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Abstract

Given an arc-capacitated digraph and k terminal vertices, the di-
rected maximum integer multiterminal flow problem is to route the
maximum number of flow units between the terminals. We introduce
a new parameter kL ≤ k for this problem and study its complexity
with respect to kL.
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1 Introduction

Routing problems in networks are commonly modelled by flow or mul-
ticommodity flow problems. Given an edge-capacitated graph (directed or
undirected), the goal is to route flow units (requests) between prespecified
vertices. When one seeks to route the maximum number of flow units from
a unique source to a unique sink, the problem is the famous maximum flow
problem. The Ford-Fulkerson’s theorem [9] gives a good characterization
for this case, which is efficiently solvable [1]. In particular, this theorem
states that, if the capacities are integral, the value of a maximum integer
flow is equal to the value of a minimum cut, i.e., to the value of a mini-
mum weight set of edges whose removal separates the source from the sink.
Unfortunately, this does not hold for more general variants.

One of the most studied variant is the maximum integer multiflow prob-
lem: given an edge-capacitated graph G = (V,E) and a list of source-sink
pairs, the goal is to simultaneously route the maximum number of flow
units, each unit being routed from one source to its corresponding sink,
while respecting the capacity constraints on the edges. For two source-sink
pairs, this problem is strongly NP-hard both in directed acyclic graphs and
in undirected graphs [8] (more precisely, given an unweighted undirected
or directed acyclic graph, two pairs (s1, s′1) and (s2, s′2) and a (polynomially
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bounded) demand d, it is NP-complete to decide whether we can simultane-
ously route d+1 disjoint paths, d paths from s1 to s′1 and one from s2 to s′2),
and even APX-hard in undirected and directed graphs [16, p. 489] (implying
that there is no PTAS if P 6= NP; see Section 2 for a definition). Moreover,
if P 6= NP, it cannot be approximated efficiently within |E|

1
2
−ε in digraphs

[16] and within (log |E|)
1
3
−ε in undirected graphs [2], for any ε > 0 (recall

that, for a maximization (resp. minimization) problem, an α-approximation
algorithm is a polynomial-time algorithm that always outputs a feasible so-
lution whose value is at least 1/α times (resp. at most α times) the value of
an optimal solution). On the positive side, an O

(√
|E|
)

-approximation al-

gorithm is known for general digraphs [18], and an O
(√
|V |
)

-approximation
is known for directed acyclic graphs [4, 20] and undirected graphs [4]. For
further results on the tractability and approximability of special cases, see
[6, 11].

The corresponding generalization of the problem of finding a minimum
cut is the minimum multicut problem, which asks to select a minimum weight
set of edges whose removal separates each source from its corresponding sink.
This problem is also NP-hard (even in very restricted classes of graphs,
such as unweighted stars [15]), and has a noticeable relationship with the
former: the continuous relaxations of the linear programming formulations
of the two problems are dual [14]. In particular, this interesting property
has been used to design good approximation algorithms for both problems
[14, 15, 22]. Further results and references concerning the maximum integer
multiflow and minimum multicut problems can be found in [1, 6, 22].

Another generalization of the maximum flow problem is the maximum
integer multiterminal flow problem (MaxIMTF): given an edge-capacitated
graph and a set T = {t1, . . . , tk} of terminal vertices, MaxIMTF is to route
the maximum number of flow units between the terminals. Note that this
problem is a particular maximum integer multiflow problem in which the
source-sink pairs are (ti, tj) for i 6= j. The associated minimum multiter-
minal cut problem (MinMTC) is to select a minimum weight set of edges
whose removal separates ti from tj for i 6= j. Note that MaxIMTF and
MinMTC also have the duality relationship mentioned above. MinMTC
has been widely studied in the undirected case [5, 6, 7, 23], and the directed
case has also received some attention: Garg et al. [13] show that it is NP-
hard even for k = 2 and give an 2 log2 k-approximation algorithm, and Naor
and Zosin [19] give a 2-approximation algorithm. However, the algorithm
of Garg et al. has an interesting property: it computes a multiterminal
cut whose value is at most 2 log2 k times the value of an integer multiter-
minal flow, and hence is an 2 log2 k-approximation for both MinMTC and
MaxIMTF (while the algorithm of Naor and Zosin does not provide an ap-
proximate solution for MaxIMTF). Costa et al. [6] show that MaxIMTF
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and MinMTC are polynomial-time solvable in acyclic directed graphs by
using a simple reduction to a maximum flow and a minimum cut problem,
respectively. To the best of our knowledge, these are the only results about
MaxIMTF in directed graphs. In undirected graphs, MaxIMTF has re-
cently be shown to be polynomial-time solvable via the ellipsoid method
[17]: the resolution is based on the related Mader’s theorem on T -paths [21,
Chap. 73]. Algorithmic aspects of special cases have also been studied (see
[3] and [12]). However, it can be noticed that, for all the problems mentioned
above, the general directed case is “harder” than the undirected one, since
there exists a linear reduction from the latter to the former: simply replace
each edge by the gadget given in [21, (70.9) on p. 1224].

The motivation of this paper is to explore further the complexity of
MaxIMTF in directed graphs. We say that a terminal is lonely if it lies
on at least one directed cycle containing no other terminal, and we let TL
denote the set of lonely terminals and kL = |TL| (note that kL = 0 in
directed acyclic graphs). We shall see that kL is a particularly interesting
parameter for better understanding the complexity and approximability of
MaxIMTF in digraphs (kL is small when either k or the number of directed
cycles is small, and both parameters can be arbitrarily larger than kL): this
paper gives a complete classification of the tractable and intractable cases
of MaxIMTF in digraphs with respect to this parameter. Moreover, some
of our results will extend to MinMTC.

Intuitively, the condition kL = 0 ensures that any flow unit routed from
a terminal ti to one of the k terminals (including ti itself) will go through
at least one terminal different from ti; therefore, it can be assumed to be
routed from one terminal to another (different) terminal.

We first show that MaxIMTF is NP-hard to approximate within 2− ε
for any ε > 0 in directed graphs, even if kL = k = 2 or if kL = 1 and k = 3
(Section 2). Then, we prove MaxIMTF to be tractable when kL = 0 by
reducing it to a simple maximum flow problem, and improve the 2 log2 k-
approximation algorithm of Garg et al. [13] by providing an 2 log2(kL + 2)-
approximation algorithm for the general case (Section 3). We also show
the tightness of our analysis. Eventually, we show the case kL = 1 and
k = 2 to be polynomial-time solvable (Section 4). We leave as open the
problem of deciding whether there exists an O(1)-approximation algorithm
for MaxIMTF in digraphs.

Note that, throughout this paper, we consider only simple graphs. We
call Directed MaxIMTF the problem MaxIMTF defined in directed graphs.

2 APX-hardness proof

We show in this section that Directed MaxIMTF is APX-hard (i.e.,
there exists an α > 1 such that there is no α-approximation algorithm for
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this problem), even if k = kL = 2 (or kL = 1 and k = 3). First, notice
that, when k = 2 (i.e., T = {t1, t2}), Directed MaxIMTF is equivalent (in
digraphs) to the maximum integer multiflow problem with two source-sink
pairs (s1, s′1) and (s2, s′2). Indeed, given (s1, s′1) and (s2, s′2), we can obtain an
equivalent instance of Directed MaxIMTF by defining two new terminals,
t1 and t2, and by linking (by arcs with sufficiently large capacities) t1 to s1,
s′2 to t1, t2 to s2 and s′1 to t2: any flow unit routed between t1 and t2 is
either routed from s1 to s′1 or from s2 to s′2. Conversely, given two terminals
t1 and t2, we can define s1 = t1, s′1 = t2, s2 = t2 and s′2 = t1. Obviously,
this transformation does not apply to the undirected case.

We will use the fact that, if P 6= NP, there is no ρ-approximation
algorithm for the maximum integer multiflow problem in digraphs even with
two source-sink pairs, for any ρ < 2 (recall that this problem is APX−hard
even in undirected graphs [16, p. 489]). Indeed, the problem P2: given a
digraph G and two vertex pairs (s1, s′1) and (s2, s′2), decide whether there
simultaneously exist in G two paths, one from s1 to s′1, and the other from
s2 to s′2 is NP-complete [10] (an instance of P2 is called feasible if two such
paths exist). This result was used in [16] to prove a strong inapproximability
result for the maximum integer multiflow problem in digraphs.

Now, let I be any instance of P2. If there exists an approximation
algorithm for the maximum integer multiflow problem with a ratio ρ < 2,
such an algorithm would output a solution of value 1 if I is not feasible,
and of value 2 otherwise (since 2

ρ > 1): this would give a polynomial-time
algorithm for solving P2. This implies:

Theorem 1. Directed MaxIMTF is NP-hard to approximate within 2− ε
for any ε > 0, even when kL = k = 2.

Note that this lower bound is tight for k = 2, since applying Garg et al.’s
algorithm yields a 2-approximation in this case [13]. Moreover, this result
essentially matches the complexity result (namely, APX-hardness) for the
associated cut problem MinMTC in directed graphs [13]. Now, we prove
the same result for the case k = 3, kL = 1. The proof is quite similar: given
two vertex pairs (s1, s′1) and (s2, s′2), define three new terminals t1, t2, t3,
and add four arcs, (t1, s1), (s′2, t1), (t2, s2), (s′1, t3); then, any path leaving t1
is routed towards t3. Note that TL = {t1}, since the only terminal lying on
a directed cycle is t1. Hence:

Theorem 2. Directed MaxIMTF is NP-hard to approximate within 2− ε
for any ε > 0, even when k = 3 and kL = 1.

We shall deal with the case kL = 0 (which generalizes the acyclic case)
in Section 3 and with the case kL = 1 and k = 2 in Section 4.
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3 Exact and approximation algorithms

From the previous section, Directed MaxIMTF isAPX-hard for kL ≥ 1.
Hence, if P 6= NP, the only efficient algorithms one can expect to design
are approximation algorithms. In this section, we improve the 2 log2 k-
approximation algorithm of Garg et al. [13] and give an 2 log2(kL + 2)-
approximation algorithm for Directed MaxIMTF.

The basic idea of our algorithm is to combine the algorithm of Garg et al.
with an improvement of an idea used in [6, Proposition 3]. The main idea of
the proof of [6, Proposition 3] (that shows that MaxIMTF and MinMTC
are polynomial-time solvable in directed acyclic graphs) is to split up each
terminal vertex ti into two new vertices, t′i and t′′i , such that all the vertices
in Γ−(ti) are linked to t′i and t′′i is linked only to the vertices in Γ+(ti) (where,
for a digraph G = (V,A) and v ∈ V , Γ+(v) = {u ∈ V such that (v, u) ∈ A}
and Γ−(v) = {u ∈ V such that (u, v) ∈ A}). Then, we add two new vertices,
σ and τ , and link (by arcs with large capacities) every t′i to τ and σ to every
t′′i . Finally, we compute a maximum flow between σ and τ (obviously, we
assume that the capacities are integral). The obtained flow is a valid integer
multiterminal flow for the initial instance if, in the modified instance, no
flow unit is routed from t′′i to t′i for some i.

We can obtain an interesting strengthening of [6, Proposition 3] by notic-
ing that, if there is no lonely terminal, then, by splitting up the terminals
as explained, there will remain no directed path from t′′i to t′i for each i, and
hence we can solve MaxIMTF and MinMTC using the above technique.

Theorem 3. MinMTC and MaxIMTF are polynomial-time solvable in
directed graphs if kL = 0, by using a max flow-min cut algorithm.

Actually, if we want to guarantee that, after splitting up each terminal,
the modified graph does not admit a directed path from t′′i to t′i for some
i (otherwise, we cannot be sure that the flow we will compute in the mod-
ified graph will be a valid multiterminal flow in the initial graph), this is
essentially the best (i.e., weakest) assumption that can be made.

Theorem 4. After splitting up all the terminals, there is no directed path
between t′′i and t′i for each i if and only if kL = 0.

Proof. Follows directly from the definition of TL and the way we split up
the terminals.

Theorems 3 and 4 show the importance of the parameter kL for both
MaxIMTF and MinMTC. Moreover, this suggests the following approach
(algorithm A) for finding approximate solutions for these two problems:

1. If k ≥ kL + 2, split up each terminal ti ∈ T − TL into t′i and t′′i as
explained above, add the two vertices σ and τ , and link (by arcs with
sufficiently large capacities) every t′i to τ and σ to every t′′i ;
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2. Compute a solution for this new instance (i.e., where the terminal set
is TL

⋃
{σ, τ}) by using the algorithm of Garg et al. [13].

Hence, the main difference with the algorithm in [13] is that, before using
their divide-and-conquer strategy, we “replace” the terminals in T \ TL by
only two terminals, σ and τ . This implies that we use Garg et al.’s algorithm
on an instance with kL + 2 terminals, and so we obtain an approximation
factor of 2 log2(kL + 2) (instead of 2 log2 k). The key point is that any flow
unit routed during the algorithm from σ to τ via t′′i and t′i for some i with
ti /∈ TL (if any) can be re-routed either between σ and a terminal in TL or
between a terminal in TL and τ (because ti ∈ T − TL). This implies:

Theorem 5. Algorithm A is an 2 log2(min(kL + 2, k))-approximation algo-
rithm for MaxIMTF in directed graphs.

Moreover, the above transformation can be of independent interest, since
it can always be applied in order to reduce the instance size (i.e., to reduce
the number of terminals from k to kL + 2) in any procedure computing an
integer multiterminal flow (e.g., an exact implicit enumeration procedure).

Actually, we can prove that our analysis of the approximation ratio of
algorithm A is tight. To do this, we use an instance built on an undirected
tree with 2p vertices. We are given a path P = u0, u1, . . . , up, and, for each
i ∈ {0, . . . , p− 1}, 2i− 1 leaves are linked by an edge of capacity 1 to ui (let
this set of leaves be Li). All the vertices are terminal vertices (and hence
k = 2p, i.e, p = log2 k), and the p edges of P are valued by a big integer N .
To transform this undirected graph into a directed one, we replace each edge
by the gadget given in [21, (70.9) on p. 1224]: each arc of the gadget has
the capacity of the initial edge. In this instance, all the terminals are lonely
(i.e., k = kL), and hence our algorithm simply consists in applying Garg et
al.’s algorithm. Hence, we will prove the tightness of their analysis, and this
will imply the tightness of ours. We assume without loss of generality that
Garg et al.’s algorithm always breaks ties in the worst possible way, and that
it computes a solution by iteratively separating up−i+1 and Lp−i from up−i:
indeed, this will result in a binary search on k. Moreover, the first max flow
computed at the ith iteration will consist in routing N units of flow between
u0 and up−i+1 and one unit of flow between up−i and each leaf in Lp−i (the
second max flow is symmetric; thus, it has the same value). The min cut
will consist in cutting two different arcs (adjacent to the same terminal) on
the gadget linking up−i to up−i+1 and on the gadget linking up−i to each
leaf in Lp−i. The algorithm of Garg et al. outputs a flow of value at most
N+(2p−1−1)+(2p−2−1)+· · ·+(21−1) = N+2p−p−1 (even if it combines
flows obtained in different iterations in the best possible way) and a cut of
value 2(pN + 2p − p − 1). The ratio between these two values is equal to
2(pN+2p−p−1)
N+2p−p−1 , and tends to 2p = 2 log2 kL as N increases, establishing the
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tightness of Garg et al.’s analysis. However, this does not imply that one
cannot hope for a better approximation ratio by using a different algorithm.

Eventually, note that tighter ratios can be obtained for special cases (for
example, when kL = 1, our analysis yields a 2-approximation).

4 kL = 1 and k = 2: A tractable case

Directed MaxIMTF is APX-hard even when k = kL = 2 and when
kL = 1 and k = 3 (see Section 2), and polynomial-time solvable when
kL = 0 (see Section 3). In this section, we settle the last case and show that
Directed MaxIMTF is polynomial-time solvable when kL = 1 and k = 2.

Let T = {t1, t2} and TL = {t1}. From the definition of TL, there exists
at least one directed cycle containing t1 but not t2, and there exists no
directed cycle containing t2 but not t1. We are going to show that, in fact,
this instance can be transformed into an equivalent one in which kL = 0;
then, we will conclude by using Theorem 3. We show the following lemma:

Lemma 1. Let I be an instance of Directed MaxIMTF with T = {t1, t2}
and TL = {t1}. On any directed cycle containing t1 but not t2, there is a
removable arc, i.e., an arc not used by at least one optimal solution for I.

Proof. Let C = {t1, u1, u2, . . . , up, t1} be a directed cycle not containing t2.
We show that, on C, there exists an arc lying neither on an elementary
path from t1 to t2 nor on an elementary path from t2 to t1. Let i be such
that there is a path from ui to t2 not containing t1, but there is no path
from ui+1 to t2 not containing t1. If i exists, then the arc (ui, ui+1) can be
removed. Indeed, it cannot lie on an elementary path from t1 to t2 (since
there is no path from ui+1 to t2 not containing t1), and it cannot lie on an
elementary path from t2 to t1 (since otherwise there is a path from t2 to
ui not containing t1, and t2 ∈ TL). If i does not exist, then we can remove
either (t1, u1) (if there is no path from u1 to t2 not containing t1) or (up, t1)
(if there is a path from up to t2 not containing t1). Lemma 1 follows.

The proof of Lemma 1 also provides an algorithm to solve MaxIMTF in
this case, by iteratively removing arcs until there remains no lonely terminal.

Acknowledgments

The author thanks the anonymous referees for their numerous remarks,
that greatly helped improving the content and the presentation of the present
paper.

7



References

[1] A.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows – Theory, Algo-
rithms, and Applications. Prentice Hall, Englewood Cliffs, New Jersey (1993).

[2] M. Andrews and L. Zhang. Hardness of the undirected edge-disjoint paths
problem. Proceedings STOC’05 (2005).

[3] A. Billionnet and M.-C. Costa. Multiway cut and integer flow problems in
trees. Proceedings CTW04, ENDM 17 (2004) 105–109.

[4] C. Chekuri, S. Khanna and F.B. Shepherd. An O(
√
n)-approximation and

integrality gap for EDP and UFP in undirected graphs and DAGs. Working
paper, submitted (2005).

[5] D.Z. Chen and X. Wu. Efficient algorithms for k-terminal cuts on planar
graphs. Algorithmica 38 (2004) 299–316.

[6] M.-C. Costa, L. Létocart and F. Roupin. Minimal multicut and maximal in-
teger multiflow: a survey. Eur. J. Op. Res. 162 (2005) 55–69.

[7] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM J. Computing 23 (1994)
864–894.

[8] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multi-
commodity flow problems. SIAM J. Computing 5 (1976) 691–703.

[9] L.R. Ford and D.R. Fulkerson. Maximal Flow Through a Network. Canadian
Journal of Mathematics 8 (1956) 339–404.

[10] S. Fortune, J. Hopcroft and J. Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science 10 (1980) 111–121.

[11] A. Frank. Packing paths, circuits and cuts-a survey. In B. Korte, L. Lovász,
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