
Cardinality constrained and multicriteria

(multi)cut problems

C. Bentz, M.-C. Costa, N. Derhy ∗, F. Roupin

CEDRIC-CNAM, 292 Rue Saint-Martin, 75141 Paris Cedex 03, France

Abstract

In this paper, we consider multicriteria and cardinality constrained multicut prob-
lems. Let G be a graph where each edge is weighted by R positive costs correspond-
ing to R criteria and consider k source-sink pairs of vertices of G and R integers
B1, . . . , BR. The problem R-CriMultiCut consists in finding a set of edges whose
removal leaves no path between the ith source and the ith sink for each i, and whose
cost, with respect to the jth criterion, is at most Bj , for 1 ≤ j ≤ R. We prove
this problem to be NP-complete in paths and cycles even if R = 2. When R = 2
and the edge costs of the second criterion are all 1, the problem can be seen as a
monocriterion multicut problem subject to a cardinality constraint. In this case, we
show that the problem is strongly NP-complete if k = 1 and that, for arbitrary k, it
remains strongly NP-complete in directed stars but can be solved by (polynomial)
dynamic programming algorithms in paths and cycles. For k = 1, we also prove that
R-CriMultiCut is strongly NP-complete in planar bipartite graphs and remains
NP-complete in K2,d even for R = 2.

Key words: Multicut, Cardinality Constraint, Multicriteria Optimization,
Dynamic Programming, NP-hardness

1 Introduction

In (2), Bruglieri et al. study a generalization of the well-known minimum cut
problem where an additional cardinality constraint is considered. They show
that the problems of finding a minimum cut of cardinality either equal to
or greater than a given value p are both strongly NP-hard. However, they

∗ Corresponding author. Tel.: +33 (0) 1 58 80 85 50; fax: +33 (0) 1 40 27 22 96.
Email addresses: cedric.bentz@lri.fr (C. Bentz), costa@cnam.fr (M.-C.

Costa), nicolas.derhy@cnam.fr (N. Derhy), roupin@cnam.fr (F. Roupin).

Preprint submitted to Elsevier November 14, 2007

ask whether the problem MinCutCard, where we look for a minimum cut
separating the source s and the sink t, and whose cardinality is at most p, can
be solved in polynomial time.

In fact, the decision version of this problem can be seen as a particular case
of a multicriteria simple cut problem. In the problem R-CriCut, we are
given two vertices s and t, R edge-weight positive functions w1, . . . , wR, R
bounds B1, . . . , BR and we look for a cut C which separates s and t such
that wi(C) ≤ Bi ∀i ∈ {1, . . . , R}. For R = 2, if we set w2(e) = 1 ∀e ∈ E
and B2 = p, we obtain the decision version of MinCutCard. 2-CriCut has
been shown strongly NP-complete for general graphs in (11). Besides, when
we look for a global cut of the graph, i.e. a partition of the vertices into two
connected components, the problem is polynomial when the number of criteria
is bounded (1).

Let MinMultiCutCard and R-CriMultiCut be generalizations of Min-
CutCard and R-CriCut respectively, defined as the cardinality constrained
and the muticriteria versions of the multicut problem. Given a (directed or not)
graph G = (V,E) and a set T = {(s1, t1), . . . , (sk, tk)} of k distinct source-sink
pairs of terminal vertices, a multicut C is a subset of E whose removal leaves
no (directed) path between si and ti for each i ∈ {1, . . . , k}. MinMultiCut-
Card and R-CriMultiCut can then be defined from MinCutCard and
R-CriCut respectively, by replacing ”cut” by ”multicut”. For fixed k > 2,
the minimal multicut problem MinMultiCut (i.e. the optimization version
of 1-CriMultiCut) is APX-hard both in undirected and in directed graphs
(5). For arbitrary values of k, it is APX-hard in undirected stars (i.e. trees of
height 1) (8) but becomes polynomial in directed trees (4).

Obviously, the difficult cases of MinMultiCut are difficult for MinMulti-
CutCard and R-CriMultiCut. The question is then: do the polynomial
cases of MinMultiCut remain polynomial when we add a cardinality con-
straint or when we consider the multicriteria version?

We study these problems and provide some answers in this paper, which is
divided into three sections.

The first one deals with simple cut problems. We show that MinCutCard
is strongly NP-hard thus settling one of the open problems of Bruglieri et al.
in (2). Then, we prove that, in planar bipartite graphs, 2-CriCut is NP-
complete and R-CriCut is strongly NP-complete.

In the second section, we show that MinMultiCutCard is strongly NP-
hard in directed stars but remains polynomial in paths (and directed paths)
and cycles (and circuits).

In the third section, we study R-CriMultiCut. We show that, in paths,

2

this problem is strongly NP-complete and remains NP-complete for R = 2.
Finally, when the number of criteria is bounded, we give a sketch of a pseudo-
polynomial algorithm for R-CriMultiCut in paths.

2 Simple Cut problems

As already mentioned, Bruglieri et al. study in (2) the problem of finding a
minimal cut subject to a cardinality constraint. However, MinCutCard (i.e.
the case where we have an upper bound on the cardinality of the cut) was an
open problem. We show the following theorem:

Theorem 1 MinCutCard is strongly NP-hard.

PROOF. We use a reduction from Bisection (7). Let G = (V,E) be an
undirected graph with 2n vertices and m edges, and let B be a given value.
The problem is to decide if there exists a partition of V into two disjoint sets
V1 and V2 such that |V1| = |V2| = n and such that the number of edges with
one endpoint in V1 and one endpoint in V2 is less than or equal to B. Let Ibi

be an instance of Bisection. We assume that B < m, otherwise Ibi would
obviously have a solution.

We construct an instance Icut of the decision version of MinCutCard as
follows (see Figure 1): first, let us assign weight 1 to the edges of G. Then,
we add a vertex t and 2n edges of weight nm + n2 + m connecting t to each
vertex of G. For each vertex vi of G, we add a path qi of m + n vertices
and we add m + n edges connecting each vertex of qi to vi. The edges of
qi and the edges connecting the vertices of qi to vi have a weight equal to
(nm+n2+m)n+(m+n)n+m. Finally we add a vertex s and 2(m+n)n edges
of weight 1 connecting s to all the vertices of the paths qi (i ∈ {1, . . . , 2n}).

We claim that there exists a solution for Ibi if and only if there exists a cut
separating s from t such that w(C) ≤ (nm + n2 + m)n + (m + n)n + B and
|C| ≤ n + (m + n)n + B

If we have a solution of Ibi, we construct a solution for Icut in the following
way. For each vertex vi of V1, we cut the edge connecting vi to t. For each
vertex vi of V2, we cut the edges connecting the vertices of qi to s. Moreover,
we cut the edges of G with one endpoint in V1 and one endpoint in V2. So, the
cut separates {s} ∪ V1 ∪ {v ∈ qi|vi ∈ V1} from {t} ∪ V2 ∪ {v ∈ qi|vi ∈ V2}. We
have |C| ≤ |V1|+ (m + n)|V2|+ B = n + (m + n)n + B and
w(C) ≤ (nm+n2+m)|V1|+(m+n)|V2|+B = (nm+n2+m)n+(m+n)n+B.

3

s

v
i

G=(V,
 E
)

t

q
i

Figure 1. The graph obtained for MinCutCard (|qi| = m + n)

Conversely, if we have a solution C of Icut, we construct a solution of Ibi

in the following way: V1 is composed by the vertices of G connected to s
and V2 by the vertices of G connected to t. Note that no edge of weight
(nm + n2 + m)n + (m + n)n + m can be in C since B < m and
w(C) ≤ (nm + n2 + m)n + (m + n)n + B.
Let us begin by showing that |V1| = |V2| = n.
|V2| ≥ n, because otherwise, we have to cut at least n + 1 edges connecting
vertices of G to t, so:
w(C) ≥ (n + 1)(nm + n2 + m) = (nm + n2 + m)n + (m + n)n + m > (nm +
n2 + m)n + (m + n)n + B, which is not possible.
|V1| ≥ n otherwise, we would have to cut at least (n + 1)(m + n) edges
connecting vertices of qi to s (i/vi ∈ V2) so:
|C| ≥ (n + 1)(m + n) = (m + n)n + m + n > (m + n)n + B + n, and the
cardinality constraint would be violated.
Thus, since |V1|+ |V2| = 2n, we necessarily have |V1| = |V2| = n.
Finally, we have to show that the number of edges with one endpoint in V1

and one endpoint in V2 is less than or equal to B. We have cut n edges
connecting vertices of G to t and (m + n)n edges connecting vertices of qi to
s (i|vi ∈ V2). Moreover, the total number of edges in the cut is less than or
equal to n + (m + n)n + B. Thus, the number of edges of G in the cut is less
than or equal to B. 2

In (11), Papadimitriou and Yannakakis show that 2-CriCut, a problem more
general than MinCutCard, is strongly NP-complete in general graphs. We
now give some complexity results concerning particular bipartite graphs.

Theorem 2 2-CriCut is NP-complete in K2,d even when s and t are the
two vertices of degree greater than two.

4

(1,
2d
·s(
a

1

))
 (
2d
·s(
a

1

),1)

(1,
2d
·s(a

d

))
 (
2d
·s(a

d

),1)

s
 t

Figure 2. The graph K2,d obtained for 2-CriCut

PROOF. We use a reduction from Partition (6). We are given a finite set
A of d elements, a size s(a) ∈ N∗ for each a ∈ A and a value S such that∑

a∈A s(a) = S. The problem is to decide if there exists a subset A′ of A such
that

∑
a∈A′ s(a) =

∑
a/∈A′ s(a) = S

2
. Let Ipart be an instance of Partition.

We construct an instance Icut of 2-CriCut as follows (see Figure 2). Let
G = (V1, V2, E) be a complete bipartite graph with V1 = {s, t} (so that |V1| =
2) and |V2| = d. Thus, there are d disjoint paths Pa (a ∈ A) of length 2
linking s to t. For each a ∈ A, let ea and e′a be the two edges of Pa. We
set w1(ea) = w2(e

′
a) = 1 and w2(ea) = w1(e

′
a) = 2d · s(a). We claim that

there exists a solution for Ipart if and only if there exists a cut C such that
w1(C) ≤ d + dS and w2(C) ≤ d + dS.

Indeed, suppose that we have a solution A′ for Ipart. Let us construct a solution
C for Icut: for each a ∈ A′ we cut the edge ea and for each a /∈ A′ we cut the
edge e′a. Thus, there is exactly one edge of each Pa in C and we have w1(C) =∑

a∈A′ w1(ea) +
∑

a/∈A′ w1(e
′
a) =

∑
a∈A′ 1 + 2d

∑
a/∈A′ s(a) = |A′| + dS ≤ d + dS

and w2(C) =
∑

a∈A′ w2(ea) +
∑

a/∈A′ w2(e
′
a) = dS + (d− |A′|) ≤ dS + d.

Conversely, suppose that we have a solution C for Icut. We construct a solution
for Ipart as follows: for each path Pa, if ea is cut then a ∈ A′ else a /∈ A′. We
must now verify that the constructed set A′ satisfies

∑
a∈A′ s(a) =

∑
a/∈A′ s(a) =

S
2
.

Since C is a solution for Icut, we have w1(C) ≤ d + dS.
Furthermore, by construction we have w1(C) ≥ ∑

a∈A′ w1(ea)+
∑

a/∈A′ w1(e
′
a) =

|A′|+ 2d
∑

a/∈A′ s(a).
So, d + dS ≥ |A′|+ 2d

∑
a/∈A′ s(a) and we have:

∑

a/∈A′
s(a) ≤ S

2
+

d− |A′|
2d

<
S

2
+ 1

Using the same arguments for w2 yields:

∑

a∈A′
s(a) ≤ S

2
+
|A′|
2d

<
S

2
+ 1

5

s
 t

1
e
a

1

e

a

1

2

e

a

3d

1

e
a

3d

2

e

a

1

d

e
a

3d

d

with
w
(
e
i
)=(1,...,1,
3d
,1,...,1,1,...,1,
3d
·s(
a
j
),1,...,1)

a

j

d components
 d components

i

th

 element
 (d+
i
)

th

 element

Figure 3. The planar bipartite graph obtained for 2d-CriCut

Since
∑

a∈A s(a) = S, we necessarily have
∑

a∈A′ s(a) =
∑

a/∈A′ s(a) = S
2
. 2

Let Hi,j be the planar bipartite graph composed of two vertices connected by
i disjoint paths of length j. For R-CriCut, we show:

Theorem 3 2d-CriCut is strongly NP-complete in H3d,d even when s and
t are the two vertices of degree greater than two (thus R-CriCut is strongly
NP-complete in planar bipartite graphs).

PROOF. We use a reduction from 3-Partition (6). Given a set A of 3d
elements, a bound S and a size s(a) ∈ N∗ for each a ∈ A such that

∑
a∈A s(a) =

dS, the problem is to decide if there exists a partition of A into d disjoint sets
A1, . . . , Ad such that, for each i ∈ {1, . . . , d}, |Ai| = 3 and

∑
a∈Ai

s(a) = S.
Let I3−part be an instance of 3-Partition.

We construct an instance Icut of 2d-CriCut as follows (see Figure 3). Con-
sider the graph H3d,d and let s and t be the two vertices linked by the 3d
disjoint paths Pa (a ∈ A) of length d. For each a ∈ A, let ea

1, . . . , e
a
d be the

d edges of Pa. For each i ∈ {1, . . . , d}, wi(e
a
i) = 3d, wd+i(e

a
i) = 3ds(a) and

for j 6= i, wi(e
a
j) = wd+i(e

a
j) = 1. The d first criteria will ensure that each

set Ai contains exactly three elements whereas the d other criteria will ensure
that

∑
a∈Ai

s(a) = S. We claim that there exists a solution for I3−part if and
only if there exists a cut C such that wi(C) ≤ 12d − 3 ∀i ∈ {1, . . . , d} and
wi(C) ≤ 3dS + 3d− 3 ∀i ∈ {d + 1, . . . , 2d}.

6

Suppose that we have a solution for I3−part. We construct a solution C for Icut

as follows: if a ∈ Ai then we cut the edge ea
i .

Then, wi(C) =
∑

a∈Ai
wi(e

a
i)+

∑
a/∈Ai

1 = |Ai| ·3d+(|A|−|Ai|) = 9d+3d−3 =
12d− 3 ∀i ∈ {1, . . . , d}
and wd+i(C) =

∑
a∈Ai

wd+i(e
a
i)+

∑
a/∈Ai

1 = 3d
∑

a∈Ai
s(a)+ |A|− |Ai| = 3dS +

3d− 3 ∀i ∈ {1, . . . , d}.

Conversely, suppose we have a solution C for Icut. For each a ∈ A, there is at
least one edge of Pa in C. From the set of edges of Pa which are in C, we select
arbitrarily one edge ea

i and place a in the set Ai. Let us begin by showing that
for each i ∈ {1, . . . , d}, |Ai| = 3.
Let i ∈ {1, . . . , d}. By construction: wi(C) ≥ ∑

a∈Ai
3d +

∑
a/∈Ai

1 = 3d|Ai| +
(3d− |Ai|). Besides, we necessarily have wi(C) ≤ 12d− 3.
So, 3d|Ai|+ (3d− |Ai|) ≤ 12d− 3 and thus:

|Ai| ≤ 3

This implies that |Ai| = 3 ∀i ∈ {1, . . . , d}, since
∑

i∈{1,...,d} |Ai| = 3d.

Finally, we have to prove that
∑

a∈Ai
s(a) = S ∀i ∈ {1, . . . , d}.

Let i ∈ {1, . . . , d}. By construction, we have wd+i(C) ≥ ∑
a∈Ai

3ds(a) +∑
a/∈Ai

1 = 3d
∑

a∈Ai
s(a) + (3d − 3). Besides, we necessarily have wd+i(C) ≤

3dS + 3d− 3.
So, 3d

∑
a∈Ai

s(a) + (3d− 3) ≤ 3dS + 3d− 3 and thus:

∑

a∈Ai

s(a) ≤ S

Since
d∑

i=1

∑

a∈Ai

s(a) =
∑

a∈A

s(a) = dS, we have
∑

a∈Ai

s(a) = S ∀i ∈ {1, . . . , d}. 2

Before studying the general problem R-CriMultiCut, we deal with Min-
MultiCutCard which can be seen as a special bicriteria multicut problem.

7

s
1
 s
2
 s
3

t
3

t
2

t
1

1

1

1

5

a

Figure 4. An instance of MinMultiCutCard with p = 2 where the constraint
matrix is not totally unimodular

3 Minimum multicut with cardinality constraint

Let (LPtree) be the following integral linear program associated with Min-
MultiCut in a tree:

(LPtree)





Min
∑

e∈E

w(e)ze

s. t.
∑

e∈Pi

ze ≥ 1 ∀i ∈ {1, . . . , k}

ze ∈ {0, 1} ∀e ∈ E

Pi is the path between si and ti (i ∈ {1, . . . , k}) and ze ∈ {0, 1} is the decision
variable whose value is 1 if and only if the edge e is in the multicut.

If the tree is directed, the constraint matrix of (LPtree) is totally unimodular
and MinMultiCut is polynomial in this case (4). Unfortunately, if we add
the cardinality constraint

∑
e∈E ze ≤ p, generally there is a gap between the

integral optimal value and the optimal continuous value (so the constraint ma-
trix is not totally unimodular). In the instance given in Figure 4, the optimal
value is equal to 5 and is obtained for za = 1 and ze = 0 for all e 6= a (i.e. the
only arc in the cut is a) while the optimal continuous value is equal to 4 and
is obtained for ze = 0.5 for all e ∈ E.

The graph of this instance being both a rooted tree and a directed star, one can
wonder if MinMultiCutCard is still NP-hard in graph topologies where
the constraint matrix of MinMultiCut is totally unimodular. In this section,
we show that MinMultiCutCard becomes strongly NP-hard in directed
stars (and thus in directed trees) but remains polynomial in paths and cycles.

3.1 NP-hardness of MinMultiCutCard in directed stars

Let G = (V1, O, V2, E) be an arc-weighted directed stars where O is the only
vertex of degree at least 2, V1 the set of vertices without predecessors and V2

8

the set of vertices without successors. Without loss of generality, we assume
that there is at least one terminal on each vertex of V1 and V2, that there is
no terminal on O and that there is a directed path (of length necessarily equal
to 2) between si and ti for each i in {1, . . . , k}.

First, we introduce a new problem closely related to MinMultiCutCard in
directed stars. Let G = (V1, V2, E) be an undirected bipartite graph, w:(V1 ∪
V2) → N∗ be a weight function defined on its vertices and α and p be two
given values. WeightedVCCard consists in finding a vertex cover in G
whose weight is less than or equal to α and whose cardinality is at most p.

Proposition 4 WeightedVCCard is equivalent to the decision version of
MinMultiCutCard in directed stars.

PROOF. We use the same kind of transformation as the one used by Garg
et al. in (8) where they show that MinMultiCut is APX-hard in undirected
stars. For an instance I of the decision problem associated to MinMultiCut-
Card in an directed star, we consider the demand graph H = (V1 ∪ V2, E

H):
for each source-sink pair (si, ti) with si on the vertex v1 and ti on the vertex
v2, we connect the vertices v1 and v2. The weight of each vertex in H is the one
of the arc linking the corresponding vertex and O in G. Since we consider in-
stances of MinMultiCutCard in directed stars without terminals on O, H
is necessarily bipartite. Conversely, for an instance of WeightedVCCard,
we can easily construct an instance of the decision problem of MinMulti-
CutCard where the graph is a directed star.

We claim that finding in H a vertex cover whose weight is less than or equal
to α and cardinality is at most p, is equivalent to finding a solution of I whose
value is less than or equal to α and whose cardinality is at most p. Indeed,
cutting an arc e in G corresponds to selecting, in the vertex cover of H, the
vertex corresponding to the endpoint of e in V1 ∪ V2. 2

Note that without cardinality constraint, finding a minimum vertex cover in a
bipartite graph is a well-known polynomial problem (10). In (3), it is proved
that:

Theorem 5 (Chen and Kanj) Let G = (V1, V2, E) be an undirected un-
weighted bipartite graph, let V Cmin be the size of a minimal vertex cover for
G and let p and q be two given values such that p ≤ V Cmin, q ≤ V Cmin and
p + q ≥ V Cmin. The problem of the existence of a minimum vertex cover for
G with at most p vertices in V1 and at most q vertices in V2, is NP-complete.

We call this problem ChenVCCards and we modify it to obtain UnweightVC-
CardsEq, which consists in finding a minimum vertex cover for an undirected

9

bipartite graph G = (V1, V2, E) with exactly p= vertices in V1, exactly q= ver-
tices in V2 and such that p= + q= = V Cmin.

Proposition 6 UnweightVCCardsEq is NP-complete.

PROOF. Let G = (V1, V2, E) be a bipartite graph with n vertices and let
V Cmin be the minimum size of a vertex cover for G. Let I be an instance
of ChenVCCards composed of G, p and q. Since p + q ≥ V Cmin, we have
p ≥ V Cmin − q. So, we could solve I by solving at most p instances of Un-
weightVCCardsEq: the ith instance of UnweightVCCardsEq is com-
posed of G, p= = i and q= = V Cmin − i (i ∈ {V Cmin − q, . . . , p}). Clearly,
there is a solution for one of the instances of UnweightVCCardsEq if and
only if I has a solution. 2

Now, we can establish the complexity of MinMultiCutCard in directed
stars:

Theorem 7 MinMultiCutCard is strongly NP-hard in directed stars.

PROOF. First, we show that UnweightVCCardsEq is polynomial-time
reducible to WeightedVCCard, which proves that WeightedVCCard is
strongly NP-complete. Then, using Proposition 4, we obtain that MinMul-
tiCutCard is strongly NP-hard in directed stars.

Let I be an instance of UnweightVCCardsEq consisting of G = (V1, V2, E),
p= and q=. Let n = |V1|+ |V2| and let V Cmin be the minimum size of a vertex
cover for G. Recall that V Cmin = p= + q= and that V Cmin can be computed
in polynomial time.

We obtain an instance I ′ of WeightedVCCard in the following way (see
Figure 5): let us assign weight 1 to the vertices of V1 and weight 2n2+2n+1 to
the vertices of V2. Then, for each vertex v of V2, we add 2n+1 new vertices of
weight 1 and we link them to v. Let V ′ be the set of the |V2|(2n+1) new vertices
and E ′ be the set of the new edges. Finally, we obtain the vertex-weighted
bipartite graph G′ = (V1 ∪ V ′, V2, E ∪ E ′) and we claim that there exists a
vertex cover for G with p= vertices in V1 and q= vertices in V2 if and only if
there exists a vertex cover for G′ whose weight is at most p=+(2n2+2n+1)q=+
(2n+1)(|V2|−q=) and whose cardinality is at most p=+q=+(2n+1)(|V2|−q=).

From a solution V CG for I, we build a solution for I ′: for each vertex v of V2

not selected in V CG, we add to V CG the 2n + 1 vertices of V ′ connected to
v. This solution is a vertex cover for G′ and contains exactly p= vertices of

10

V
1
 V
2

2n
+1 vertices

2n
+1 vertices

V'

1

1

1

1

2n
2
+
2n
+1

2n
2
+
2n
+1

2n
2
+
2n
+1

1

1

1

1

1

1

2n
+1 vertices

Figure 5. Reduction from UnweightVCCardsEq to WeightedVCCard

V1, q= vertices of V2 and (2n + 1)(|V2| − q=) vertices of V ′. So, its cardinality
is equal to p= + q= + (2n + 1)(|V2| − q=) and its weight to p= + (2n2 + 2n +
1)q= + (2n + 1)(|V2| − q=).

Conversely, suppose that we have a solution V CG′ for I ′. We get a solution
for I by deleting from V CG′ the vertices of V ′.
V CG′ has at least q= vertices of V2 otherwise, the number of vertices of V ′

selected in V CG′ would be at least (2n + 1)(|V2| − q= + 1) = 2n + 1 + (2n +
1)(|V2| − q=) > p= + q= + (2n + 1)(|V2| − q=) and the cardinality constraint
would be violated.
Besides, V CG′ has at most q= vertices of V2 otherwise, the weight of V CG′

would be greater than or equal to (2n2 + 2n + 1)(q= + 1) = n + (2n2 + 2n +
1)q= + (2n + 1)n + 1 > p= + (2n2 + 2n + 1)q= + (2n + 1)(|V2| − q=) which is
not possible.
Thus, V CG′ contains exactly q= vertices of V2. Since for each vertex v of V2

not selected in V CG′ , V CG′ must contain the 2n + 1 vertices of V ′ connected
to v, V CG′ contains at least (2n + 1)(|V2| − q=) vertices of V ′.
Finally, V CG′ contains at most p= vertices of V1 otherwise, the weight of V CG′

would be greater than (p= +1)+(2n2 +2n+1)q= +(2n+1)(|V2|−q=) which is
not possible. In fact, V CG′ has exactly p= vertices of V1 otherwise, by selecting
the vertices of V1 and V2 from V CG′ , we would obtain a vertex cover for G of
size strictly less than V Cmin which is not possible. 2

3.2 Some polynomial cases of MinMultiCutCard

We have shown that if we add a cardinality constraint to MinMultiCut, the
problem becomes strongly NP-hard in directed stars. However, in this section

11

we prove that MinMultiCutCard remains polynomial in paths (directed
paths) and cycles (circuits). We also give dynamic programming algorithms
for these problems.

MinMultiCutCard in directed paths is equivalent to MinMultiCutCard
in paths because a directed path corresponds to a path where all the edges
are orientated in the same direction, inverting source and sink if needed.

In paths, the constraint matrix of (LPtree) is an interval matrix. It remains
an interval matrix if we add the constraint

∑
e∈E ze ≤ p because we add a row

of 1’s. Since an interval matrix is totally unimodular (12, Chapter 19), Min-
MultiCutCard is polynomial in paths. To avoid using linear programming,
we propose a dynamic programming algorithm which runs in O(mk2) time.

In this section, we suppose that we have deleted ”useless” edges and source-
sink pairs:

• if there exist i and j such that Pi is included in Pj, we delete the source-sink
pair (sj, tj): if Pi is cut by an edge e then Pj is also cut by e. To perform this
reduction in O(n+k), we use a queue. Each time we encounter a source, we
enqueue the source-sink pair. When a sink is reached, we dequeue all the
elements (corresponding to ”useless” source-sink pairs) until the source-sink
pair corresponding to the sink is reached (which is a ”useful” source-sink
pair). Hence, each source-sink pair is seen twice.

• then, if consecutive edges intersect the same set of paths Pi, we keep the edge
with the smallest weight and delete the others: the deleted edges cannot be
selected in an optimal multicut since the edge with the smallest weight is
necessarily more interesting. This reduction can be done in O(n) since we
only need to consider one time each edge by comparing it to the previous
edge and deleting it if necessary.

We also suppose that the source-sink pairs are sorted such that if i < j then
si is ”at the left” of sj (and thus ti is ”at the left” of tj).

Let c be the function of two variables α′ and α with 0 ≤ α′ < α ≤ k such
that c(α′, α) is equal to the weight of the lowest weight edge belonging to
(Pα′+1∩Pα)\Pα+1 if (Pα′+1∩Pα)\Pα+1 6= ∅ (i.e. sα is on the left of tα′+1) and
c(α′, α) = ∞ otherwise (see Figure 6). Note that c(α′, α) is the weight of the
”best” edge that has to be added to a multicut which separates exactly the
α′ first source-sink pairs in order to obtain a multicut which separates exactly
the α first source-sink pairs.

We can now define the optimization function g.

Definition 8
g: {0, . . . , k} × {0, . . . , p} → N

12

5

1 S2 t 1 t 3 t 4 t 5S5S3 S4 t 2

3613231 4

S

︷ ︸︸ ︷

(P3 ∩ P4) \ P5

Figure 6. An instance where c(2, 4) = 3

g(0, 0) = 0, g(α, 0) = ∞ ∀α ∈ {1, . . . , k} and g(α, β) = ∞ ∀β > α
g(α, β) = min

α′∈{0,...,α−1}
{g(α′, β − 1) + c(α′, α)} for α ≥ β > 0.

Proposition 9 Let α ∈ {1, . . . , k} and β ∈ {1, . . . , p}.
g(α, β) is equal to the weight of a minimum multicut of cardinality β which
separates s1 and t1,. . ., sα and tα but not sα+1 and tα+1.
g(α, β) = ∞ if and only if such a multicut does not exist.

PROOF. The proof is obtained by induction on β.
For β = 1, since for each α′ > 0 g(α′, 0) = ∞, g(α, 1) is equal to g(0, 0) +
c(0, α). We need an edge which separates exactly the α first source-sink pairs.
If the set (P1 ∩ Pα) \ Pα+1 is empty, such an edge does not exist and we have
c(0, α) = ∞ so g(α, 1) = ∞. Else, g(α, 1) is equal to the weight of a minimum
multicut of cardinality 1 which separates exactly the α first source-sink pairs.

Now, assume the proposition is true for a value β ≥ 1. The first case we con-
sider is when g(α, β + 1) = ∞ . Suppose that there exists a minimum multicut
C of cardinality β + 1 which separates exactly the α first source-sink pairs.
Let e be the edge of C which belongs to Pα. e is necessarily unique since C is
minimum. Thus, there exists a multicut of cardinality β separating exactly the
α′ first source-sink pairs where α′ is the number of source-sink pairs separated
by C\{e}. So, by induction we have g(α′, β) 6= ∞. Then, we necessarily have
g(α, β + 1) ≤ g(α′, β) + w(e) which leads to a contradiction. Thus, C cannot
exist.

Finally, we consider the second case where g(α, β + 1) 6= ∞ . Since g(α, β +1)
is finite, there exists α1 and e1 ∈ (Pα1+1 ∩ Pα) \ Pα+1 such that g(α, β + 1) =
g(α1, β) + w(e1). By induction, g(α1, β) is equal to the weight of a multicut
of cardinality β which separates exactly the α1 first source-sink pairs. If we
add the edge e1 to this multicut, we get a multicut of cardinality β + 1 which
separates exactly the α first source-sink pairs and whose weight is equal to
g(α, β +1). Let C be an optimal multicut of cardinality β +1 which separates
exactly the α first source-sink pairs. Since C is optimal, there is exactly one
edge e of Pα which belongs to C. Let α′ be the number of source-sink pairs
separated by C\{e}. By induction, g(α′, β) ≤ w(C\{e}) and from Definition

13

8, we have g(α, β + 1) ≤ g(α′, β) + w(e). So:

g(α, β + 1) ≤ g(α′, β) + w(e) ≤ w(C\{e}) + w(e) = w(C)

Thus, since C is minimum, we have g(α, β + 1) = w(C). 2

This implies:

Corollary 10 The weight of a minimal multicut of cardinality at most p is
equal to minβ∈{1,...,p} g(k, β).

In practice, the algorithm is divided into two parts:

• The first part is a preprocessing step: for each α ∈ {1, . . . , k} and for each
α′ ∈ {0, . . . , α − 1}, we calculate c(α′, α) by looking for the edge of lowest
weight in the set (Pα′+1 ∩ Pα) \ Pα+1.

• The second part is the computation of all the values of g by using the result
of the preprocessing step.

The complexity of the first step is O(mk2) since we consider k(k + 1)/2 =
O(k2) pairs for (α′, α). In the second step, it takes O(k) time to compute each
value of g and we have to compute O(pk) values of g. Then, the second step
takes O(pk2) time. Since p = O(m), the global complexity of the algorithm is
O(mk2) + O(pk2) = O(mk2).

Moreover, this algorithm can easily be extended to cycles and circuits.
Let G = (V, E) be a cycle, (s1, t1), . . . , (sk, tk) be k source-sink pairs and p be
a given value. For each pair (si, ti) (i ∈ {1, . . . , k}), there are two paths Pi and
P ′

i connecting si to ti and we assume that the length |Pi| of Pi is less than or
equal to |P ′

i |. Let imin be such that |Pimin
| = mini∈{1,...,k} |Pi|.

The algorithm for cycles consists in deleting successively each edge of Pimin

and solving the resulting instance (whose graph is now a path and in which
we look for a minimum multicut of cardinality at most p− 1). At the end, we
keep the best solution among the |Pimin

| computed solutions. The complexity
of this algorithm is O(|Pimin

|(m− 1)k2) = O(m2k2). The algorithm is similar
for circuits (in this case, there is exactly one path Pi between si and ti for
each i ∈ {1, . . . , k}).

14

4 Complexity results for the multicriteria version of the multicut
problem

We now consider the problem R-CriMultiCut which, given a graph G =
(V, E), R weight functions w1, . . . , wR defined on the edges (arcs) of G and R
bounds B1, . . . , Br (one for each criterion), consists in finding a multicut C
such that wr(C) ≤ Br ∀r ∈ {1, . . . , R}.

Since the decision problem associated to MinMultiCutCard is a particular
case of 2-CriMultiCut, we obtain from Theorem 7 that 2-CriMultiCut
is strongly NP-complete in directed stars. However, what is the complexity of
R-CriMultiCut in directed paths and circuits (MinMultiCutCard being
polynomial in these cases)?

Theorem 11 2-CriMultiCut is NP-complete in paths.

PROOF. We use a reduction from 2-CriCut in K2,d, where s and t are the
two vertices of degree greater than two (see Theorem 2). Let I be an instance
of this problem, given by a bipartite graph G = (V1, V2, E) with V1 = {s, t}
and |V2| = d, two weight functions w1 and w2 defined on the edges of G,
and two integers B1 and B2. There are exactly d paths P1, . . . , Pd of length 2
connecting s to t: let ei

1 and ei
2 be the edges of Pi, i ∈ {1, . . . , d}.

We construct an instance I ′ of 2-CriMultiCut as follows (see Figure 7). We
consider a path G′ with 2d edges e

′1
1 , e

′1
2 , . . . , e

′d
1 , e

′d
2 . Let w′

1 and w′
2 be two

weight functions defined on the edges of G′ such that, for each i ∈ {1, . . . , d},
w′

1(e
′i
1) = w1(e

i
1), w′

2(e
′i
1) = w2(e

i
1), w′

1(e
′i
2) = w1(e

i
2) and w′

2(e
′i
2) = w2(e

i
2). We

add d source-sink pairs such that, for each i ∈ {1, . . . , d}, the path connecting
si to ti is composed by e

′i
1 and e

′i
2 .

A set of edges C (resp. C ′) is a cut for I (resp. a multicut for I ′) if and only
if, for each i ∈ {1, . . . , d}, ei

1 ∈ C or ei
2 ∈ C (resp. e

′i
1 ∈ C ′ or e

′i
2 ∈ C ′). Hence,

there exists a cut C for I such that w1(C) ≤ B1 and w2(C) ≤ B2 if and only
if there exists a multicut C ′ for I ′ such that w′

1(C
′) ≤ B1 and w′

2(C
′) ≤ B2.

Indeed, simply define C and C ′ as follows: for each i ∈ {1, . . . , d}, for each
j ∈ {1, 2}, ei

j ∈ C if and only if e
′i
j ∈ C ′. 2

When R is not bounded, we have:

Theorem 12 R-CriMultiCut is strongly NP-complete in paths.

PROOF. We use a reduction from 2d-CriCut in H3d,d (see Theorem 3). Let

15

s

1

t

d

t

d-1

s

d

s

2

t

1

e
'
1
 e
'
2
 e
'
2
e
'
1

s
 t

e
1
 e
2

e
1
 e
2

e
1
 e
2

1

1

1

2
 2

d
 d

d
1
 d

Figure 7. Transformation of an instance of 2-CriCut into an instance of 2-Cri-
MultiCut

I be an instance of this problem, where s and t are the two vertices of degree
greater than two. Let w1, . . . , w2d be the 2d weight functions defined on the
edges of H3d,d and let B1, . . . , B2d be 2d given integers. There are exactly 3d
paths P1, . . . , P3d of length d connecting s to t: let ei

1, . . . , e
i
d be the edges of

Pi, i ∈ {1, . . . , 3d}.

We construct an instance I ′ of 2d-CriMultiCut as follows (see Figure 8). We
consider a path G′ with 3d2 edges e

′1
1 , . . . , e

′1
d , . . . , e

′3d
1 , . . . , e

′3d
d . Let w′

1, . . . , w
′
2d

be 2d weight functions defined on the edges of G′ such that, for each i ∈
{1, . . . , 3d}, for each j ∈ {1, . . . , d} and for each k ∈ {1, . . . , 2d} w′

k(e
′i
j) =

wk(e
i
j). We add 3d source-sink pairs such that, for each i ∈ {1, . . . , 3d}, the

path connecting si to ti is composed by e
′i
1 , . . . , e

′i
d .

A set of edges C (resp. C ′) is a cut for I (resp. a multicut for I ′) if and
only if, for each i ∈ {1, . . . , 3d} there exists j ∈ {1, . . . , d} such that ei

j ∈ C

(resp. e
′i
j ∈ C ′). Hence, there exists a cut C for I such that wk(C) ≤ Bk for

each k ∈ {1, . . . , 2d} if and only if there exists a multicut C ′ for I ′ such that
w′

k(C
′) ≤ Bk for each k ∈ {1, . . . , 2d}. Indeed, simply define C and C ′ as

follows: for each i ∈ {1, . . . , 3d}, for each j ∈ {1, . . . , d}, ei
j ∈ C if and only if

e
′i
j ∈ C ′. 2

Besides, for R-CriMultiCut, we can easily obtain an instance in a cycle
from an instance in a path by adding a source-sink pair, whose source is on
one of the extremities of the path and the sink on the other extremity, and by

16

s
 t

1
e
1

e
1

2

e
3d

1

e
3d

2

e

1

d

e
3d

d

s

1

t

3d

t

1

s

2
 s

3d

t

3d
-1

e'
1
 e'
d
 e'
1
 e'
d

1
1
 3d
3d

Figure 8. Transformation of an instance of R-CriCut into an instance of R-Cri-
MultiCut

adding an edge connecting the two extremities. So:

Corollary 13 In cycles, 2-CriMultiCut is NP-complete and R-CriMultiCut
is strongly NP-complete.

Remark When R is fixed and G is a path, R-CriMultiCut can be solved
by a pseudo-polynomial algorithm.

Let us present a sketch of such an algorithm. Let h be the optimization func-
tion defined as follows:

Let α ∈ {1, . . . , k} and βi ≤ Bi (2 ≤ i ≤ R). h(0, 0, . . . , 0) = 0
If either (α = 0 and there exists βi 6= 0) or (there exists βi < 0) then h(α, β2, . . . , βR) = ∞ .
In the general case:
if there exists α′ ∈ {0, . . . , α− 1} such that (Pα′+1 ∩ Pα) \ Pα+1 6= ∅ then:
h(α, β2, . . . , βR) =

min
0≤α′≤α−1, e∈(Pα′+1∩Pα)\Pα+1

{h(α′, β2 − w2(e), . . . , βR − wR(e)) + w1(e)}
else h(α, β2, . . . , βR) = ∞

Let α ∈ {1, . . . , k}, βi ∈ {0, . . . , Bi} (2 ≤ i ≤ R). h(α, β2, . . . , βR) is equal to
the minimal value, with respect to the first criterion, of a multicut C which
separates exactly the α first source-sink pairs and such that wi(C) = βi ∀i ∈
{2, . . . , R}.

17

Then h(α, β2, . . . , βR) = ∞ if and only if such a multicut does not exist.

In fact, the instance has a solution if and only if there exist β2, . . . , βR such
that h(k, β2, . . . , βR) ≤ B1 .
In practice, we compute all the values of h, for α from 1 to k. For given values
α, β2, . . . , βR, h(α, β2, . . . , βR) is computed in O(km) since we look for the
minimum among O(km) values. Besides, we have to compute O(kB2 . . . BR)
values of h, so the global complexity of the algorithm is O(mk2B2 . . . BR).

Note that if we consider R = 2 and B2 = p, the complexity is worse than
the one obtained for MinMultiCutCard. The main reason is the use of
the auxiliary function c, specific to MinMultiCutCard, which allows to
compute the values of g more efficiently.

Finally, one can remark that B1 does not contribute to the complexity of
the algorithm. Thus, it is better to choose B1 such that B1 ≥ Bi (for all
i ∈ {2, . . . , R}). If we consider the case where R is bounded and Bi = O(mγ)
for each i ∈ {2, . . . , R} and for fixed γ then the problem becomes polynomial.

5 Conclusion

The main purpose of this paper was to study the complexity of cardinality
constrained and multicriteria (multi)cut problems in graph topologies where
the (multi)cut problem is polynomial.

We have obtained some results about the (strong) NP-hardness of these
problems and we have designed dynamic programming algorithms for the
(pseudo)polynomial cases. In particular, we have shown that MinCutCard,
whose complexity was open until now, is strongly NP-hard.

However, there are still some cases to study: the complexity of MinMulti-
CutCard in rooted trees is unknown and it would be interesting to determine
the complexity of MinCutCard in particular graphs such as planar graphs.

Acknowledgments: We thank the two referees for their valuable remarks
and comments.

References

[1] A. Armon, U. Zwick. Multicriteria Global Minimum Cuts. Algorithmica
46(1) 15–26 (2006)

18

[2] M. Bruglieri, F. Maffioli, M. Ehrgott. Cardinality constrained minimum
cut problems: complexity and algorithms. Discrete Applied Mathematics
137 311–341 (2004)

[3] J. Chen, I.A. Kanj. Constrained minimum vertex cover in bipartite graphs:
complexity and parameterized algorithms. Journal of Computer and System
Sciences 67 833–847 (2003)

[4] M.-C. Costa, L. Létocart, F. Roupin. Minimal multicut and maximal inte-
ger multiflow: a survey. European Journal of Operational Research 162(1)
55–69 (2005)

[5] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal on Computing
23 864–894 (1994)

[6] M.R. Garey, D.S. Johnson. Computers and Intractability, a Guide to the
Theory of NP-completeness. ed. Freeman (1979)

[7] M.R. Garey, D.S. Johnson, L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science 1 237–267 (1976)

[8] N. Garg, V.V. Vazirani, M. Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees. Algorithmica 18 3–20 (1997)

[9] N. Garg, V.V. Vazirani, M. Yannakakis. Multiway cuts in node weighted
graphs. Journal of algorithms 50 49–61 (2004)

[10] D. König. Graphok és matrixok. Matematikai és Fizikai Lapok 38 116–
119 (1931)

[11] C.H. Papadimitriou, M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In Proceedings of the IEEE Symposium
on Foundations of Computer Science 86–92 (2000)

[12] A. Schrijver. Theory of Linear and Integer Programming. ed. Wiley (1986)

19

