
EDGE DISJOINT PATHS AND MULTICUT PROBLEMS
IN GRAPHS GENERALIZING THE TREES∗

Cédric Bentz†

5th October 2005

Abstract

We generalize all the results obtained for maximum integer multi-
flow and minimum multicut problems in trees by Garg et al. [Primal-
dual approximation algorithms for integral flow and multicut in trees.
Algorithmica 18 (1997) 3–20] to graphs with a fixed cyclomatic num-
ber, while this cannot be achieved for other classical generalizations
of the trees. Moreover, we prove that the minimum multicut problem
with a fixed number of source-sink pairs is polynomial-time solvable
in planar and in bounded tree-width graphs. Eventually, we introduce
the class of k-edge-outerplanar graphs and show that the integrality
gap of the maximum edge-disjoint paths problem is bounded in these
graphs. We also provide stronger results for cacti (k = 1).

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms; G.2.2
[Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Theory

Additional Key Words: Edge disjoint paths, integer multiflows,
multicuts, multiterminal cuts, approximation algorithms

1 Introduction

In this paper, we are interested in the study of the maximum edge-
disjoint paths and the minimum multicut problems in undirected graphs (no
directed version is considered), as well as some of their variants. These two
fundamental problems have been extensively studied, and are well-known to
be NP-hard even in very restricted classes of graphs.

∗A preliminary version of a part of this paper, entitled “Edge disjoint paths and max
integral multiflow/min multicut theorems in planar graphs”, appeared in Proceedings
ICGT’05 (2005), to appear in Electronic Notes in Discrete Mathematics.

†CEDRIC-CNAM, 292, rue Saint-Martin, 75141 Paris Cedex 03, France.
Phone: +33 (0) 1 58 80 85 50. E-mail address: cedric.bentz@cnam.fr

1

Assume we are given a n-vertex m-edge undirected graph G = (V,E),
a capacity function c : E → Z+ and a list N of pairs (source si, sink s′i)
of terminal vertices. Each pair (si, s

′
i) defines a net or a commodity. The

maximum integer multiflow problem (MaxIMF) consists in maximizing the
sum of the integral flows of each commodity (from si to s′i), subject to ca-
pacity and flow conservation requirements. When ce = 1 for each e ∈ E,
MaxIMF turns into the maximum edge-disjoint paths problem (MaxEDP).
When each commodity is required to be routed along a single path, Max-
IMF turns into the maximum unsplittable flow problem (MaxUSF).

The minimum multicut problem (MinMC) is to select a minimum weight
set of edges whose removal separates si from s′i for each i. The minimum
multiterminal cut problem (MinMTC) is a particular minimum multicut
problem in which, given a set of vertices T = {t1, . . . , t|T |}, the nets are
(ti, tj) for 1 ≤ i < j ≤ |T |.

For |N | = 1, the powerful Ford-Fulkerson’s theorem establishes that the
value of the minimum cut is equal to the value of the maximum integral flow
[17]. Unfortunately, this property does not hold for larger |N |. However,
MaxIMF and MinMC do have a fundamental relationship. Both can be
expressed as integer linear programs, and the continuous relaxations of their
linear programming formulations are dual. One consequence is that the
value of any feasible multiflow cannot exceed the value of any multicut. This
property explains why approximation results sometimes relate the value of
an approximately optimal multiflow to the value of a well-suited feasible
multicut, instead of relating it directly to the value of an optimal multiflow.

A lot of work has been done on these problems. Although the basic prob-
lems are known to be NP-hard for a long time, much efforts have been done
in two directions: first, identifying classes of graphs or special cases where
the problems become tractable; second, obtaining good polynomial-time ap-
proximation algorithms for these problems, and, in particular, deriving good
integer solutions from fractional solutions (i.e., finding solutions with a small
integrality gap) or designing primal-dual schemes.

Both aspects are considered in this paper. Since we are looking for
valuable cases, we begin by presenting the main known results. Given an
optimization problem P and a real α > 0, a α-approximation algorithm for
P is a polynomial-time algorithm A that always outputs a feasible solution

for P such that maxI / I is an instance of P

{
OPTI

SOLA(I) ,
SOLA(I)
OPTI

}
≤ α, where

OPTI is the optimum value for the instance I of problem P and SOLA(I)
is the value of the solution given by A for the instance I of problem P .

Prior to the study of MaxEDP, lots of results concerned a basic NP-
complete problem, the edge-disjoint paths problem (EDP). Given an undi-
rected graph and a list of nets, the problem is to decide whether it is pos-
sible to route all the nets along edge-disjoint paths. Obviously, whenever
this decision problem is NP-complete, MaxEDP is NP-hard. However,

2

solving EDP in polynomial time does not necessarily help us for dealing
with MaxEDP efficiently. See [19] for an extensive survey on EDP.

On the negative side, Pfeiffer and Middendorf show that EDP remains
NP-complete even if the graph obtained by adding the edges (si, s

′
i), i ∈

{1, . . . , |N |}, to the initial graph G, is planar [34] (however, if, in addition,
we restrict the terminals to lie on a bounded number of faces of G, they
prove that the problem becomes tractable). Moreover, Marx shows that
EDP is NP-complete in eulerian planar graphs with a degree bounded by 4
(by showing that it is NP-complete in eulerian grids [33]), and Nishizeki et
al. show that it is also NP-complete in series-parallel graphs (i.e., in graphs
with tree-width 2) [35].

On the positive side, Robertson and Seymour show that, when |N | is
fixed, EDP is polynomial-time solvable in unrestricted graphs [40]. More-
over, extending a result of Okamura and Seymour [37], Frank shows that
EDP is polynomial-time solvable in planar graphs, if all the terminals lie on
the outer face and all the vertices not on the outer face have even degrees
[18]. Note that the above class of graphs includes the planar graphs with
all their vertices on the outer face, i.e., the outerplanar graphs (a subclass
of the series-parallel graphs).

We turn back to MaxEDP. In their seminal paper, Garg, Vazirani and
Yannakakis show that MaxEDP is polynomial-time solvable in trees [23].
However, they also show that, in trees with capacities 1 and 2, MaxIMF
is NP-hard and APX-hard. By replacing each edge of capacity 2 by two
parallel paths of length two, each containing only edges with capacity 1, this
implies that MaxEDP is NP-hard and APX-hard in outerplanar graphs
having all their edges lying on the outer face. Moreover, Even, Itai and
Shamir show that, even if |N | = 2, MaxEDP is NP-hard in unrestricted
graphs [16]. It can be noticed that, if |N | is fixed and the degrees of the
vertices are bounded by a constant, then MaxEDP can be solved in polyno-
mial time by calling a constant number of times the algorithm of Robertson
and Seymour [40]. This is also true if we consider the problem of linking by
edge-disjoint paths as many nets as possible (i.e., if we consider MaxUSF
with unit capacities). However, to the best of our knowledge, in planar
graphs, MaxEDP remains open if |N | is fixed (although the variant where
one requires vertex-disjoint instead of edge-disjoint paths is known to be
tractable [24]). Note that the case where |N | = 2 and adding the edges
(si, s

′
i), i ∈ {1, . . . , |N |}, does not destroy planarity, is tractable [31].

We now look at approximability results. Some important ones are known
for MaxEDP, MaxIMF and MaxUSF. In general graphs, there is an
O(min(

√
m,n2/3))-approximation algorithm for MaxEDP and MaxUSF

[8, 30], although the stronger (and very recent) known inapproximability
result is that both cannot be approximated within (log m)1/3−ε for every
ε > 0 [1]. For planar graphs, the approximation ratio is O(

√
n), while only

APX-hardness is known. Both a greedy algorithm (denoted by SPF , for

3

Shortest Paths First) and a rounding based algorithm achieve this ratio
[3]. Furthermore, it is important to note that there are families of pla-
nar graphs where the integrality gap is Θ(

√
n) [23]. For more restricted

classes of graphs, however, constant- or logarithmic-factor approximation
algorithms are known: for MaxIMF, a 2-approximation algorithm in trees
[23] and an O(log(|N |)/ε)-approximation (resp. an O(1/ε)-approximation)
in graphs (resp. in planar graphs) where any multicut has a value at least
ε
∑

e∈E c(e) [36]; for MaxEDP, a 3-approximation in trees of rings [15], an
O(1)-approximation (resp. an O(log n)-approximation) in densely embed-
ded (resp. in high-diameter) and nearly eulerian planar graphs (including
the two-dimensional mesh) [26, 27], a 9-approximation in complete graphs
[7] and an O(F)-approximation for graphs with flow number F (see [29]
for details). Moreover, for high-capacitated networks (i.e., for graphs where
all the capacities are Ω(log n)), an O(1)-approximation can be achieved for
MaxIMF by randomized rounding techniques [38]. In expander graphs, a
general result on the connectivity between pairs of vertices is given in [21].
In planar graphs where all the capacities are at most two, a recent paper of
Chekuri et al. proposes an O(log n)-approximation algorithm for MaxIMF
based on a continuous relaxation [9, 10]. Still, it can be noticed that few
approximation results are available, due to the noticeable difficulty to design
good approximation algorithms for these problems.

Now, let us consider the MinMC problem. Garg, Vazirani and Yan-
nakakis show that it is NP-hard and APX-hard even in unweighted stars,
but that it can be solved in polynomial time in trees if |N | is fixed, and
approximated within a factor of 2 otherwise [23]. Moreover, Dahlhaus et
al. show that MinMTC (and thus MinMC) is NP-hard in unrestricted
graphs, even if |N | = 3 [12]; in planar graphs, MinMTC is polynomial-time
solvable if |N | is fixed [12, 25, 42], and NP-hard otherwise [12]. Never-
theless, the integrality gap for MinMC is O(log |N |) in general graphs [22]
and O(1) in planar graphs [41], and there exist polynomial-time algorithms
achieving these ratios. Furthermore, Cǎlinescu et al. give a polynomial-
time approximation scheme for MinMC in unweighted graphs of bounded
tree-width and bounded degree, and show that dropping any of these three
assumptions leads to APX-hardness (instead of NP-hardness only) [6].

In [23], Garg et al. give a primal-dual scheme showing, in particular,
that the integrality gap for MaxIMF is at most 2 in trees, and exhibit an
example showing that, even in planar graphs, this gap can be quite large in
general. This raises the question of finding classes of graphs where this gap
is small. Actually, there are several motivations to our paper. First, trying
to generalize the results of Garg et al., i.e., looking for classes of graphs
that generalize the trees and where all (or a main part of) their results
remain true, and trying to understand what makes these problems much
easier on trees (is it a structural property? Or merely a key parameter
that is small in trees?) Second, trying to identify a parameter (or some

4

parameters) that makes MaxEDP tractable if we bound it (or them), and
NP-hard otherwise. And third, finding special cases generalizing the trees
and specializing, in some sense, the example given in page 17 in [23], and
where the integrality gap remains bounded for MaxEDP. The first and the
third motivations have been strongly inspired by the work of Garg et al.,
and the second motivation has revealed to be closely related to the first one.

A natural way of generalizing the trees is to consider graphs with bounded
tree-width [39]. Another generalization is to consider planar graphs where
the terminals lie on a fixed number of faces [34]. However, as mentioned
above, Garg et al. show that MaxEDP remains NP-hard and APX-hard
in outerplanar graphs, which have tree-width at most 2 [5], and in which
the terminals all lie on one face (the outer one). In addition, their polyno-
mial reduction remains valid even if we restrict ourselves to graphs having
a bounded degree inside each 2-vertex-connected component.

Our first result is that all the results presented in [23] can be generalized,
in some sense, to graphs with a fixed cyclomatic number (a tree being a
graph with cyclomatic number 0). In particular, we prove that MaxEDP
is polynomial-time solvable in such graphs, and that the integrality gap for
MaxIMF is bounded by two times one plus the cyclomatic number. We also
show that, for fixed |N |, MinMC is polynomial-time solvable in planar and
in bounded tree-width graphs. Although bounding the maximum degree and
having all the terminals lying on one face do not lead to a bounded integrality
gap for MaxEDP [23], our second result is that the integrality gap for
MaxEDP is bounded in k-outerplanar graphs having a bounded degree
inside each 2-vertex-connected component. Such graphs obviously generalize
the trees, but also specialize the example given in page 17 in [23], where
each degree is bounded by 3 and the graph is planar but not k-outerplanar.
To prove this second result, we introduce the k-edge-outerplanar graphs,
which form a subclass of the k-outerplanar graphs, and then we apply on a
particular spanning tree the approximation algorithm given in [23]. We also
consider the cacti, a class of graphs that generalize the trees of rings, and
show that, in this case, we can bound the integrality gap for MaxIMF.

The paper is organized as follows. In Section 2, we give or recall some
definitions, notions and preliminary results that will be useful in the next
sections. In Section 3, we detail our results concerning graphs with a fixed
cyclomatic number, showing how to generalize the work of Garg, Vazirani
and Yannakakis. We also detail our results concerning MinMC. Then, Sec-
tion 4 deals with the integrality gap of MaxEDP in k-edge-outerplanar
graphs. Finally, in Section 5, we formulate a conjecture about the integral-
ity gap of MaxIMF in the graphs studied in [18].

5

2 Preliminaries

2.1 Definitions

Given k ≥ 1, a k-outerplanar graph is a planar graph having an em-
bedding with at most k layers of vertices, i.e., such that, after removing
iteratively the vertices (and their adjacent edges) lying on the outer face at
most k times, we obtain the empty graph [2]. The class of k-outerplanar
graphs is very well-known to be an important class of planar graphs with
bounded tree-width [5].

In this paper, we introduce the class of k-edge-outerplanar graph, which
has been inspired by the above class of graphs. Given k ≥ 1, a k-edge-
outerplanar graph is a planar graph having an embedding with at most k
layers of edges, i.e., such that, after removing iteratively the edges lying on
the outer face at most k times, we obtain a graph with no edge. We will
detail in Section 4.1 the relationships between k-outerplanar and k-edge-
outerplanar graphs. Note that the 2k × N planar mesh (N > 2k) is both
k-outerplanar and k-edge-outerplanar.

In particular, an edge-outerplanar graph (resp. an outerplanar graph)
is a planar graph containing at least one edge (resp. one vertex) and having
an embedding with all its edges (resp. vertices) lying on the outer face.

A graph (or one of its components) is called 2-vertex-connected (resp.
2-edge-connected) iff for any two of its vertices there are at least two paths
between them that do not share any vertices (resp. any edges). A block is
an inclusionwise maximal 2-vertex-connected component of a graph.

We also need to define formally the notion of inside degrees. Recall that
the degree of a vertex is the number of vertices adjacent to it. Given a graph,
one of its 2-vertex-connected components 2V CC, and a vertex v lying in a
block, the degree of v inside 2V CC, denoted by deg2V CC (v), is the number
of vertices lying in 2V CC that are adjacent to v. Note that a vertex can
have a bounded inside degree and an unbounded degree (the converse being
obviously false).

Now, let us define two other classes of graphs. Given two integers k ≥ 1
and d ≥ 2, the class of k-outerplanar connected graphs having a degree
bounded by d inside each block will be denoted by OPBIDk,d. Given an
integer γ ≥ 0, the class of connected graphs G = (V,E) with a cyclomatic
number ν(G) = |E| − |V |+ 1 smaller than or equal to γ will be denoted by
Sγ (these graphs being very sparse since |E| ≤ |V | − 1 + γ). Note that each
connected planar graph with γ′ ≤ γ internal faces is in Sγ (in particular, S0

represents the trees).
Given a graph G and a list of nets {(s1, s

′
1), . . . , (s|N |, s

′
|N |)} on its ver-

tices, we denote by Pi the set of elementary paths linking si to s′i in G,
for i ∈ {1, . . . , |N |}. Moreover, let P =

⋃
i∈{1,...,|N |} Pi. A flow path is a

path carrying at least one unit of flow of any commodity. Note that all

6

the graphs considered in this paper are simple (i.e., with no parallel edges),
loopless and connected (if this is not the case, we consider each connected
component independently).

Eventually, we need two simple notation rules. Given a multicut C and a
multiflow F , we shall denote by ‖C‖ and ‖F‖ their respective values. Given
a graph G and a subset R of the edge set of G, let G \ R denote the graph
obtained from G by removing all the edges in R from the edge set of G.

2.2 A simple approximation algorithm

Recall that the approximation ratio of the greedy algorithm SPF is
O(min(

√
m,n2/3)), i.e., O(

√
n) in planar graphs. This simple algorithm

iteratively routes the shortest available path in P (it was introduced in
[28]). Moreover, there exist families of trees where this bound is reached.
We give one family here. Start with a path v1, v2, . . . , vp+2 of length p + 1.
Then, add a path of length p + 1 from vi to si for each i ∈ {2, . . . , p + 1}.
Eventually, let s1 lie on v1, let s′1 lie on vp+2 and let s′i lie on vi+1 for each
i ∈ {2, . . . , p + 1}. This graph has Θ(p2) vertices (i.e., p = Θ(

√
n)) and

p + 1 nets (i.e., |N | = p + 1), and the path from si to s′i has length p + 2,
for each i ∈ {2, . . . , p + 1}. SPF routes (s1, s

′
1) (which has length p + 1),

while the optimal solution is to route (s2, s
′
2), . . . , (sp+1, s

′
p+1). Furthermore,

the graph is a tree and the new graph obtained by adding the p + 1 edges
(si, s

′
i) is planar. Note that this instance can easily be transformed into a

non trivial one (i.e., such that the optimal value is neither O(1) nor Θ(|N |)).
Hence, even for restricted classes of graphs, we have to look for better

approximation algorithms. Given a connected graph G, several of our results
use the same basic idea: computing a spanning tree of G in order to use
the results given in [23] for trees. Since we shall use a new simple algorithm
based on this idea several times, we give it here. It can be viewed as a
primal-dual scheme containing three steps:

1. Compute a spanning tree T of G;

2. Use the primal-dual algorithm given in [23] which constructs an integer
multiflow FT and a multicut CT for T such that ‖CT ‖ ≤ 2‖FT ‖;

3. Build a multicut CG for G satisfying ‖CG‖ ≤ α‖CT ‖ for a fixed α > 0.

At the end of this algorithm, we obtain an integer multiflow FT and a
multicut CG such that ‖CG‖ ≤ 2α‖FT ‖. Noticing that FT is also feasible for
G, this yields 2α-approximation algorithms for both MaxIMF and MinMC.
Obviously, the first step may have to be done with some care, and the third
one as well (even if our purpose is not to find the best possible α). Note
that Step 3 is only relevant to prove the approximation ratio: if one is only
interested in computing an approximately optimal flow, only the two first

7

steps are necessary. Also note that, to the best of our knowledge, this is
the first attempt to generalize the constant bound of the maximum integer
multiflow / minimum multicut theorem of Garg et al. in trees [23]. Indeed,
the family of trees given at the beginning of this section has an Ω(

√
n) flow

number (since any path has length Ω(
√

n)) and the minimum multicut uses
O(
√

n) edges, hence neither the results in [29] nor the results in [36] provide
a constant bound.

3 Graphs with a fixed cyclomatic number

In this section, we generalize the results of [23] from the trees to the
graphs in Sγ . We prove that MaxEDP can be solved in polynomial time
for the graphs in Sγ , by solving O((2γ |N |+ 1)γ) instances on a set of trees.
We also show how to apply these ideas to get an approximation algorithm
for MaxEDP in quasi-complete graphs. Then, given a graph G in Sγ , we
show how to compute an integer multiflow FG and a multicut CG such that
‖CG‖ ≤ 2(γ + 1)‖FG‖, by using the algorithm given in Section 2.2. Finally,
we show that MinMC can be solved in O(m2γ |N |) time for the graphs in Sγ ,
which is polynomial in m if |N | is fixed. Using a totally different approach,
we then show that much stronger results actually hold for MinMC. For the
sake of simplicity, we do not systematically try to optimize the constants
used in our analysis.

3.1 Solving MaxEDP

Garg et al. show that MaxEDP is polynomial-time solvable in trees.
We use this result to design a polynomial-time algorithm solving MaxEDP
in graphs of Sγ .

Let G be a graph in Sγ . We remove γ edges from G, so that the resulting
graph is a spanning tree, by iteratively picking an edge from a block. Let
these edges be e1, . . . , eγ . The main idea is that, since γ is fixed, there is a
bounded number of edges that has to be considered. For each one of these
γ edges, we select either no path or one elementary path that crosses it, and
remove this edge and all the other edges crossed by the (possibly) selected
path. We have to be careful to select only compatible (i.e., edge-disjoint)
paths: for instance, if we select a path p crossing ei, we must also select p for
ej , i 6= j, if p crosses ej . After we do this for the γ edges, we obtain a forest.
We compute an optimal solution for MaxEDP in this forest by using the
algorithm of Garg et al. [23]. Gathering the paths selected in this solution
with the ones selected previously, we obtain a solution for MaxEDP in G.
We repeat this procedure until each possible combination of the elementary
paths crossing e1, . . . , eγ has been tried (recall that, in fact, for every of
these γ edges, we also have to try the case where no path goes through it).
Keeping the best of all these solutions, we obtain the optimal solution.

8

Our algorithm solves O((|P | + 1)γ) instances of MaxEDP in a forest.
Thus, γ being fixed, if |P | is polynomial in n and |N |, our algorithm runs
in polynomial time. The following lemma gives a bound on |Pi| for each i1:

Lemma 1. Given a graph G in Sγ and two vertices si and s′i, the number
of elementary paths |Pi| linking si to s′i in G is at most 2γ.

Proof. We proceed by induction on γ. For γ = 0, we have |Pi| = 1 (G is a
tree). Assume this holds for γ − 1, γ ≥ 1, and let us show it holds for γ.
If |Pi| = 1, we are done. Otherwise, let v be the first vertex encountered
in any elementary path from si to s′i that lies in a block. We can assume
w.l.o.g. that v = si (if this is not the case, this assumption does not modify
|Pi|). Thus, there are at least two edges, e1 and e2, adjacent to si and lying
in a block. No elementary path from si to s′i crosses both e1 and e2, hence
there is an edge e ∈ {e1, e2} such that at least half of the paths in Pi do not
cross e. Moreover, if we remove e, we obtain a graph G′ ∈ Sγ−1, and we can
apply the induction hypothesis: there are at most 2γ−1 elementary paths
between si and s′i in G′. Hence, |Pi| ≤ 2 · 2γ−1 = 2γ . Lemma 1 follows.

Note that this result is tight: consider a path of length γ with si and s′i
as endpoints. Then, replace each edge by a triangle. The obtained graph is
in Sγ and satisfies |Pi| = 2γ . Moreover, Lemma 1 implies that |P | ≤ 2γ |N |,
and thus the algorithm given above runs in polynomial time. Hence:

Theorem 1. MaxEDP is polynomial-time solvable for graphs in Sγ.

Recall that MaxEDP is NP-hard even for |N | = 2. Nevertheless, using
the results in this section, one can state:

Theorem 2. If |N | is fixed, MaxEDP is polynomial-time solvable in graphs
whose cyclomatic number is O(

√
log n).

Proof. We use the above algorithm. Recall that we have to solve O((2γ |N |+
1)γ) instances of MaxEDP in a forest, where γ is the cyclomatic number.
Thus, if γ = O(

√
log n) and |N | is fixed, we have to solve O(nO(1)) instances,

which is polynomial in n.

Note that Theorems 1 and 2 (and their analyses) also hold for the variant
where one requires vertex-disjoint instead of edge-disjoint paths, since this
problem is also polynomial-time solvable in trees [6]. Using similar ideas
(i.e., adding or removing a constant number of edges), one can also derive
from [7] and from [9, 10] the following results (only the first proof is given):

Proposition 1. There is a 9(γ+1)-approximation algorithm for MaxEDP

in graphs G = (V,E) with |E| = |V |(|V |−1)
2 − γ (or quasi-complete graphs).

1We have not been able to determine whether this result is already known, but we give
a short proof anyway for the sake of completeness.

9

Proof. Simply add γ edges to G to transform it into a complete graph G′ and
compute a solution for MaxEDP in G′ using the algorithm in [7]. Then,
remove the γ edges that have been added to G and the paths that cross
them (there are at most γ such paths). If there were at least γ + 1 paths
routed in G′, we are done. Otherwise, we route any path in G and loose at
most a factor γ in the value of the solution. In both cases, we obtain the
desired ratio since the algorithm in [7] is a 9-approximation algorithm for
MaxEDP in complete graphs.

Proposition 2 (using [9, 10]). The integrality gap for MaxIMF is O(log n)
in planar graphs having a fixed number of edges with capacity 1.

3.2 Bounding the integrality gap for MaxIMF

MaxIMF is NP-hard and APX-hard for trees, and hence for graphs
in Sγ . However, Garg et al. show that, given a tree T , one can compute
in polynomial time an integer multiflow FT and a multicut CT such that
‖CT ‖ ≤ 2‖FT ‖. In this section, we prove that, given a graph G in Sγ , one
can compute in polynomial time an integer multiflow FG and a multicut CG

such that ‖CG‖ ≤ 2(γ + 1)‖FG‖.
We use the algorithm given in Section 2.2. All we have to do is to

detail how to construct a spanning tree T for G (Step 1), and then, how to
construct a multicut CG such that ‖CG‖ ≤ (γ + 1)‖CT ‖ (Step 3).

Step 1 proceeds as follows: we construct a maximum weight spanning
tree of G, using a variant of Kruskal’s algorithm [32]. Hence, we iteratively
pick an edge ei having the minimum capacity among all the edges lying
in blocks of G \ {e1, . . . , ei−1}. This gives us a set of γ edges satisfying
c(e1) ≤ c(e2) ≤ · · · ≤ c(eγ), and the graph G \

⋃
i∈{1,...,γ} ei is a tree, T .

In Step 2, we compute for T an integral multiflow FT = FG and a
multicut CT such that ‖CT ‖ ≤ 2‖FT ‖. Eventually, in Step 3, we use CT to
construct a multicut CG for G. For each edge fj in CT that lies in a block of
G, let λ(fj) be the larger i such that, before the edge ei was removed from
G\{e1, . . . , ei−1}, fj still lied in a block. Moreover, let λ∗ = maxfj∈CT

λ(fj)
and fj∗ ∈ CT such that λ(fj∗) = λ∗. Then, let CG = CT

⋃
i∈{1,...,λ∗}{ei}.

First, let us prove that ‖CG‖ ≤ (γ + 1)‖CT ‖. We have ‖CG‖ = ‖CT ‖+∑λ∗

i=1 c(ei) ≤ ‖CT ‖ + λ∗c(eλ∗) ≤ ‖CT ‖ + λ∗c(fj∗) ≤ ‖CT ‖ + λ∗‖CT ‖ =
(λ∗ + 1)‖CT ‖. Note that the inequality c(eλ∗) ≤ c(fj∗) comes from the
definitions of λ∗ and fj∗ , and the way eλ∗ has been chosen.

Second, let us show that CG is indeed a multicut for G. In fact, all we
have to prove is that, given an edge belonging to {eλ∗+1, . . . , eγ}, there is
no need to pick it in CG, i.e., there exists another path in T \ CT linking
its two endpoints. Let (a, b) be an edge belonging to {eλ∗+1, . . . , eγ}. There
exists a path between a and b in T , since T is a spanning tree of G. Thus, if
there exists no path from a to b in T \CT , then necessarily the path from a

10

to b in T contains an edge f belonging to CT . This implies that, just before
(a, b) was removed, f was lying in a block. Since (a, b) ∈ {eλ∗+1, . . . , eγ},
we have a contradiction. We have λ∗ ≤ γ, and hence:

Theorem 3. The gap between the optima of MinMC and MaxIMF is
bounded by 2(γ + 1) for the graphs in Sγ. Moreover, solutions for MinMC
and MaxIMF achieving this ratio can be computed in polynomial time.

Corollary 1. The integrality gap of MaxIMF is bounded by 2(γ + 1) for
the graphs in Sγ. Moreover, a solution for MaxIMF achieving this ratio
can be computed in polynomial time.

Note that Theorem 3 applies to MaxUSF as well, since the solution
computed by our method is feasible for MaxUSF. Also note that, in the
analysis of Theorem 3, explicitly knowing that the spanning tree constructed
in Step 1 is actually maximum weighted is not necessary (and knowing how
it is constructed is sufficient). Moreover, we do not know whether the bound
2(γ + 1) is tight or not (obviously, this is the case for γ = 0 [23]). Figure 1
shows an example where a weaker bound holds.

. . .

Figure 1: An example for Theorem 3 with one net (in dashed lines). The
edges in bold lines (i.e., the edges forming the spanning tree) have capacity
N+1 for some N > 0, while all the other edges have capacity N . So, ‖FT ‖ =
N + 1, ‖CT ‖ = N + 1 (the edge denoted by —×) and ‖CG‖ = γN + (N + 1)

3.3 Solving MinMC

In this section, we detail results concerning MinMC. Recall that, in
trees, Garg et al. show how to compute a multicut within twice the optimum
(and even within twice the value of an integral multiflow). If we consider
a graph G in Sγ and assume that all its edges have capacities bounded by
a small integer β, we can construct a spanning tree T as in Section 3.1,
compute a multicut CT and an integer multiflow FT , and build a multicut
CG for G by picking all the edges in CT and the γ edges removed from G
to obtain T . Obviously, CG satisfies ‖CG‖ ≤ ‖CT ‖ + γβ ≤ 2‖FT ‖ + γβ =
(2+o(1))‖FT ‖. This gives another generalization of the approximation result

11

obtained in [23] for trees, which is different from the one given in Section
3.2, but which only applies to graphs with small capacities.

Moreover, Garg et al. show that, in trees, MinMC can be solved in
polynomial time if |N | is fixed. The idea is that a multicut contains at most
|N | edges, since there is one path from si to s′i, for i ∈ {1, . . . , |N |}: thus,
MinMC can be solved in O(m|N |). For a graph G in Sγ , from Lemma 1,
there are at most 2γ paths between si and s′i, for i ∈ {1, . . . , |N |}. Hence,
MinMC can be solved in O(m2γ |N |) for the graphs in Sγ , which is polynomial
in m if |N | is fixed.

In fact, one can prove, using ideas from [12] and [42], much stronger
results concerning MinMC: if |N | is fixed, it is polynomial-time solvable
both in graphs with bounded tree-width and in planar graphs. Note that, in
each case, dropping any of the two assumptions leads to NP-hardness and
even to APX-hardness. In the proof of the two following theorems, we use

an idea from [12]: MinMC can be solved by solving at most (
√

2|N |+1)2|N|

(
√

2|N |+1)!

instances of MinMTC. Indeed, in any optimal solution for MinMC, the
2|N | terminals are clustered in q ≤

√
2|N | + 1 sets (or clusters), such

that each one does not contain both si and s′i for each i, and, for each
pair of clusters, there is an i such that si is in one cluster and s′i is in
the other (otherwise, we can merge the two clusters and still have a valid
clustering). Given a clustering, for each cluster, we add one new vertex
(called a cluster vertex) linked by a new edge (called a cluster edge) to
every terminal contained in this cluster in order to transform the instance of
MinMC into an instance of MinMTC (where the terminals are the cluster
vertices). Hence, whenever MinMTC is polynomial-time solvable, one can
try all the possible clusterings and solve each one of them as a MinMTC
instance (in the following, we call this idea the clustering technique).

Theorem 4. If |N | is fixed, MinMC is polynomial-time solvable in graphs
with bounded tree-width.

Proof. We use the clustering technique and the fact that, according to [12],
MinMTC can be solved in polynomial time in graphs with bounded tree-
width, by standard dynamic programming techniques. Before adding the
cluster vertices and edges, the graph has bounded tree-width by assumption,
but we still have to prove that this remains true after they have been added.
We use the following easy lemma:

Lemma 2. Assume we are given a connected graph G = (V,E) with tree-
width tw(G). Let G′ be the graph obtained from G by adding a new vertex
ṽ and edges between ṽ and some vertices of G. Then, tw(G′) ≤ tw(G) + 1,
where tw(G′) denotes the tree-width of G′.

Proof. Let Θ = (T, (Xw)w is a vertex of T) be a tree decomposition of G, con-
sisting of a tree T and a multiset whose elements Xw (called bags), indexed

12

by the vertices of T , are subsets of V . Recall that Θ satisfies:

1. ∀(u, v) ∈ E,∃w vertex of T s. t. u ∈ Xw and v ∈ Xw;

2. for every v ∈ V , the vertices w such that v ∈ Xw induce a connected
subgraph of T .

Recall that the width of Θ is equal to maxw is a vertex of T |Xw|−1 and that
the tree-width of G is the minimum of the widths of all tree decompositions
of G. Given the decomposition Θ, we construct a tree decomposition Θ′ for
G′ as follows: we transform each bag Xw into a new bag X ′

w = Xw∪{ṽ}. The
width of Θ′ is equal to maxw is a vertex of T |X ′

w|−1 = maxw is a vertex of T |Xw|,
hence it is equal to the width of Θ plus one. Moreover, Θ′ satisfies 1.
(because G is connected and ṽ is in every bag) and 2. (since the subgraph
of T induced by ṽ is T), with respect to G′. Lemma 2 follows.

Lemma 2 implies that, if G is connected, the tree-width of the graph
obtained from G by adding the cluster vertices and edges is at most the
tree-width of G plus the number of cluster vertices, q. Since q ≤

√
2|N |+ 1

and |N | is fixed, Theorem 4 follows. If G is not connected, we consider each
connected component independently, and we are done.

Theorem 5. When |N | is fixed, MinMC is polynomial-time solvable in
planar graph.

Proof. When using the clustering technique, we need to add cluster edges,
and this operation can destroy planarity. So, we cannot directly use this
technique and reduce our problem to MinMTC. However, we do use the fact
that, in any optimal solution for MinMC, the 2|N | terminals are clustered
in q clusters, such that each one does not contain both si and s′i for each i.
Hence, we try all the possible clusterings (we shall see that, in this case, a
clustering can contain more than

√
2|N |+1 clusters) and focus on solving a

subproblem of MinMC (which is equivalent to MinMTC in general graphs,
but not in planar graphs): given a graph and one particular clustering of
the terminals, find a minimum multi-cluster cut, i.e., a minimum weight set
of edges whose removal separates Ti from Tj for i 6= j, where Ti is the set of
terminals belonging to the ith cluster. This problem (MinMCC), introduced
in [14], is defined as the Colored Multiterminal Cut problem in [12],
where it is proved to be NP-hard in planar graphs, even if the number of
clusters is fixed (note that the proof of Theorem 4 shows that, for a fixed
number of clusters, MinMCC is polynomial-time solvable in bounded tree-
width graphs). However, we shall see that the clusterings we have to deal
with can be assumed to have interesting properties, and solve MinMCC in
polynomial time in this case. Theorem 5 will follow.

Given a solution for MinMCC, we say that the ith cluster induces a
connected component if, after removing the edges in this solution, any vertex

13

(including terminals) is linked to no terminal in Ti or to all the terminals in Ti

(any terminal being linked to itself). The main point is the following: given
an instance of MinMC, once the edges of any optimal solution S for this
instance have been removed, each vertex is linked to at least one terminal.
Therefore, the obtained graph has q(S) ≤ 2|N | connected components, each
one containing at least one terminal. For each solution, one can then define
a clustering as follows: for each i, the ith cluster contains the terminals in
the ith connected component. Let S̃ be an optimal solution for MinMC such
that q(S̃) = maxS / S is an optimal solution for MinMC q(S). In the following, we
will focus on finding the clustering associated with S̃. The simple example of
an unweighted path s1, s

′
1, s2, s

′
2, s3, s

′
3, . . . , s|N |, s

′
|N | shows that q(S̃) can be

as large as |N |+1 (we do not know whether this bound is tight or not), so we
try all the possible clusterings containing at most 2|N | clusters to make sure
that we find the one associated with S̃ (this implies that we have to consider
more clusterings than we did in Theorem 4). Given this clustering, we know
that every optimal solution for the instance IS̃ of MinMCC defined on it
will induce exactly q(S̃) connected components (the optimal solutions for
IS̃ being in fact the optimal solutions for the initial instance of MinMC

having the same clustering as S̃). Now, we show that the ideas used in [42]
can be applied to MinMCC in this case. Two of the key results of this
paper are [42, Theorem 2] and [42, Theorem 3]. Before presenting these
results, we need a few more definitions. Given a graph G = (V,E) and a
multiterminal cut (resp. a multi-cluster cut) separating a set of terminals
T = {t1, . . . , t|T |} (resp. a set of terminal sets T = {T1, . . . , T|T |}), let Vi be
the set of vertices that remain connected to ti (resp. to Ti). Moreover, let
Ci be the set of edges having exactly one endpoint in Vi and let Di be its
dual set of edges (i.e., the set of edges corresponding to Ci in GD, the dual
planar of G). A dual-joint w is a vertex of GD adjacent to at least 3 edges
of

⋃
i Di; the associated joint-cycle is the face corresponding to w in G. A

set Di contains a dual-joint w if w is adjacent to at least one edge of Di.
Yeh proved:

Theorem (implicit in [42]). Let C be a minimum multiterminal cut in
a graph G = (V,E) and let Di, i ∈ {1, . . . , |T |}, contain p dual-joints
w1, . . . , wp, i.e., there exist p vertices {v∗i1, . . . , v∗ip} such that Ci is a cut
separating {ti, v∗i1, . . . , v∗ip} from T − {ti} and v∗ij ∈ V is a vertex in both
Vi and the joint-cycle of wj, j = 1, . . . , p. If C ′

i 6= Ci is a cut sepa-
rating {ti, v∗i1, . . . , v∗ip} from T − {ti}, then C ′ = (C − Ci)

⋃
C ′

i is also a
multiterminal cut. Moreover, this implies that Ci is a min cut separating
{ti, v∗i1, . . . , v∗ip} from T − {ti}.

We use a suitably modified version of this theorem, but the proof is fairly
similar to the one given in [42]. Namely, one can prove the following (recall
that the index i refers to Ti, the set of terminals of the ith cluster, not to ti):

14

Lemma 3. Let C be a minimum multi-cluster cut in a graph G = (V,E)
and let Di, i ∈ {1, . . . , |T |}, contain p dual-joints w1, . . . , wp, i.e., there exist
p vertices {v∗i1, . . . , v∗ip} such that Ci is a cut separating Ti

⋃
{v∗i1, . . . , v∗ip}

from T − Ti and v∗ij ∈ V is a vertex in both Vi and the joint-cycle of wj,
j = 1, . . . , p. If C ′

i 6= Ci is a cut separating Ti
⋃
{v∗i1, . . . , v∗ip} from T − Ti,

then C ′ = (C − Ci)
⋃

C ′
i is also a multi-cluster cut. Moreover, this implies

that Ci is a min cut separating Ti
⋃
{v∗i1, . . . , v∗ip} from T − Ti.

All the remaining results proved in [42] can then be adapted for our
case in a straightforward way, implying that, in this case, MinMCC can
be solved in polynomial time. Simply note that we have to consider at
most 2q − 4 ≤ 2(2|N |) − 4 = 4(|N | − 1) dual-joints, because we know
that, given the clustering associated with S̃, every cluster necessarily in-
duces only one connected component in any optimal solution (implicitly,
this point is crucial in [42, Corollary 2] to prove the bound on the number
of dual-joints, since this bound is in fact equal to 2 times the number of
connected components minus 4). Moreover, our approach can be used to
solve MinMCC in polynomial time when the graph is planar and the sum
of the sizes of the clusters (i.e., the total number of terminals) is fixed. In
general, however, an optimal solution for MinMCC can induce more than
q (the number of clusters) connected components, and thus the number of
dual-joints cannot be bounded by a function of q: this explains why Min-
MCC cannot be solved by this technique when the graph is planar and
the number of clusters (but not the number of terminals) is fixed (recall
that MinMCC was proved NP-hard in this case [12]). In fact, the gap
between the optimum values for MinMCC with and without the constraint
that the optimal solution must contain exactly q connected components is
unbounded. Indeed, consider the following MinMCC instance: the graph is
a 3× 3 mesh, containing 9 vertices (t1, t2, t3, t4, t5, t6, a, b and c), 6 horizon-
tal edges ((t1, a), (a, t2), (t3, b), (b, t4), (t5, c) and (c, t6)) and 6 vertical edges
((t1, t3), (a, b), (t2, t4), (t3, t5), (b, c) and (t4, t6)). There are three clusters:
{t1, t2}, {t3, t4} and {t5, t6}. The edge (b, c) and the 3 edges adjacent to
a have a capacity N ≥ 5, and the 8 other edges a capacity 1. The only
cut inducing 3 connected components is formed by the 6 vertical edges, has
weight 2N + 4 and contains 1 dual-joint, while the unique minimum cut is
formed by the 8 edges of capacity 1, induces 5 connected components and
contains 3 > (2 ∗ 3− 4) dual-joints. Moreover, if we apply a variant of Yeh’s
algorithm (suggested by Lemma 3) on this graph and consider the cluster
{t1, t2} first, the only solution that is explored is the minimum cut with
8 edges. Therefore, the solution inducing 3 connected components cannot
be found this way, implying that this algorithm cannot be used to solve
MinMCC when the graph is planar, the number of clusters is fixed and
we require that every cluster induces only one connected component (this
problem remaining open). Also note that, if we merge {t3, t4} and {t5, t6}

15

into a single cluster, we obtain an instance of MinMCC with two clusters
where the optimum solution (computed, for example, by a min cut algo-
rithm) induces 3 connected components ({t1, a, t2, b, c}, {t3, t5} and {t4, t6})
and has weight 6, while the best solution inducing 2 connected components
has weight N +2. Therefore, even for 2 clusters, we cannot solve MinMCC
by a simple min cut algorithm if only 2 connected components are required.

We make a last remark: if, during the running of our algorithm, there
are two terminals of the same cluster (given the current clustering) that are
no longer linked by a path, then the combination of the current clustering
and of the non terminal vertices already chosen is not associated with the
optimal solution we are looking for. Hence, we ignore it (without choosing
non terminal vertices for the remaining clusters) and try another one.

Using a slightly different analysis of the algorithm of Yeh [42] and a
result from [11], one can also prove the following theorem for MinMTC,
providing an improved running time to solve the problem:

Theorem 6. When G is a n-vertex planar graph and the terminals lie on
φ ≤ |T | faces of G, MinMTC can be solved in O((|T |− 3

2)φ−1·(n−|T |)2|T |−4·
(n|T | − 3

2 |T |
2 + 1

2 |T |) · log(n− |T |) + n|T |2 · (|T |+ log n)).

Proof. The idea behind this result is that, once all the terminals lying on one
particular face of G are isolated from the rest of the terminals, we just have,
to solve the problem, to compute a minimum multiterminal cut on a planar
graph where all the vertices lie on the same face, which can be done by
using the algorithm presented in [11]. However, the problem of identifying
the set of vertices linked to the terminals on this face in an optimal solution
remains. Using the work of Yeh [42], one can prove another variant of [42,
Theorem 2]. We use the notations defined in the proof of Theorem 5, as well
as some new ones. Let Φ1, . . . ,Φφ be the φ faces where the terminals lie, and
let TΦh

be the set of terminals lying on Φh. Let VΦh
be the set of vertices

that remain connected to any terminal in TΦh
in a solution for MinMTC,

and let CΦh
be the set of edges with exactly one endpoint in VΦh

. Let DΦh

be the dual set of edges of CΦh
(it is important to note that the dual-joints

are still defined with respect to the Di, not the DΦh
). One can prove:

Lemma 4. Let C be a minimum multiterminal cut in a graph G = (V,E)
and let DΦh

, h ∈ {1, . . . , φ}, contain p dual-joints w1, . . . , wp, i.e., there
exists 2p vertices {v∗h1, . . . , v

∗
hp, u

∗
h1, . . . , u

∗
hp} such that CΦh

is a cut separat-
ing TΦh

⋃
{v∗h1, . . . , v

∗
hp} from (T −TΦh

)
⋃
{u∗h1, . . . , u

∗
hp} and v∗hj ∈ V is both

in VΦh
and on the joint-cycle of wj, while u∗hj is the clockwise first vertex

after v∗hj on the joint-cycle of wj, j = 1, . . . , p. If C ′
Φh

6= CΦh
is a cut

separating TΦh

⋃
{v∗h1, . . . , v

∗
hp} from (T − TΦh

)
⋃
{u∗h1, . . . , u

∗
hp}, then C ′ =

(C−CΦh
)
⋃

C ′
Φh

is also a multiterminal cut. Moreover, this implies that CΦh

is a min cut separating TΦh

⋃
{v∗h1, . . . , v

∗
hp} from (T −TΦh

)
⋃
{u∗h1, . . . , u

∗
hp}.

16

The proof of this lemma is rather similar to the proof of [42, Theorem 2],
but note that, here, we use a “stronger” version: the p dual-joints w1, . . . , wp

are on the cycle D′
Φh

(the dual set of edges of C ′
Φh

) and not inside it. On the
one hand, this implies that each v∗hj is uniquely defined (although in Lemma
3 one may have had the choice); on the other hand, we need this definition
of v∗hj in order to make sure that C ′ is indeed a multiterminal cut (this was
not the case in [42, Theorem 2]). A consequence of Lemma 4 is that, instead
of applying the algorithm of Yeh [42] on each one of the |T | terminals, one
can identify the CΦh

’s by applying this algorithm on φ new terminals: for
each face Φh, we add a new vertex “inside” Φh and link it, by an edge of
capacity +∞ (i.e., sufficiently large), to every terminal in TΦh

(this does
not destroy planarity). Note that the number of dual-joints still depends
on |T | (and not on φ), and that an optimal solution for the initial instance
does not necessarily induce an optimal solution for the MinMTC instance
defined on the φ new terminals. Once a combination of CΦh

’s has been
obtained, we compute the best possible multiterminal cut associated with
this combination by solving φ independent instances of MinMTC where all
the terminals lie on the same face (for each h, the instance on Φh can be
solved in O(|VΦh

| · |TΦh
|2 ·(|TΦh

|+log |VΦh
|)) = O(|VΦh

| · |T |2 ·(|T |+log |V |))
[11], with

∑φ
h=1 |VΦh

| = |V | = n). It should be clear from our analysis that
the limited enumeration of the possible combinations leads to an optimal
solution. Note that the running time of our first phase is the running time
of Yeh’s algorithm reduced by a factor of O((|T | − 3

2)|T |−φ).

Note that, although the problem: given a planar graph with a set of
terminals, find a planar embedding of the graph such that the terminals are
covered by as few faces as possible is NP-hard [4], it can be approximated
within a ratio of 2 in linear time, provided that an embedding of the in-
put planar graph is already given [20]. An interesting open problem is to
determine the complexity of planar MinMTC when the terminals lie on
a bounded number of faces φ (the number of terminals being unbounded).
Note that the analysis of Theorem 6 is then irrelevant, because, even in this
case, the number of dual-joints cannot be bounded by a function of φ.

Another question to consider is whether there exists a polynomial-time
approximation scheme (PTAS) for planar MinMTC: the problem is known
to be NP-hard [12], but not APX-hard. However, although MinMTC is
polynomial-time solvable in k-outerplanar graphs (since, according to [12],
it is polynomial-time solvable in bounded tree-width graphs), the general
framework for designing PTASs developed in [2] and based on a decomposi-
tion of the planar graph into a set of k-outerplanar graphs (one gets optimal
solutions for the k-outerplanar graphs, and then combines them into a single
solution) cannot be used for MinMTC, since gluing the pieces together does
not always yield a multiterminal cut for the whole graph.

17

4 Integrality gap in k-edge-outerplanar graphs

In this section, we study the case of k-edge-outerplanar graphs. We first
show that k′-outerplanar graphs having a degree bounded by d inside each
block are closely related to these graphs.

4.1 Relationship between k-outerplanar graphs and k-edge-
outerplanar graphs

The main result of this section is given in Theorem 7:

Theorem 7. Any k-outerplanar graph such that the degree of each vertex
is bounded by d ≥ 2 inside each block is (dd

2e+(k−1)bd
2c)-edge-outerplanar.

Moreover, any k-edge-outerplanar graph is k-outerplanar.

Proof. The second part of Theorem 7 is obvious. We prove the first part
by induction. Let G be a graph in OPBIDk,d, k ≥ 2. For the proof, we
can consider each block of G independently. Let 2V CC be an inclusionwise
maximal 2-vertex-connected component of G. Each vertex of 2V CC lying
on the outer face is adjacent to exactly two edges of 2V CC lying on the
outer face. For each such vertex, we remove the corresponding two edges.
We also remove any edge that does not lie in a block. We repeat this until
each vertex of 2V CC lying on the outer face of G has at most one neighbor
among the vertices lying in 2V CC. At each iteration, for each vertex v lying
on the outer face and still having at least two neighbors among the vertices
in 2V CC, we remove two edges adjacent to v, so we have to do it at most d

2
times if d is even. If d is odd, then we stop when the residual deg2V CC (v) is
at most one, so we have to do it at most d−1

2 times, i.e., at most bd
2c times.

After that, we obtain a component in OPBIDk−1,d. Eventually, for a graph
in OPBID1,d, we use the same technique. If d is even, then the analysis is
similar. If d is odd, then we have to make the residual deg2V CC (v) of each
vertex v equal to 0, so we have to remove edges on the outer face dd

2e times.
Finally, any graph in OPBIDk,d is ((k−1)bd

2c+ dd
2e)-edge-outerplanar.

This theorem shows that, in order to be k-edge-outerplanar for some k,
it is sufficient for a graph to be in OPBIDk′,d for some k′ and d. However,
it is not a necessary condition (every Halin graph, i.e., every planar graph
with no vertex of degree 2 and whose edges are the disjoint union of a tree
and a cycle connecting the leaves of this tree, is 2-outerplanar and 2-edge-
outerplanar), and being only k′-outerplanar is not sufficient in general (for
any p > 2, the complete bipartite graph K2,p is dp

2e-edge-outerplanar and
2-outerplanar, the first layer having 4 vertices and the second one p− 2).

Moreover, Figure 2 shows that the bound of Theorem 7 is tight. In
Section 4.2, we consider only k-edge-outerplanar graphs. Theorem 7 shows
that our results will apply, in particular, to the graphs in OPBIDk′,d.

18

Figure 2: G1, the skeleton of a family of tight graphs for Theorem 7 (d
odd). Each graph Gi, i ≥ 2, is actually obtained from G1 by replacing
each edge by a copy of Gi−1, the big two vertices corresponding to the
endpoints of this edge. Given k > 0, the graph Gk is both k-outerplanar
and ((k − 1)bd

2c+ dd
2e)-edge-outerplanar (d = 7 here)

4.2 Bounding the gap for MaxEDP

Recall that MaxEDP is NP-hard and APX-hard in edge-outerplanar
graphs [23]. The main result of this section is that we can bound the inte-
grality gap for MaxEDP in k-edge-outerplanar graphs:

Theorem 8. The integrality gap for MaxEDP is bounded by 4k in k-edge-
outerplanar graphs. Moreover, a solution for MaxEDP achieving this ratio
can be computed in polynomial time.

Proof. We use the algorithm given in Section 2.2. Let us describe Steps 1,
2 and 3. Given a k-edge-outerplanar connected graph G = (V,E), Step 1
proceeds as follows: (i) for each one of the k layers of edges L of G, (ii) for
each internal face Φ, if there exist edges lying both on L and on the border
of Φ, remove exactly one such edge. After part (ii) ends for the ith layer
(i ≤ k − 1), we obtain a (k − i)-edge-outerplanar connected graph. Hence,
at the end of Step 1 (i.e., when part (i) ends), we obtain a spanning tree T
of G. Then, FT and CT are obtained in Step 2. Eventually, we use CT to
construct CG in Step 3.

For each edge in CT , CG will contain at most 2k edges, and hence
‖CG‖ ≤ 2k‖CT ‖ ≤ 4k‖FT ‖. The removal of any edge (u, v) ∈ CT separates
the vertices of T (and hence the vertices of G) in exactly two connected
components, Vu and Vv = V \ Vu. Let δG(u, v) be the set of edges between
Vu and Vv in G, and let the circuit boundary of a block of G be the cycle

19

delimiting this block (the circuit boundary of G is defined as the disjoint
union of the circuit boundaries of all its blocks). We need the following
lemma, showing that |δG(u, v)| ≤ 2k:

Lemma 5. Given Vu and Vv in a k-edge-outerplanar graph G, δG(u, v)
contains at most 2 edges on each one of the k layers. Moreover, it contains
exactly 2 edges on the kth layer iff they are on the circuit boundary of G.

Proof. We proceed by induction on k. For k = 1, we have an edge-outerplanar
graph. If (u, v) does not lie in a ring, then δG(u, v) contains only (u, v) and
we are done. Otherwise, by the way we construct T , there is a ring of G
containing both (u, v) and an edge not in T : δG(u, v) contains these 2 edges.
This completes the case k = 1.

Assume now that Lemma 5 holds for k − 1, k ≥ 2, and consider a k-
edge-outerplanar connected graph. For each internal face having edges in
common with the outer face, one such edge has been removed during Step 1;
let us remove it again from G. The resulting connected graph G′ is (k− 1)-
edge-outerplanar, hence we can apply the induction hypothesis. Moreover,
δG′(u, v) ⊆ δG(u, v). We have to distinguish between three cases:

• If there is no edge on the (k−1)st layer that belongs to δG′(u, v), then,
obviously, for each edge e on the circuit boundary of G, there is a path
linking its two endpoints and using only edges on the (k − 1)st layer
of G′. Hence, e does not belong to δG(u, v).

• If there is one edge (say, e) on the (k − 1)st layer that belongs to
δG′(u, v), then, by assumption, e is not on the circuit boundary of G′.
Let us first assume that e lies in a block of G. If e is on the circuit
boundary of G, then there is an internal face Φ of G (adjacent to the
outer face of G) whose border contains both e and an edge f not in
G′, both lying in δG(u, v) (see Figure 3(a)). Otherwise, e belongs to
the border of two internal faces of G, Φ1 and Φ2. Φ1 (resp. Φ2) is
adjacent to the outer face and its border contains one edge f1 (resp.
f2) not in G′, that belongs to δG(u, v) (see Figure 3(b)). Note that if
e does not lie in a block of G, then no edge from the circuit boundary
of G belongs to δG(u, v) (i.e., δG′(u, v) = δG(u, v)).

• If there are two edges e1 and e2 on the (k − 1)st layer belonging to
δG′(u, v), then, by assumption, they belong to the circuit boundary of
G′. Hence, e1 (resp. e2) belongs to the border of an internal face Φ1

(resp. Φ2) of G, adjacent to the outer face of G and containing one
edge f1 (resp. f2) not in G′. f1 and f2 are distinct (and in δG(u, v))
iff Φ1 and Φ2 are distinct (see Figures 3(c) and 3(d)).

The proof of Lemma 5 is now complete.

20

(a) e is on the circuit bound-
ary of G

(b) e is not on the circuit
boundary of G

(c) Φ1 and Φ2 are distinct (d) Φ1 and Φ2 are not distinct

Figure 3: Illustrating the 4 main cases of Lemma 5

We apply Lemma 5 for each edge in CT , and this immediately implies
‖CG‖ ≤ 2k‖CT ‖ ≤ 4k‖FT ‖, as claimed. Note that the reason for processing
Step 1 carefully is that, if T is not constructed as indicated, we will not be
able to bound |δG(u, v)|. For example, in Figure 1, assume that all the edges
are valued by one and that the spanning tree constructed in Step 1 is the
one in bold lines. Then, ‖CT ‖ = 1 although δG(u, v) contains all the edges
in thin lines, so ‖CG‖ is unbounded.

Note that, in graphs where all the edges have the same capacity, Theorem
8 applies to MaxIMF and MaxUSF as well (since at most one flow path is
associated with each net and only edge-disjoint flow paths are used). More
generally, we have the following corollary:

Corollary 2. The integrality gap for MaxIMF and MaxUSF is bounded
by 4βk in k-edge-outerplanar graphs G = (V,E) satisfying maxe∈E c(e) ≤
β mine∈E c(e). Moreover, solutions achieving this ratio can be computed in
polynomial time.

4.3 MaxIMF and MinMC in edge-outerplanar graphs

In this section, we consider the class of graphs where the degree of each
vertex is bounded by two (i.e., is equal to 0 or 2) inside each block. Note that
this is exactly the class of graphs where two arbitrary 2-vertex-connected
components share at most one vertex, i.e., the class of graphs where each
block is restricted to be a ring: hence, this is the class of edge-outerplanar
graphs (or cacti). Obviously, such graphs generalize the trees of rings: a tree
of rings is a graph obtained from a tree by replacing each vertex by a ring,
two rings sharing a vertex if and only if the corresponding vertices of the tree

21

are adjacent. Another definition is that a tree of rings is a 2-edge-connected
edge-outerplanar graph.

The polynomial reduction given in [23] shows that MaxEDP (and thus
MaxIMF) is NP-hard and APX-hard in edge-outerplanar graphs. More-
over, Erlebach shows that this also holds in trees of rings and gives a 3-
approximation algorithm for MaxEDP in these graphs [15]. We now show
how to obtain 4-approximation algorithms for both MaxIMF and MinMC
in edge-outerplanar graphs. The idea is to use the algorithm given in Sec-
tion 2.2. Given an edge-outerplanar connected graph G, we denote by Ri,
i ∈ {1, . . . , ρ}, its ith ring. Then, for each i, we remove the edge ei in
Ri having the smallest capacity among all the edges in Ri. This way, we
obtain a maximum weight spanning tree T of G, and we can compute an
integer multiflow FT and a multicut CT for T such that ‖CT ‖ ≤ 2‖FT ‖
by using the algorithm given in [23]. Eventually, we construct a multicut
CG for G: for each ring Ri, we select ei in CG if and only if there is an-
other edge of Ri in CT . Moreover, we add in CG all the edges of CT . We
have ‖CG‖ = ‖CT ‖ +

∑
ei / there is an edge of Ri in CT

c(ei) ≤ 2‖CT ‖ ≤ 4‖FT ‖.
It is easily seen that CG is indeed a multicut for G, since, for each edge
ei = (ai, bi) not selected in CG, there exists a path from ai to bi in T (i.e.,
a path in Ri that does not cross ei). This implies:

Theorem 9. In edge-outerplanar graphs, the integrality gap for MaxIMF
(resp. MinMC) is at most 4. Moreover, a solution for MaxIMF (resp.
MinMC) achieving this ratio can be computed in polynomial time.

Figure 4 shows that our analysis of this algorithm is tight, since there
exist families of instances where ‖CG‖ is equal to 4‖FT ‖. However, this
does not necessarily imply that the gaps for MaxIMF and MinMC are
tight. Note that Theorem 9 also holds for MaxUSF. Moreover, this theorem
shows that the integrality gap for MaxIMF shrinks to a factor of 4 when
the maximum inside degree is at most 2, while it can be as large as

√
n when

the maximum degree is 3 [23, p. 17].

5 A conjecture about another class of graphs

We make the following conjecture about the graphs studied in [18]:

Conjecture 1. The integrality gap for MaxIMF is O(1) in planar graphs
where all the terminals lie on the outer face and the sum of the capacities
of the edges adjacent to each vertex not on the outer face is even.

This conjecture has been suggested, in particular, by the recent results
presented in [9, 10] and by the noticeable importance of both the evenness
condition and the localization of the terminals on the outer face [18] (recall

22

. . .

Figure 4: A family of (2p+1)-vertex graphs (p odd), tight for our algorithm.
There exists a net (in dashed lines) between any two of the p white vertices,
and the edges of the spanning tree T are in bold lines. In these graphs,
‖FT ‖ = p−1

2 , ‖CT ‖ = p− 1 (edges denoted by —×) and ‖CG‖ = 2(p− 1)

that Frank proves that EDP is polynomial-time solvable in this case, and
gives necessary and sufficient conditions for the existence of a solution).

Proving Conjecture 1 would imply, in particular, that the integrality gap
for MaxIMF is O(1) (O(log n) being already known [9, 10]) in planar graphs
where all the terminals lie on the outer face, if all the capacities are at most 2
(otherwise, recall that the integrality gap can be Θ(

√
n) [23]). Indeed, given

such a graph G, one can decrease every odd capacity by one and obtain a
graph G′ having only even capacities, and thus satisfying the assumptions
of Conjecture 1. It is easy to see that the integrality gap in G is at most
3
2 times the integrality gap in G′ (and hence is also O(1) if Conjecture 1 is
true), since the value of the minimum fractional multicut (and hence of the
maximum fractional multiflow) in G is at most 3

2 times the value in G′ (the
worst case occurring when all the capacities are decreased from 3 to 2).

6 Conclusion

In this paper, we have generalized all the results obtained for the trees by
Garg, Vazirani and Yannakakis to graphs with a fixed cyclomatic number.
In particular, this implies that, in these graphs, MaxEDP is polynomial-
time solvable and MaxIMF has an integrality gap bounded by two times
one plus the cyclomatic number. It is worth mentioning that our algorith-
mic approaches are simple and directly rely on algorithms for trees, so any
improvement for these algorithms (improved running times, parallelization,
online versions, etc.) can immediately be used for ours. Moreover, we have
shown that other classical generalizations do not lead to results such as ours,
and, for a fixed number of nets, we have solved in polynomial time MinMC
in planar and in bounded tree-width graphs. We have also introduced a

23

new class of planar graphs, the k-edge-outerplanar graphs. We have proved
that the integrality gap for MaxEDP is bounded in these graphs and have
shown how they are related to k-outerplanar graphs. Furthermore, we have
shown that the integrality gap for MaxIMF is bounded in edge-outerplanar
graphs (or cacti), a class of graphs that generalizes the trees of rings.

However, there are still interesting open problems for which no significant
progress has been made: can we improve the O(

√
n) approximation ratio for

MaxEDP in planar graphs, or can an inapproximability result stronger than
APX-hardness be proved for this problem? And what about the general
graphs? Turning back to our results, one may also explore further the fixed-
parameter tractability of MaxEDP [13]. Furthermore, is the integrality gap
for MaxEDP or MaxIMF bounded by a constant in k-outerplanar graphs,
or even in bounded tree-width graphs? How can Conjecture 1 be proved?

References

[1] M. Andrews and L. Zhang. Hardness of the undirected edge-disjoint
paths problem. Proceedings STOC 2005.

[2] B.S. Baker. Approximation Algorithms for NP-complete Problems on
Planar Graphs. J. ACM 41 (1994) 153–180.

[3] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint
paths and related routing and packing problems. Math. Oper. Res. 25
(2000).

[4] D. Bienstock and C.L. Monma. On the complexity of covering vertices
by faces in a planar graph. SIAM Journal On Computing 17 (1988),
53–76.

[5] H.L. Bodlaender. Planar graphs with bounded treewidth. Technical Re-
port RUU-CS-88-14, Utrecht University, The Netherlands (1988).

[6] G. Cǎlinescu, C.G. Fernandes and B. Reed. Multicuts in unweighted
graphs and digraphs with bounded degree and bounded tree-width.
Journal of Algorithms 48 (2003) 333–359.

[7] P. Carmi, T. Erlebach and Y. Okamoto. Greedy edge-disjoint paths in
complete graphs. Proceedings 29th International Workshop on Graph
Theoretic Concepts in Computer Science. LNCS 2880 (2003) 143–155.

[8] C.Chekuri and S.Khanna. Edge Disjoint Paths Revisited. Proceedings
SODA 03 (2003).

[9] C. Chekuri, S. Khanna and B. Shepherd. Edge-disjoint paths in planar
graphs. Proceedings 45th IEEE FOCS (2004).

24

[10] C. Chekuri, S. Khanna and B. Shepherd. Multicommodity Flow, Well-
linked Terminals, and Routing Problems. Proceedings STOC 05 (2005).

[11] D.Z. Chen and X. Wu. Efficient algorithms for k-terminal cuts on planar
graphs. Algorithmica 38 (2004) 299–316.

[12] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour and M.
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing 23 (1994) 864–894.

[13] R.G. Downey and M.R. Fellows. Parameterized Complexity (1999).
Springer-Verlag. New York.

[14] P.L. Erdös and L.A. Székely. Algorithms and Min-max Theorems for
Certain Multiway Cuts. Proceedings IPCO 92 (1992) 334–345.

[15] T. Erlebach. Approximation algorithms and complexity results for path
problems in trees of rings. Proceedings 26th International Symposium
on Mathematical Foundations of Computer Science. LNCS 2136 (2001)
351–362.

[16] S. Even, A. Itai and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput. 5 (1976) 691–703.

[17] L.R. Ford and D.R. Fulkerson. Maximal Flow Through a Network.
Canadian Journal of Mathematics 8 (1956) 339–404.

[18] A. Frank. Edge-disjoint paths in planar graphs. Journal of Combinato-
rial Theory, Series B 39 (1985) 164–178.

[19] A. Frank. Packing Paths, Circuits and Cuts - A Survey. In B. Korte, L.
Lovász, H. J. Prömel and A. Schrijver. Paths, Flows and VLSI-Layout.
Algorithms and combinatorics 9 (1990) 47–100. Springer-Verlag. Berlin.

[20] G. Frederickson. Planar graph decomposition and all pairs shortest
paths. Journal of the ACM 38 (1991), 162–204.

[21] A. Frieze. Edge-disjoint paths in expander graphs. SIAM Journal On
Computing 30 (2000) 1790–1801.

[22] N. Garg, V.V. Vazirani and M. Yannakakis. Approximate max-flow
min-(multi)cut theorems and their applications. SIAM Journal on Com-
puting 25 (1996) 235–251.

[23] N. Garg, V.V. Vazirani and M. Yannakakis. Primal-dual approxima-
tion algorithms for integral flow and multicut in trees. Algorithmica 18
(1997) 3–20.

25

[24] A.M.H. Gerards and B. Shepherd. Preselecting homotopies for the
weighted disjoint paths problem. Manuscript (1993).

[25] D. Hartvigsen. The planar multiterminal cut problem. Discrete Applied
Mathematics 85 (1998) 203–222.

[26] J. Kleinberg and É. Tardos. Disjoint paths in densely embedded graphs.
Proceedings 36th IEEE FOCS (1995) 52–61.

[27] J. Kleinberg and É. Tardos. Approximations for the disjoint paths prob-
lem in high-diameter planar networks. Journal of Computer and System
Sciences 57 (1998) 61–73.

[28] S. Kolliopoulos and C. Stein. Approximating disjoint-paths using
greedy algorithms and packing integer programs. Proceedings IPCO
98 (1998).

[29] P. Kolman and C. Scheideler. Improved bounds for the unsplittable flow
problem. Proceedings SODA 02 (2002), 184–193.

[30] P. Kolman. A note on the greedy algorithm for the unsplittable flow
problem. Information Processing Letters 88 (2003) 101–105.

[31] E. Korach and M. Penn. A fast algorithm for maximum integral two-
commodity flow in planar graphs. Discrete Applied Mathematics 47
(1993) 77 – 83.

[32] J.B. Kruskal. On the shortest spanning subtree of a graph and traveling
salesman problem. Proc. Amer. Math. Soc. 7 (1956) 48–50.

[33] D. Marx. Eulerian disjoint paths problem in grid graphs is NP-complete.
Discrete Applied Mathematics 143 (2004) 336–341.

[34] M. Middendorf and F. Pfeiffer. On the complexity of the disjoint paths
problem. Combinatorica 13 (1993) 97–107.

[35] T. Nishizeki, J. Vygen and X. Zhou. The edge-disjoint paths problem is
NP-complete for series-parallel graphs. Discrete Applied Mathematics
115 (2001) 177–186.

[36] K. Obata. Approximate max-integral-flow/min-multicut theorems. Pro-
ceedings STOC 04 (2004).

[37] H. Okamura and P.D. Seymour. Multicommodity flows in planar
graphs. Journal of Combinatorial Theory, Series B 31 (1981) 75–81.

[38] P. Raghavan. Probabilistic construction of deterministic algorithms:
approximating packing integer programs. Journal of Computer and Sys-
tem Sciences 37 (1988) 130–143.

26

[39] N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects
of tree-width. Journal of Algorithms 7 (1986) 309–322.

[40] N. Robertson and P.D. Seymour. Graphs minors XIII: The disjoint
paths problem. J. Combin. Theory, Ser. B, 63 (1995) 65–110.

[41] É. Tardos and V.V. Vazirani. Improved bounds for the max-flow min-
multicut ratio for planar and Kr,r-free graphs. Inform. Process. Lett.
47 (1993) 77–80.

[42] W.-C. Yeh. A simple algorithm for the planar multiway cut problem.
Journal of Algorithms 39 (2001) 68–77.

27

