
Graph Theory

Trends in Mathematics, 381–389
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Open Problems

Edited by U.S.R. Murty

This chapter contains open problems that were presented at the problem session
of the GT04 conference, complemented by several submitted later. Comments and
questions of a technical nature should be addressed to the poser of the problem.

Problem GT04-1: Superstrongly perfect graphs

B.D. Acharya
Department of Science and technology,
Government of India, New Mehrauli Road,
New Delhi – 110 016, India

e-mail: bdacharya@yahoo.com

A graph G is superstrongly perfect if every induced subgraph H possesses a minimal
dominating set that meets all the maximal complete subgraphs of H . Clearly, every
strongly perfect graph is superstrongly perfect, but not conversely.

Problem. Characterize superstrongly perfect graphs.

Problem GT04-2: Eulerian Steinhaus graphs

M. Augier S. Eliahou
EPFL, LMPA-ULCO,
Lausanne, Switzerland B.P. 699, F-62228 Calais cedex, France

e-mail: maxime.augier@epfl.ch e-mail: eliahou@lmpa.univ-littoral.fr

To every binary string s = x1x2 . . . xn−1 ∈ Fn−1
2 is associated a simple graph G(s)

on the vertex set {0, 1, . . . , n− 1}, whose adjacency matrix M = (ai,j)0≤i,j≤n−1 ∈
Mn(F2) satisfies ai,i = 0 for i ≥ 0, a0,i = xi for i ≥ 1, and ai,j = ai−1,j−1 + ai−1,j

for 1 ≤ i < j ≤ n−1. The graph G(s) is called the Steinhaus graph associated to s.

Problem. Is it true that an Eulerian Steinhaus graph is completely determined by
its vertex degree sequence?
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It is known that G(s) is connected unless s is the zero string 0 . . . 0. Denote
di = di(s) the degree of vertex i in G(s), and

d(s) = (d1, d2, . . . , dn)

the vertex degree sequence of G(s).
The example s1 = 010, s2 = 100 with d(s1) = d(s2) = (1, 2, 2, 1) shows that

d(s) alone does not determine s or G(s) in general.
A conjecture of Dymacek states that the only regular Steinhaus graphs are

those corresponding to the binary strings 1, 0 . . . 0, and 110110 . . .110, see [6]. In
[2], we investigate parity-regular Steinhaus graphs G(s), where the degrees di(s) all
have the same parity, even or odd. The even case corresponds to Eulerian Steinhaus
graphs, except for s = 0 . . . 0. Dymacek has shown that there are exactly 2�

n−1
3 −1

Eulerian Steinhaus graphs on n vertices [6].
In our study of parity-regular Steinhaus graphs, we came upon the observa-

tion that it is much harder in this context to find collisions, i.e., binary strings
s1 �= s2 ∈ Fn−1

2 with d(s1) = d(s2). The smallest collision in the parity-regular
case occurs at n = 26 and is unique in this size:

s1 = 0010101001111110010101001
s2 = 1101010110000001101010111 = s1 + 1111111111111111111111110

giving rise to the common degree sequence

d(s1)=d(s2)

=(13,15,9,9,13,13,17,11,9,19,9,9,11,11,9,9,19,9,11,17,13,13,9,9,15,13).

Up to n ≤ 50 vertices, we have found a total of 29 collisions in the parity-
regular case. They only occur if n ≡ 2 mod 4, namely at n = 26, 34, 38, 42, 46
and 50 (yes, 30 is missing), and they all satisfy s1 + s2 = 11 . . . 10. We conjecture
in [2] that these properties always hold.

Finally, in these 29 instances, all vertex degrees turn out to be odd. Thus, up
to n ≤ 50 vertices, there are no collisions s1 �= s2 where all degrees in d(s1) = d(s2)
are even.

In other words, Eulerian Steinhaus graphs G(s) are completely determined
by their degree sequence d(s) ∈ Nn for n ≤ 50. Does this remain true for n ≥ 51?

Problem GT04-3: Edge-disjoint paths in planar graphs with a fixed number
of terminal pairs

C. Bentz
CEDRIC, CNAM, Paris, France

e-mail: cedric.bentz@cnam.fr

Input: An undirected planar graph G, a list of k pairs of terminal vertices (source
si, sink ti), k being a fixed integer.
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Problem. Find in
⋃

i Pi a maximum number of edge-disjoint paths (i.e., edge-
disjoint in G), where, for each i, Pi is the set of elementary paths linking si to
ti in G.

If the graph is not planar, the problem is NP-hard, even for k = 2 [7]. If
k is not fixed, the problem is NP-hard even in outerplanar graphs [9]. Moreover,
in general graphs, the problem is tractable if the maximum degree is bounded
or if we allow only one path between si and ti for each i (in this case, one can
solve the problem by solving a constant number of instances of the edge-disjoint
paths problem and using the algorithm given in [13]). When k = 2 and adding
the 2 edges (s1, t1) and (s2, t2) to G does not destroy planarity, the problem is
polynomial-time solvable [11].

Problem GT04-4: Shortest alternating cycle

M.-C. Costa, D. de Werra,
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: costa@cnam.fr e-mail: dewerra.ima@epfl.ch

C. Picouleau B. Ries
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: chp@cnam.fr e-mail: bernard.ries@epfl.ch

The decision problem SAC (Shortest Alternating Cycle) is formally defined as
follows:
Instance: A graph G = (V, E) and a positive integer L ≤ |V |.
Question: Is there a maximum matching M and an even cycle C with |C| ≤ L and
|C ∩M | = 1

2 |C| ?
Problem. Determine the complexity status of SAC.

The complexity status of SAC is unknown even if G is a 3-regular bipartite
graph. Notice that the problem SAC becomes solvable in polynomial time if either
a cycle C or a perfect matching M is given.

Problem GT04-5: Edge 3-coloration of Kmn with pre-specified colored degrees

M.-C. Costa, D. de Werra,
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: costa@cnam.fr e-mail: dewerra.ima@epfl.ch

C. Picouleau B. Ries
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: chp@cnam.fr e-mail: bernard.ries@epfl.ch

Let G = (X, Y, E) = Kmn be the complete bipartite graph with X = {x1, . . . , xm}
and Y = {y1, . . . , yn}. Let L1 = (a1, . . . , am), L2 = (b1, . . . , bm), R1 = (c1, . . . , cn)
and R2 = (d1, . . . , dn) be four sequences of nonnegative integers such that ai+bi ≤
n, i = 1, . . . , m and ci + di ≤ m, i = 1, . . . , n.


