Open Problems

Edited by U.S.R. Murty

This chapter contains open problems that were presented at the problem session of the GT04 conference, complemented by several submitted later. Comments and questions of a technical nature should be addressed to the poser of the problem.

Problem GT04-1: Superstrongly perfect graphs

B.D. Acharya Department of Science and technology, Government of India, New Mehrauli Road, New Delhi – 110 016, India

e-mail: bdacharya@yahoo.com

A graph G is *superstrongly perfect* if every induced subgraph H possesses a minimal dominating set that meets all the maximal complete subgraphs of H. Clearly, every strongly perfect graph is superstrongly perfect, but not conversely.

Problem. Characterize superstrongly perfect graphs.

Problem GT04-2: Eulerian Steinhaus graphs

M. Augier	S. Eliahou
EPFL,	LMPA-ULCO,
Lausanne, Switzerland	B.P. 699, F-62228 Calais cedex, France
e-mail: maxime.augier@epfl.ch	e-mail: eliahou@lmpa.univ-littoral.fr

To every binary string $s = x_1 x_2 \dots x_{n-1} \in \mathbb{F}_2^{n-1}$ is associated a simple graph G(s) on the vertex set $\{0, 1, \dots, n-1\}$, whose adjacency matrix $M = (a_{i,j})_{0 \leq i,j \leq n-1} \in \mathcal{M}_n(\mathbb{F}_2)$ satisfies $a_{i,i} = 0$ for $i \geq 0$, $a_{0,i} = x_i$ for $i \geq 1$, and $a_{i,j} = a_{i-1,j-1} + a_{i-1,j}$ for $1 \leq i < j \leq n-1$. The graph G(s) is called the *Steinhaus graph* associated to s.

Problem. Is it true that an Eulerian Steinhaus graph is completely determined by its vertex degree sequence?

It is known that G(s) is connected unless s is the zero string 0...0. Denote $d_i = d_i(s)$ the degree of vertex i in G(s), and

$$d(s) = (d_1, d_2, \dots, d_n)$$

the vertex degree sequence of G(s).

The example $s_1 = 010$, $s_2 = 100$ with $d(s_1) = d(s_2) = (1, 2, 2, 1)$ shows that d(s) alone does not determine s or G(s) in general.

A conjecture of Dymacek states that the only regular Steinhaus graphs are those corresponding to the binary strings 1, 0...0, and 110110...110, see [6]. In [2], we investigate parity-regular Steinhaus graphs G(s), where the degrees $d_i(s)$ all have the same parity, even or odd. The even case corresponds to Eulerian Steinhaus graphs, except for s = 0...0. Dymacek has shown that there are exactly $2^{\lfloor \frac{n-1}{3} \rfloor} - 1$ Eulerian Steinhaus graphs on n vertices [6].

In our study of parity-regular Steinhaus graphs, we came upon the observation that it is much harder in this context to find *collisions*, i.e., binary strings $s_1 \neq s_2 \in \mathbb{F}_2^{n-1}$ with $d(s_1) = d(s_2)$. The smallest collision in the parity-regular case occurs at n = 26 and is unique in this size:

giving rise to the common degree sequence

 $\begin{aligned} &d(s_1) = d(s_2) \\ &= (13, 15, 9, 9, 13, 13, 17, 11, 9, 19, 9, 9, 11, 11, 9, 9, 19, 9, 11, 17, 13, 13, 9, 9, 15, 13). \end{aligned}$

Up to $n \leq 50$ vertices, we have found a total of 29 collisions in the parityregular case. They only occur if $n \equiv 2 \mod 4$, namely at n = 26, 34, 38, 42, 46 and 50 (yes, 30 is missing), and they all satisfy $s_1 + s_2 = 11 \dots 10$. We conjecture in [2] that these properties always hold.

Finally, in these 29 instances, all vertex degrees turn out to be odd. Thus, up to $n \leq 50$ vertices, there are no collisions $s_1 \neq s_2$ where all degrees in $d(s_1) = d(s_2)$ are even.

In other words, Eulerian Steinhaus graphs G(s) are completely determined by their degree sequence $d(s) \in \mathbb{N}^n$ for $n \leq 50$. Does this remain true for $n \geq 51$?

Problem GT04-3: Edge-disjoint paths in planar graphs with a fixed number of terminal pairs

C. Bentz CEDRIC, CNAM, Paris, France

e-mail: cedric.bentz@cnam.fr

Input: An undirected planar graph G, a list of k pairs of terminal vertices (source s_i , sink t_i), k being a fixed integer.

Problem. Find in $\bigcup_i P_i$ a maximum number of edge-disjoint paths (i.e., edgedisjoint in G), where, for each i, P_i is the set of elementary paths linking s_i to t_i in G.

If the graph is not planar, the problem is \mathcal{NP} -hard, even for k = 2 [7]. If k is not fixed, the problem is \mathcal{NP} -hard even in outerplanar graphs [9]. Moreover, in general graphs, the problem is tractable if the maximum degree is bounded or if we allow only one path between s_i and t_i for each i (in this case, one can solve the problem by solving a constant number of instances of the *edge-disjoint* paths problem and using the algorithm given in [13]). When k = 2 and adding the 2 edges (s_1, t_1) and (s_2, t_2) to G does not destroy planarity, the problem is polynomial-time solvable [11].

Problem GT04-4: Shortest alternating cycle

MC. Costa,	D. de Werra,
CEDRIC, CNAM, Paris, France	EPFL, Lausanne, Suisse
e-mail: costa@cnam.fr	e-mail: dewerra.ima@epfl.ch
C. Picouleau	B. Ries
CEDRIC, CNAM, Paris, France	EPFL, Lausanne, Suisse
e-mail: chp@cnam.fr	e-mail: bernard.ries@epfl.ch

The decision problem SAC (*Shortest Alternating Cycle*) is formally defined as follows:

Instance: A graph G = (V, E) and a positive integer $L \leq |V|$.

Question: Is there a maximum matching M and an even cycle C with $|C| \leq L$ and $|C \cap M| = \frac{1}{2}|C|$?

Problem. Determine the complexity status of SAC.

The complexity status of SAC is unknown even if G is a 3-regular bipartite graph. Notice that the problem SAC becomes solvable in polynomial time if either a cycle C or a perfect matching M is given.

Problem GT04-5: Edge 3-coloration of K_{mn} with pre-specified colored degrees

MC. Costa,	D. de Werra,
CEDRIC, CNAM, Paris, France	EPFL, Lausanne, Suisse
e-mail: costa@cnam.fr	e-mail: dewerra.ima@epfl.ch
C. Picouleau	B. Ries
CEDRIC, CNAM, Paris, France	EPFL, Lausanne, Suisse
e-mail: chp@cnam.fr	e-mail: bernard.ries@epfl.ch

Let $G = (X, Y, E) = K_{mn}$ be the complete bipartite graph with $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$. Let $L_1 = (a_1, \ldots, a_m)$, $L_2 = (b_1, \ldots, b_m)$, $R_1 = (c_1, \ldots, c_n)$ and $R_2 = (d_1, \ldots, d_n)$ be four sequences of nonnegative integers such that $a_i + b_i \leq n, i = 1, \ldots, m$ and $c_i + d_i \leq m, i = 1, \ldots, n$.