{n}; this will give
a proper coloring of P since vertex n− 1 has color f and vertex n has color e.
Finally we start by coloring the non adjacent vertices with the remaining colors.
If he + hd− 1 ≥ n

2 , then all uncolored vertices are nonadjacent and the coloring
can be completed. In the other case (he + hd − 1 < n

2 ), we have an interval
I of n − 2he − 2hd + 2 consecutive uncolored vertices in the center. We color
the remaining vertices in the order 2hd, 2hd + 2, ..., n− 2he, n− 2he + 3, ..., n−
1, 2, 4, ..., 2hd − 2, 2hd + 1, 2hd + 3, ..., n − 2he + 1 exhausting one color before
taking the next one. Since there is no saturating color we will get a proper
coloring of the chain.

To obtain a coloring with d occurring on 1 and n, consider P ′ = P − {n}
and (hd)’= hd − 1. Apply the coloring algorithm to P ′ with colors d, e. Clearly
vertex n − 1 will not have color d and we can color vertex n with d to get the
required proper coloring of P . 2

Lemma 4.2 If P is an even chain with exactly one saturating color a, one can
choose any color b and construct a coloring of P such that a and b are occurring
at the endpoints.

Proof: Assume first b 6= a. Color the nodes 1, 3, 5, . . . , |P | − 1 with color
a and color the nodes |P |, |P | − 2, . . . , 2 with the remaining colors starting with
color b.

If b = a, then color a occurs at both ends: we color nodes 1, 3, 5, . . . , |P | − 3
and |P | with color a. Since there are no other saturating color, we can color the
nodes |P | − 2, |P | − 4, . . . , 2, |P | − 1 with the remaining colors and no conflict
will occur. 2

We shall say that the singletons Pi in P have the CS property (Consecutive
Singletons) if the following holds: if a singleton Pi is an intermediate vertex of
some Pc = {x1

c , x
2
c , ..., x

r
c = Pi, x

r+1
c , ..., xs

c} then either x1
c , ..., x

r−1
c or xr+1

c , ..., xs
c

are also singletons in P.

Proposition 4.1 Let G be a chain. For any Λ∗(G, k,P,H) with |Pi

⋂
Pf | ≤ 1

∀i 6= f(i, f ≤ p) and where all singletons Pi have the CS property, there is an
equivalent problem Λ∗(G∗, k,P∗,H∗) where the family P∗ satisfies:

(a) |P ∗
i | ≥ 2
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(b) |P ∗
i

⋂
P ∗

i+1| = 1 (i < p∗) and P ∗
i

⋂
P ∗

f = ∅ (i 6∈ {f − 1, f, f + 1})

Here “equivalent” means that one problem has a solution iff the other one has
a solution.

Proof: Assuming that the vertices are given in increasing order of num-
bering along the chain, we can say that a chain Pi starts at some vertex xd (or
ends at some vertex xe) if d is the smallest (e is the largest) index in Pi.

Now consider a chain Pc = {x1
c , ..., x

r
c , x

r+1
c , ..., xs

c} where x1
c , ..., x

r
c are single-

tons P 1
c , ..., P r

c in P. We remove x1
c , ..., x

r
c and replace Pc by P ∗

c = {xr+1
c , y1, ...,

yk−2} with h(P ∗
c ) = (1, ..., 1, 0, 1, ..., 1) where the missing color is the color of xr

c

and y1, ..., yk−2 are new vertices. We also introduce P ∗∗
c = {xr+1

c , ..., xs
c} with

updated values of hj
i according to the colors already assigned to x1

c , ..., x
r
c . Sim-

ilarly, if there is a chain Pd = {x1
d, ..., x

t
d = x1

c} ending at vertex x1
c we replace it

by a chain P ∗
d = Pd−x1

c = {x1
d, ..., x

t−1
d } and introduce P

′

d = {xt−1
d , z1, ..., zk−2}

with h(P
′

d = (1, ..., 1, 0, 1, ..., 1) where the missing color is the color of x1
c . We

update the values hj
i accordingly. Then we have an equivalent problem since xt

d

will not get the color of x1
c and xr+1

c will not get the color of xr
c . So we have cut

the problem into two subchains and singletons in Pc have been removed. By
repeating this we get an equivalent problem with all Pi’s verifying |Pi| ≥ 2. 2

Theorem 4.1 If G is a chain and P is such that |Pi

⋂
Pf | ≤ 1 ∀i 6= f (i, f ≤ p),

then Λ∗(G, k,P,H) can be solved in polynomial time.

Proof: As already remarked, we can assume that k ≥ 3.
Wlog we can assume that P satisfies the conditions given in Proposition

4.1. Consider now the problem Λ∗(G, k, P,H). To solve it we use a procedure
similar to the one used for Λ(G, k, P,H). If any contradiction occurs during the
following forced assignments then there is no solution.

• Whenever a vertex v ∈ Pi

⋂
Pi+1 is assigned some color j we update the

parameters as follows: hj
i ← hj

i − 1;hj
i+1 ← hj

i+1 − 1; if hj
i = 0 then set

Πi ← Πi − {j}; if hj+1
i = 0 then set Πi+1 ← Πi+1 − {j}.

• If there exists 1 ≤ i < p such that Πi

⋂
Πi+1 = ∅, then there is no solution.

• If there exists 1 ≤ i < p such that |Πi

⋂
Πi+1| = 1 then color Pi

⋂
Pi+1

with the common color.

• For each odd Pi with a saturating color, say j, assign color j to both
endpoints of Pi.

• For each even Pi with a saturating color, say j, j must be assigned to one
of the endpoints of Pi. For 1 < i < p,

if j /∈ Πi−1

⋃
Πi+1 then there is no solution

15



if j /∈ Πi−1 then assign color j to Pi

⋂
Pi+1

if j /∈ Πi+1 then assign color j to Pi

⋂
Pi−1.

For any colored vertex, propagate the possible implications of this coloring
to the previous and next intersections in the following way; if any contradiction
occurs, there is no solution.

Assume that v ∈ Pi

⋂
Pi+1 has been colored with j:

• if l 6= j is a saturating color of Pi (resp. Pi+1) then color the left (resp.
right) endpoint of Pi (resp. Pi+1) with l,

• if |Πi

⋂
Πi−1| = 1 (i > 1) (resp. |Πi+1

⋂
Πi+2| = 1 (i < p − 2)) assign

the unique color l such that hl
i ≥ 1 and hl

i−1 ≥ 1 (resp. hl
i+1 ≥ 1 and

hl
i+1 ≥ 1) to Pi

⋂
Pi−1 (resp. Pi+1

⋂
Pi+2).

At this step, if no contradiction occurred, we have a set of colored vertices
located at intersections of chains Pi. In addition, any pair {Pi, Pi+1} (i < p)
such that Pi

⋂
Pi+1 is uncolored verifies |Πi

⋂
Πi+1| ≥ 2 and if j is a color

saturating Pi then j ∈ Πi−1

⋂
Πi

⋂
Πi+1 1 < i < p.

Moreover, if one endpoint of Pi (1 ≤ i ≤ p) is already colored, any color re-
maining in Πi is compatible with it and can be used to color the other endpoint;
if Pi has a saturating color it is the one already assigned.

The problem has a solution which can be obtained in two more steps:

A) First we assign a color to all uncolored intersection Pi

⋂
Pi+1(i < p), in

the following way: Let Pi

⋂
Pi+1 be the first uncolored intersection in

G: color Pi

⋂
Pi+1 with any color j ∈ Πi

⋂
Πi+1. If i = 1, color the

first endpoint of Pi with any allowed color. If Pi+1

⋂
Pi+2 is uncolored

(i+1 < p) then there is at least one color different from j in Πi+1

⋂
Πi+2;

if there is a saturating color l in Pi+1 and if l 6= j then assign color l
to Pi+1

⋂
Pi+2 (we are sure that l ∈ Πi+1

⋂
Πi+2) otherwise choose any

color in Πi+1

⋂
Πi+2. Propagate the implications of each coloring until we

reach a vertex already colored. Then search for the following uncolored
intersection and continue the process until the end of G.

B) Clearly the partial coloring obtained so far is such that for every chain the
saturating colors are assigned to endpoints in such a way that according
to Lemmas 4.1 and 4.2, the coloring can be extended to all yet uncolored
vertices.

2

Remark 4.3 One should mention that Theorem 4.1 can be extended to trees
where P is such that in every Pi only the ’first’ and ’last’ vertices may belong
to another Pj.
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Remark 4.4 Λ∗(G, k,P,H) can be solved in polynomial time if |Pi| = 2 for all
i = 1, ..., p. Since |Pi| = 2 for each i, each edge is a Pi and there are exactly two
possible colorings for each Pi. We take the first coloring of P1; we propagate
this coloring and if we obtain a proper coloring of G, we are done. Else we
have a conflict; we then reverse the coloring of P1 and propagate this coloring
as before and we will find a coloring of G or a conflict. In the last case, there
is no solution.

4.2 Difficult cases of proper colorings

Theorem 4.2 Λ∗(G, 3,P,H) is NP-complete in trees with maximum degree 3.

Proof: We use the construction in the proof of Theorem 3.4 and introduce a
new vertex on each edge of the tree; we force these new vertices to have color
3. 2

Theorem 4.3 Λ∗(G, 3,P,H) is NP -complete even if G is planar bipartite,
|Pi

⋂
Pf | ≤ 1 (i, f ≤ p, i 6= f), |Pi| ≤ 3 (i ≤ p) and hj

i ≤ 1, i = 1, ..., p,
j = 1, 2, 3.

Proof: We use a transformation from the NP -complete problem
PrExt which is defined as follows:

INSTANCE: A positive integer q and a graph G in which some vertices are
precolored using at most q colors.

QUESTION: Can the precoloring of G be extended to a proper coloring of
G using at most q colors?

This problem is proven to be NP -complete even if q = 3 and G is planar
bipartite (see [14]).
Consider a planar bipartite graph G = (X, Y,E). Suppose that some of its
vertices are precolored using colors 1,2 and 3. For each precolored vertex x,
we set Px = {x} and h(Px) = (1, 0, 0) if x has color 1, h(Px) = (0, 1, 0) if x
has color 2 and h(Px) = (0, 0, 1) if x has color 3. For each edge e = [x, y] in
G, we add a new vertex ze and a new edge [x, ze]. We set Pe = {x, y, ze} and
h(Pe) = (1, 1, 1).
Clearly our new graph G′ is still planar bipartite. Furthermore |Pi

⋂
Pf | ≤ 1

(i, f ≤ p, i 6= f), |Pi| ≤ 3 (i ≤ p) and hj
i ≤ 1, i = 1, ..., p, j = 1, 2, 3.

It is easy to see that PrExt has a solution in G if and only if Λ∗(G′, 3,P,H)
has a solution in G′. 2

5 Edge colorings

We consider now edge colorings instead of vertex colorings; we may in a similar
way define problem Ψ(G, k,P,H) where P is a collection of p subsets Pi of edges
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of G and we want to find a k-partition E1, E2, . . . , Ek of E such that

|Pi

⋂
Ej | = hj

i for all i ≤ p and all j ≤ k. (2)

If we want to find a proper edge k-coloring then the problem will be denoted by
Ψ∗(G, k,P,H).

In general the subsets Pi of edges will be chains (open or closed). |Pi| will
be the number of edges in chain Pi.

Clearly problems Ψ and Ψ∗ in a graph G are equivalent to problems Λ and
Λ∗ in L(G) where L(G) is the line graph of G (edges of G become vertices of
L(G)).

It follows that when G is itself a chain, then L(G) is also a chain and the
results for Λ and Λ∗ also apply to the edge coloring case.

5.1 Arbitrary colorings

In this situation every edge e which is not included in some Pi may clearly be
removed from G. So we can assume wlog that every e is in some Pi of P.

Theorem 5.1 Ψ(G, k,P,H) can be solved in polynomial time if |Pi| ≤ 2 for
each chain Pi ∈ P.

Proof: This follows directly from the proof of Theorem 3.10. After reduction
we transform the graph as follows: each edge becomes a vertex and we link two
vertices if there is a Pi containing the corresponding edges. The problem has a
solution if and only if there is no odd cycle in this graph. 2

Theorem 5.2 Ψ(G, 2,P,H) is NP -complete even if G is a tree T with maxi-
mum degree 3 and the Pi’s are chains or bundles.

Proof: We use the same reduction from ONE − IN − THREE 3SAT as in
Theorem 3.4.
We have to color edges instead of vertices; the leaf variables now correspond to
leaf edges and for each clause ch we now have for the sets P ′

h bundles of edges
y, z and x (see figure 4(a)) if the clause is given by ch = xi ∨ xj ∨ xk. We set
h(P ′

h) = (2, 1). The set P ′′
h is now the bundle y, u, t with h(P ′′

h ) = (1, 2) and the
set Ph = {x} with h(Ph) = (1, 0). The other chains P r

i are defined similarly.
2

If we require all Pi’s to be exclusively chains in G (but not bundles) we can
derive the following for a special cactus in which no two cycles have a common
vertex (see [6] for additional properties of cacti).

Theorem 5.3 Ψ(G, 2,P,H) is NP -complete even if G is a triangulated cactus
with maximum degree 3 and where all the Pi’s are chains.
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Figure 4: Transformation of bundle constraints for a tree into chain constraints
in a cactus

Proof: We just have to show how the bundle requirements can be transformed
into constraints related to chains.
We transform the clause gadget ch as shown in figure 4(b). The cactus obtained
in this way is triangulated (its cycles are triangles).
The bundle P ′ = {x, y, z} with h(P ′) = (2, 1) becomes chains P ′

∗ = {x, y, z2, z1},
P ′
∗∗ = {z2} with h(P ′

∗) = (2, 2), h(P ′
∗∗) = (0, 1).

The bundle P ′′ = {y, u, t} with h(P ′′) = (1, 2) becomes chains P ′′
∗ = {y, w, u, t2, t1},

P ′′
∗∗ = {w, t1} with h(P ′′

∗ ) = (1, 4) and h(P ′′
∗∗) = (0, 2).

Finally the Pi’s using chains between v and edges u and t can also be replaced
by chains in the new gadget c′h with appropriate modifications of the values hj

i .
2

5.2 Proper colorings

Theorem 5.4 Ψ∗(G, 3,P,H) is NP -complete when G is 3-regular, P is a col-
lection of vertex disjoint triangles Pi considered as sets of edges (i.e. |Pi| =
3,∀i = 1, . . . , p, Pi

⋂
Pf = ∅ for all i, f, i 6= f) and hj

i = 1,∀i = 1, . . . , p,∀j =
1, 2, 3.

Proof: We use a transformation from edge 3-coloring of a 3-regular graph
G′. This problem is known to be NP -complete [13].
For each vertex i adjacent to vertices f, l, p, we introduce in G the vertices
vif , vil, vip. These three vertices are pairwise linked forming a triangle which
will correspond to Pi. Thus G will have 3|V | vertices. For each edge [i, f ] in G′

we introduce an edge [vif , vfi] in G.
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We take p = |V (G′)| and P = {P1, . . . , Pp} with hj
i = 1 for i = 1, . . . , p and

j = 1, 2, 3. Notice that the Pi’s form closed chains.
There is an edge 3-coloring of G′ iff there is an edge 3-coloring of G. The edges
of E(G) are colored as follows:

1. for each edge [i, f ] of G′ with colour k, the corresponding edge [vif , vfi] in
G has colour k;

2. the three edges forming a triangle Pi can be coloured with three colours
by extending the colouring obtained after the previous stage.

Finally, note that any edge 3-coloring of G will satisfy the requirements on the
sets Pi. 2

Theorem 5.5 Ψ∗(G, 3,P,H) is NP -complete when G is a bipartite 3-regular
graph and P is a family of chains Pi of length two which are pairwise non
adjacent.

Proof: Let us call SIM (for simultaneity requirements) the following prob-
lem: we are given a 3-regular bipartite simple graph G with two subsets S1, S2

of edges such that S1 ∩S2 = ∅ and the edges of Si are pairwise non adjacent for
i = 1, 2.

Does there exist an edge 3-coloring (M1,M2,M3) of G such that M1 ⊇ S1,
M2 ⊇ S2?

SIM was shown to be NP -complete in [10]. We use a reduction from SIM
as follows: from G = (V,E) with subsets S1,S2 we construct a simple graph
G∗ by replacing each edge e = [x, y] in Si by the graph given in Figure 5.
We set Pe = {[x′′e , y′e], [y

′
e, x

′′′
e ]} with h1

e = 0, h2
e = h3

e = 1 for i = 1 or with
h1

e = 1, h2
e = 0, h3

e = 1 for i = 2. Note that in any solution of Ψ∗(G∗, 3,P,H)
the edge [x

′

e, y] will get the same color as [x, y
′

e].

x yy 'e

y ''e

y '''e

x 'e

x ''e

x '''e

Figure 5: Transformation of G where edge e = [x, y] is precolored into G∗

G∗ is a 3-regular bipartite simple graph; it has an edge 3-coloring satisfying
the requirements on each Pe if and only if G has an edge 3-coloring where each
edge e in Si has color i for i = 1, 2. 2
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Theorem 5.6 Ψ∗(G, 3,P,H) is NP -complete when G is a planar bipartite
graph with maximum degree ∆(G) ≤ 3 and P is a family of chains Pi of length
2.

Proof: We shall use a transformation from the precoloring extension prob-
lem on edges which is shown to be NP -complete even for planar, 3-regular
bipartite graphs [17].
Let G′ = (X ∪ Y, E) be a planar 3-regular bipartite graph in which some edges
are precolored using colors 1,2 and 3. For each vertex i ∈ X ∪ Y incident to
two precolored edges, color the third edge with the remaining color (if there is a
contradiction, the problem has no solution). For each vertex i ∈ X ∪Y incident
to one precolored edge [i, f ], take Pi = {[i, l], [i, p]} where l, p are the endpoints
of the two uncolored edges incident to i. If [i, f ] has color j ∈ {1, 2, 3}, take
hj

i = 0, hq
i = 1, q 6= j, q ∈ {1, 2, 3}. Delete the precolored edges. We get a

planar bipartite graph G with maximum degree ∆(G) ≤ 3 and P is a family of
chains Pi of length 2.
It is clear that the precoloring extension problem on the edges of G′ has a
positive answer if and only if Ψ∗(G, 3,P,H) has a positive answer. As G can
be obtained from G′ in polynomial time, we proved that our problem is NP -
complete. 2
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6 Summary and conclusion

We have studied an extension of the basic image reconstruction problem of
discrete tomography. The complexity status of some variations has been deter-
mined; the results are summarized in Table 1 for Λ(G, k,P,H). Then Table 2
presents the results for the case of proper colorings (Λ∗(G, k,P,H)).

G k |Pi| hj
i |Pi

⋂
Pf | Status Theorem

2 c(P) = 2 P 3.6
2 Nest(P) = 2 P 3.7
2 |Pi ∩

⋃
Pf | ≤ 2 P 3.8

i 6= f
dir. tree 2 Pi: oriented P 3.9

path
≤ 2 P 3.10

tree ≤ 1 P 3.12
cactus ≤ 1 P Prop. 3.1

2 3 P 3-regular NPC 3.1
2 Nest(P) = 3 NPC 3.2

= c(P)
bipartite 2 ≤ 3 ≤ 1 ∆(G) ≤ 4 NPC 3.3

tree 2 ∆(G) ≤ 3 NPC 3.4
tree 2 ≤ 4 ≤ 3 ≤ 2 diameter≤ 4 NPC 3.5

3 3 1 c(P) = 2 NPC 3.11

Table 1: Summary of the results for Λ(G, k,P,H).
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G k |Pi| hj
i |Pi

⋂
Pf | Status Theorem

2 P Fact 4.1
2 ≤ 1 P Rem. 4.4

tree ≤ 1 ≤ 1 P Cor. 4.1
chain ≤ 1 P 4.1
tree 3 ∆(G) ≤ 3 NPC 4.2

bipartite 3 ≤ 3 ≤ 1 ≤ 1 NPC 4.3
planar

Table 2: Summary of the results for Λ∗(G, k,P,H).

Finally for edge k-colorings, Table 3 (resp. Table 4) shows the status of some
problems for arbitrary edge k-colorings, i.e. for Ψ(G, k,P,H) (resp. for proper
edge k-colorings, i.e. for Ψ∗(G, k,P,H)).

G k |Pi| hj
i |Pi

⋂
Pf | Status Theorem

≤ 2 P 5.1
tree 2 Pi: chain or NPC 5.2

bundle; ∆(G) ≤ 3
cactus 2 ∆(G) = 3; NPC 5.3

G triangulated

Table 3: Summary of the results for Ψ(G, k,P,H).

G k |Pi| hj
i |Pi

⋂
Pf | Status Theorem

3 3 1 0 G 3-regular; NPC 5.4
Pi: triangle

bipartite 3 2 0 G 3-regular NPC 5.5
bipartite 3 ≤ 2 ∆(G) ≤ 3; NPC 5.6
planar

Table 4: Summary of the results for Ψ∗(G, k,P,H).

There are more cases to examine and it would in particular be interesting to
consider a family P of chains with less restrictive hypotheses in some special
classes of graphs. But the results obtained here seem to show that the problems
become difficult even in very simple cases.
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