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1 Introduction

1.1 Definitions

The maximum integer multiflow problem (MaxIMF) and the minimum mul-
ticut problem (MinMC) are difficult problems that arise, in particular, in
the field of telecommunications. For both problems, we are given an edge-
capacitated graph and a list of K pairs (source sk, sink tk) of terminal ver-
tices. Each pair (sk, tk) defines a net (or a commodity), sk and tk being mates.
MaxIMF consists in maximizing the sum of the integral flows of each com-
modity (from sk to tk), subject to capacity and flow conservation requirements.
MinMC is to find a minimum weight set of edges whose removal separates
sk from tk for each one of the K nets (then, each net (sk, tk) is said to be cut
or disconnected). These problems can be formulated as two integer linear pro-
grams whose continuous relaxations are dual [4; 11]. The maximum fractional
multiflow problem corresponds to the relaxation of MaxIMF where the flows
are allowed to be fractional. Moreover, when all the edges have unit capacities,
MaxIMF turns into the maximum edge disjoint paths problem (MaxEDP).
A decision problem related to MaxEDP is the edge disjoint paths problem
(EDP): given K nets in a graph, decide whether all can be routed along edge-
disjoint paths.

In this paper, we study these problems in particular graphs, the rectilinear
grids with uniform capacities. We shall denote by MaxIMFUG and Min-
MCUG, respectively, the problems MaxIMF and MinMC defined in these
graphs. For both problems, an instance is then given by a triple (G,N , c)
where G = (V,E) is an undirected rectilinear grid with vertex set V and edge
set E, whose edges are valued by a unique integer c, and N is a list of K
nets. Moreover, as in [6; 18], we shall assume in Sections 3, 4, 5 and 6 of this
paper, that the uniform grids we study are augmented, i.e., that each terminal
is linked to the grid by a unique edge valued by c, unless we explicitly mention
it. This can be assumed without loss of generality, since a uniform grid that
does not satisfy this property can easily be transformed into an equivalent one
that does. For each net (sk, tk), let sk lie on the vertex vk, which is adjacent
to deg(vk) ∈ {2, 3, 4} vertices. Let v′k and deg(v′k) be defined symmetrically
for tk. Then, replace sk and tk by min(deg(vk), deg(v′k)) terminals linked by
a unique edge valued by c to vk and v′k respectively, and replace (sk, tk) by
min(deg(vk), deg(v′k)) new nets defined on these 2 ·min(deg(vk), deg(v′k)) new
terminals.
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1.2 Related work

MaxIMF and MinMC have been studied in unrestricted graphs and in sev-
eral types of planar graphs where they mostly remain NP-hard [11; 5], and
Cǎlinescu et al. show that MinMC remains NP-hard even in bounded-degree
planar graphs [2]. More references and results concerning these problems can
be found in [4].

Now, we turn to the problem MaxEDP. In [3], Chan and Chin give algo-
rithms to find the maximum number of disjoint paths in grids when any vertex
from a given source set can be paired with any vertex from a given sink set.
Kleinberg and Tardos give in [12] a constant-factor approximation algorithm
for MaxEDP in graphs they call densely embedded and nearly eulerian, and
which generalize the rectilinear grids. Further results concerning MaxEDP
can be found in [13].

Eventually, let us look at the decision problem EDP: this problem has been
widely studied in grid graphs because of its interest in the design of VLSI
circuits. An extensive survey on EDP can be found in [9], but we only detail
some results here. Formann et al. study a special case in which short paths
are required and give a polynomial algorithm to solve it [6], but the general
problem is known to be NP-complete in grids [14]. Moreover, Marx shows
that it remains NP-complete even in eulerian grids [15].

Nevertheless, Okamura and Seymour provide a good characterization for this
problem when the graph is planar and eulerian, and the terminals all lie on the
outer face [16]. In [7; 9], Frank gives necessary and sufficient conditions for the
existence of K edge disjoint paths in grids where the terminals are distinct and
lie on the uppermost and lowermost lines. We detail these conditions in Section
3 and use them as a starting point for solving the associated optimization
problem.

1.3 Two-sided grids

In Sections 3, 4, 5 and 6, we focus on optimization problems associated with
EDP, the decision problem studied by Frank in [7; 9]. He assumes that the grids
are two-sided, i.e., that all the terminals lie on the uppermost and lowermost
lines and are distinct. As mentioned in Section 1.1, EDP consists in deciding
whether it is possible to route all the nets using edge disjoint paths. The
corresponding optimization problem consists in maximizing the number of nets
linked by edge disjoint paths. Hence, for each net (sk, tk), at most one path
having sk and tk as endpoints is allowed. So, this maximization problem is
equivalent to the problem MaxEDP defined on a grid where each source sk
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(resp. sink tk) is linked to the rest of the grid by a unique edge ek (resp. e′k). The
assumptions made by Frank are then equivalent to saying that each terminal
is linked to a vertex of the uppermost or lowermost line and that at most
one terminal can be linked to a given vertex. We also refer to this case as the
two-sided one. In Section 5, we generalize our results concerning MaxEDP,
and so we assume that all the edges, including ek and e′k for k ∈ {1, . . . , K},
are valued by c ≥ 2.

1.4 Results and organization of the paper

First, we prove that MinMCUG isNP-hard when several terminals can be on
the same vertex, even if all the terminals lie on the uppermost and lowermost
lines. Moreover, the result extends to augmented grids.

The main contribution of the rest of the paper is to use Frank’s results to
solve MaxIMFUG and MinMCUG in the two-sided case. The basis of our
approach is the fact that solving MaxEDP in the two-sided case is equivalent
to removing the minimum number of nets in order to fulfill Frank’s conditions.

We show how to find efficiently an optimal solution for MaxEDP by se-
lecting the nets to be removed via linear programming. We also prove that
MinMCUG is polynomial-time solvable in the two-sided case, since a feasible
solution whose value is proved to be equal to the maximum fractional multi-
flow can be obtained by solving a continuous linear program. Then, we use the
results for MaxEDP and MinMCUG to solve MaxIMFUG in polynomial
time in the two-sided case: we study different cases and settle each one of
them by showing how the theorem of Okamura and Seymour [16] can be ap-
plied. As a by-product, the gap between the optimal values of MaxIMFUG
and MinMCUG is shown to be at most one. Eventually, for the two-sided
case, we describe two specific combinatorial algorithms solving MinMCUG
and MaxIMFUG in polynomial-time, thus enabling us to avoid solving linear
programs.

The paper is organized as follows. In Section 2, we give theNP-hardness proof
for MinMCUG in general grids. In Sections 3 and 4, we solve MaxEDP and
MinMCUG, respectively, by using linear programming. In Section 5, we solve
MaxIMFUG. Finally, in Section 6, we give the two combinatorial algorithms
solving MaxIMFUG and MinMCUG.

In the following, given a problem or a linear program P, we abuse notation
and write “Opt(P)” for both “the optimal value of a given instance of P” and
“the optimal values of all the instances of P”. It will be clear from the context
which one we mean, and, in the first case, which instance is considered.
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Moreover, for a better understanding of the general frame of the paper, the
longest and most technical proofs are given in appendix.

2 Complexity of MinMCUG

In this section, we show that MinMCUG is NP-hard if several terminals can
be located on the same vertex. Moreover, this holds even if all the terminals
lie on the uppermost and lowermost lines. From Section 1.1, this also holds in
augmented grids where the terminals are linked to vertices of the uppermost
and lowermost lines, if we allow that several terminals can be linked to the
same vertex.

MinMC is shown to be NP-hard in unweighted stars in [11]: by replacing the
center of the star by a grid of size p (p being the number of leaves), we obtain
a reduction showing that MinMC is NP-hard in unweighted grids, if every
terminal is linked to the grid by an edge and several terminals can lie on the
same vertex. However, this grid is not an augmented grid as defined in Section
1.1, and adapting the proof to this case does not seem quite straightforward.
We give a new proof, which has been inspired by the proof in [11] but also works
for the non augmented grids, by reducing from the NP-complete problem
Vertex Cover [10]:

Input: A graph H = (V,E), an integer S ≤ |V |.

Question: Does H admit a vertex cover of size at most S?

Let V be an instance of Vertex Cover. We define from V an instance
M of MCUG, the decision problem associated with MinMCUG. Let V =
{u1, . . . , un} and c = 1. The grid (G,N ) has 2n − 1 vertical lines and n + 2
horizontal lines (it is not an augmented grid). We denote by gij the vertex
being on the ith horizontal line and the jth vertical line of the grid. We define
the nets (g1

j , g
1
j+1), j ∈ {1, . . . , 2n − 2}, and (g1

2j, g
n+2
2j ), j ∈ {1, . . . , n − 1}.

Note that the cheapest way to cut these nets is to remove the edges (g1
j , g

1
j+1),

j ∈ {1, . . . , 2n− 2}, and (g1
2j, g

2
2j), j ∈ {1, . . . , n− 1}; this leaves a grid where

each terminal is linked to the rest of the grid by a single edge, with several
terminals lying on the same vertex. Moreover, for each edge (ui, uj) ∈ E, we
define the net (g1

2i−1, g
1
2j−1).

Lemma 1 Given S ≤ n, there exists a vertex cover Ĉ of size at most S in V
if and only if M admits a multicut C̄ of value at most 3(n− 1) + S.
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Proof. First, we show the part “only if” (i.e., necessity). Assume we are given
a vertex cover Ĉ of size |Ĉ| ≤ S. We select in the cut C̄ all the edges (g1

j , g
1
j+1),

j ∈ {1, . . . , 2n−2}, and (g1
2j, g

2
2j), j ∈ {1, . . . , n−1}. Moreover, for each vertex

uj in Ĉ, we select in C̄ the edge (g1
2j−1, g

2
2j−1). We obtain a set of edges of size

3(n− 1) + |Ĉ| ≤ 3(n− 1) + S.

To see that C̄ is a multicut, first note that all the nets (g1
j , g

1
j+1), j ∈

{1, . . . , 2n− 2}, and (g1
2j, g

n+2
2j ), j ∈ {1, . . . , n− 1}, are disconnected. It only

remains to show that all the nets (g1
2i−1, g

1
2j−1), (i, j) such that (ui, uj) ∈ E,

are cut. Assume there exists a non cut one, say (g1
2a−1, g

1
2b−1). Then, neither

(g1
2a−1, g

2
2a−1) nor (g1

2b−1, g
2
2b−1) is in the cut. Thus, by the construction of C̄,

neither ua nor ub is in Ĉ, although (ua, ub) ∈ E since the net (g1
2a−1, g

1
2b−1)

exists: a contradiction. Necessity follows.

Now, we show the part “if” (i.e., sufficiency). Assume we are given a multicut
C̄ of size 3(n − 1) + S ′, with S ′ ≤ S ≤ n and S ′ ∈ Z. Every edge (g1

j , g
1
j+1),

j ∈ {1, . . . , 2n − 2}, is in C̄ since its two endpoints define a net. Moreover,
since all the nets (g1

2j, g
n+2
2j ), j ∈ {1, . . . , n− 1}, are cut, C̄ contains a vertical

edge of the 2jth vertical line, for j ∈ {1, . . . , n−1}. So, there exists a subset of
C̄ containing 3(n− 1) such edges: thus, in fact, |C̄| ≥ 3(n− 1) and S ′ ≥ 0. Let
C̄S′ be the set of edges belonging to C̄ but not included in the subset described
above: we have |C̄S′ | = S ′.

Let (Ḡ,N ) be the graph obtained from (G,N ) by removing all the edges in
C̄. We can partition the vertices of the type g1

2j−1 into two sets: the first one,
F , is the set of vertices of this type that can be linked by a path in (Ḡ,N ) to
gn+2
j for some j (i.e., to a vertex of the n+ 2nd horizontal line of (G,N )); the

second, F̄ , contains all the other vertices of this type.

Now, we show that all the vertices in F are in the same connected component
of (Ḡ,N ), i.e., that given g1

2a−1 ∈ F and g1
2b−1 ∈ F , there exists a path from

g1
2a−1 to g1

2b−1 in (Ḡ,N ). Let pa (resp. pb) be a path in (Ḡ,N ) from g1
2a−1 (resp.

g1
2b−1) to a vertex of the n+2nd horizontal line of (G,N ). If pa and pb intersect

at some vertex or if they can be linked by a path containing only horizontal
edges, we are done. Otherwise, C̄ contains an edge from the jth horizontal line
of (G,N ), for j ∈ {2, . . . , n+ 2}. More precisely, these n+ 1 horizontal edges
belong to C̄S′ , and thus |C̄S′| ≥ n+ 1: this contradicts S ′ ≤ S ≤ n.

As a consequence, it does not exist any net (g1
2a−1, g

1
2b−1) ∈ N with g1

2a−1 ∈ F
and g1

2b−1 ∈ F , since otherwise C̄ is not a multicut: hence, each net has at
least one terminal in F̄ .

Moreover, for every j such that g1
2j−1 ∈ F̄ (i.e., g1

2j−1 is a terminal vertex
separated from all the vertices of the n+ 2nd horizontal line of (G,N )), there
obviously exists a vertical edge of the 2j − 1st vertical line that is in C̄ (and,
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more precisely, in C̄S′). This implies that |F̄ | ≤ |C̄S′| (= S ′).

So, we can construct a vertex cover Ĉ by selecting every vertex uj ∈ V such

that g1
2j−1 ∈ F̄ . Ĉ is actually a vertex cover, since, as we showed previously,

each net (i.e., each edge in V ) has at least one endpoint in F̄ . |Ĉ| = |F̄ | ≤
S ′ ≤ S, so Lemma 1 follows. 2

Since obviously MCUG is in NP and the above reduction is made in poly-
nomial time, Lemma 1 implies:

Theorem 2 MCUG is NP-complete.

Corollary 3 MinMCUG is NP-hard.

On the one hand, Corollary 3 shows that MinMCUG is NP-hard in aug-
mented grids where the terminals are linked to vertices of the uppermost and
lowermost lines, if several terminals can be linked to the same vertex (in fact,
even if only 5 terminals can be linked to the same vertex, since Vertex
Cover remains NP-hard in graphs where no vertex has more than 3 neigh-
bors). On the other hand, we show in Sections 3, 4 and 5 that both MinMCUG
and MaxIMFUG are polynomial-time solvable in two-sided augmented grids
(i.e., if at most one terminal can be linked to each vertex).

3 Solving MaxEDP

In the following of the paper, we consider a two-sided uniform grid (G,N , c)
((G,N ) for short). We begin this section with some definitions. To simplify
the notations, we assume that we add two “border” lines to the grid (one
on the top, the other on the bottom), that contain terminals (as shown in
Figure 2 in Section 4.2). We call these two lines the uppermost and lowermost
lines respectively. We denote by m the number of horizontal lines (or simply
lines), including neither the uppermost nor the lowermost lines, and by n the
number of vertical lines (or columns) of the grid (recall that there are at most
two terminals for each column, and so n ≥ K). A full grid is a grid in which
all the vertices of the uppermost and lowermost lines are terminal vertices: in
this case, K = n (examples are given in Figures 1 and 2). A vertex which is
not a terminal is called free. Given a terminal z, we denote respectively by
lin(z) and col(z) the border line of z (i.e., uppermost or lowermost) and the
column of the vertex linked to z (or simply column of z), the first and the nth

columns being respectively the leftmost and rightmost ones. A net (sk, tk) is
called straight if col(sk) = col(tk). Given a non straight net (sk, tk), sk (resp.
tk) is the left terminal if col(sk) < col(tk) (resp. col(sk) > col(tk)), the right
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terminal otherwise. We say that a net l is strictly R-longer than a net l′ if and
only if the right terminal of l is on the right of the right terminal of l′ (we will
say only R-longer if we allow the right terminals to lie on the same column).
We define a (strictly) L-longer net in a similar way, by replacing right by left :
for instance, in Figure 1, the net (s10, t10) is R-longer and strictly L-longer
than the net (s9, t9). A vertical (resp. horizontal) strip is the region (and the
edges) between two consecutive vertical (resp. horizontal) lines: vj (resp. hj)
will denote the jth vertical (resp. horizontal) strip, the first being the leftmost
(resp. uppermost) one. Note that vj is between the jth and the j+1th columns.
The density [6] (or congestion [7]) dj of a vertical strip vj is the number of
nets “crossing” it:

dj = |{(sk, tk) s. t. col(sk) ≤ j < col(tk) or col(tk) ≤ j < col(sk)}|

A vertical strip vj is saturated if dj = m. The density of the grid is d =
max

j∈{1,...,n−1}
{dj} (see Figure 1) and we define d0 = 0. Let nLj (resp. nRj ) be the

number of nets whose left (resp. right) terminal is on the jth column. Then,
we have:

∀j ∈ {0, . . . , n− 2}, dj+1 = dj + nLj+1 − nRj+1 (1)

Furthermore

∀j ∈ {1, . . . , n− 1}, nLj + nRj ≤ 2 (2)

Let nSj ∈ {0, 1} be the number of straight nets on the jth column. A full grid
has the property that dj is even for all j, since for each j ∈ {1, . . . , n− 1}, (2)
becomes nLj + nRj + 2nSj = 2 and thus (1) implies:

∀j ∈ {0, . . . , n− 2}, dj+1 ∈ {dj − 2, dj, dj + 2} (3)

Recall that, in two-sided grids, MaxEDP consists in linking by edge disjoint
paths as many pairs (sk, tk) as possible.

If all the nets are straight, then they all can be routed vertically. The cor-
responding multicut is trivially obtained by cutting each net on its source,
i.e., by selecting every ek, k ∈ {1, . . . , K}, in the cut: in that case, we have
Opt(MaxEDP) = Opt(MinMCUG) = K (in the case where c ≥ 2, we have
Opt(MaxIMFUG) = Opt(MinMCUG) = Kc).

Otherwise, Frank proves the following [7; 9]:

Theorem 4 (Frank) Let (G,N ) be a two-sided rectilinear grid with m lines
and density d. Assume there is at least one non straight net. Then, all the nets
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can be linked by edge disjoint paths if and only if (G,N ) satisfies:

either m > d and there is a free vertex on a border line

or m ≥ d (4)

and either there exists a one-sided net (5)

or there exists an extremal vertex (6)

or there are two non separated vertices (7)

where a one-sided net is a net whose terminals are both on the same border
line, an extremal vertex is a free vertex of the uppermost or lowermost line
which is either on the left of the leftmost saturated vertical strip or on the
right of the rightmost saturated vertical strip, and two non separated vertices
are two free vertices both located either on the uppermost or on the lowermost
line, and which are not separated by a saturated vertical strip.

Proof (Sketch) In fact, Frank proves in [9] that, in the two-sided case, a
sufficient condition is that the grid satisfies (4) and (5). (4) is necessary, since
if m < d there are m edge disjoint paths (one for each horizontal edge) that
can cross the vertical strip having the greatest density, while d paths need to
cross it. Moreover, it is shown in [7] that, in bipartite grids (i.e., in two-sided
grids where (5) does not hold), the second part of Theorem 4 becomes if and
only if the grid satisfies (4) and either (6) or (7). 2

In the following of the paper, we assume that there is at least one non straight
net. Note that either (6) holds or it can be fulfilled simply by removing a single
net (a net whose source or sink is linked to a corner of the grid, for instance).
Using Theorem 4 we get:

Proposition 5 If (G,N ) satisfies m ≥ d then

• Opt(MaxEDP) = K if m > d and there exists a non terminal vertex on
the uppermost or lowermost line;
• Opt(MaxEDP) = K if (5), (6) or (7) is satisfied;
• Opt(MaxEDP) = K − 1 otherwise.

Proposition 5 settles the case where (4) holds. Also note that (5), (6) and (7)
can be checked in O(n).

In the following of Section 3, we assume that (G,N ) satisfies m < d. Our
approach is to remove enough nets in order to obtain a final grid that satis-
fies (4) (we do not consider other necessary conditions for the moment). An
equivalent formulation of the problem is to select from N as many nets as
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possible without exceeding a density equal to m (see constraints (8) below).
This problem can be modelled as follows:

max
K∑
k=1

xk

(INP) s. t.
∑

k s. t. lk crosses vj

xk ≤ m ∀j ∈ {1, . . . , n− 1} (8)

xk ∈ {0, 1} ∀k ∈ {1, . . . , K} (9)

where xk is equal to 1 iff the net lk = (sk, tk) is selected. (CNP ), the continuous
relaxation of (INP ), is obtained by replacing constraints (9) by

xk ≤ 1, ∀k ∈ {1, . . . , K} (10)

and xk ≥ 0, ∀k ∈ {1, . . . , K}.

Lemma 6 M, the matrix defined by the left part of constraints (8), is totally
unimodular.

Proof. The vertical strips crossed by each net being consecutive, there is a
single sequence of consecutive 1’s on each column of M. Then, M is an interval
matrix [17, p. 279]: hence, M is totally unimodular. 2

As a consequence, we know that, m being integral, any basic solution for
(CNP ) is integer: thus, (INP ) is polynomial-time solvable. In fact, we shall
see in Section 6 that (INP ) can be solved as a CallControl problem on a
chain by an efficient combinatorial algorithm [1].

Given an arbitrary optimal solution x∗ for (INP ), let N− be the set of nets
selected in x∗, i.e., the nets lk such that x∗k = 1. We call a net in N removed
if it does not belong to N−. (G,N−) has a density equal to m, since in any
optimal solution for (INP ) at least one of the constraints (8) is saturated.
Let K∗ be the number of nets in (G,N−): we have K∗ = Opt(INP ). (G,N−)
satisfies (4), and we still have that either (6) holds or it is fulfilled by removing
a single net, so

Opt(MaxEDP) ∈ {K∗ − 1, K∗} (11)

But then, can the K∗ nets selected by (INP ) be linked by edge disjoint paths?
Equivalently, does (INP ) always admit a solution that satisfies (5), (6) or (7)?
Figure 1 shows an example where K∗ = 8, but Opt(MaxEDP) = K∗−1 = 7:
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Figure 1. An instance with only K∗ − 1 edge disjoint paths (in dashed lines).

the only feasible solution with 8 selected nets is obtained by removing (s3, t3)
and (s8, t8), but it satisfies none of the three conditions (5), (6) and (7).

In general, it may exist several optimal solutions for (INP ), and we have to
determine whether one of them satisfies (5), (6) or (7). Let us first show that
the situation is much simpler when m is odd.

Proposition 7 If m is odd, then any grid satisfying m = d satisfies (6).

Proof. Assume (6) is not satisfied. Then, any vertex of the uppermost and
lowermost lines located on the left (resp. the right) of the leftmost vL (resp.
the rightmost vR) saturated vertical strip is a terminal. Since in a full grid
all the densities are even (see (3)), the same is true for the two subgraphs
respectively on the left of vL and on the right of vR. Hence, dL and dR, the
respective densities of vL and vR, are even. But, since vL and vR are saturated,
dL = dR = m. m being odd, we have a contradiction. 2

Since (G,N−) satisfies m = d, Proposition 7 immediately implies:

Corollary 8 We have Opt(MaxEDP) = K∗ whenever m is odd and (G,N )
satisfies m < d.

We still have to deal with the general case. We show the following:

Theorem 9 When the grid (G,N ) satisfies m < d, an optimal solution for
MaxEDP can be found by solving O(n2) continuous linear programs.
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Proof. In this proof, we do not make any distinction between an optimal
solution x∗ for (INP ) and the grid obtained by removing all the nets not
selected in this solution (i.e., all the nets lk such that x∗k = 0). If m is odd,
then from Proposition 7 solving a single linear program suffices.

Otherwise, we first look for a solution satisfying (6). Let vL (resp. vR) be the
leftmost (resp. rightmost) saturated vertical strip in (G,N ), and let lL∗ (resp.
lR∗) be the R-longest (resp. L-longest) net crossing vL (resp. vR). Then, there
exists an optimal solution for (INP ) that satisfies (6) if and only if, lL∗ or lR∗
being removed (i.e., xL∗ = 0 or xR∗ = 0), (INP ) still has an optimal value of
K∗. Indeed, sufficiency is easy, and necessity comes from the fact that, given
a solution that satisfies (6), one can replace a removed net whose left terminal
is on the left of vL (resp. whose right terminal is on the right of vR) by lL∗
(resp. by lR∗), and obtain a feasible solution of the same value. So, we only
need to solve two linear programs to know whether there exists an optimal
solution for (INP ) satisfying (6).

If such a solution does not exist, we then look for a solution satisfying (7).
Given two vertices u1 and u2 both located on the same border line (i.e.,
lin(u1) = lin(u2)), if u1 (resp. u2) is a terminal, we denote by lu1 (resp. lu2) the
net it belongs to; otherwise we say that lu1 (resp. lu2) is undefined. Assume
without loss of generality that col(u1) < col(u2). Let (8)u1,u2 be the set of
constraints (8) where m is replaced by m−1 for j ∈ {col(u1), . . . , col(u2)−1}:
i.e., we have

∑
k s. t. lk crosses vj xk ≤ m− 1,∀j ∈ {col(u1), . . . , col(u2)− 1}, and∑

k s. t. lk crosses vj xk ≤ m,∀j ∈ {1, . . . , col(u1)− 1} ∪ {col(u2), . . . , n− 1}. Let
(INP (u1, u2)) be the linear program obtained from (INP ) by replacing (8) by
(8)u1,u2 . Constraints (8)u1,u2 guarantee that there is no saturated vertical strip
between u1 and u2. Moreover, for all (u1, u2), the matrix associated with the
left part of constraints (8)u1,u2 is still M. Obviously, there exists an optimal
solution for (INP ) satisfying (7) if, lu1 and lu2 being removed (or undefined),
Opt(INP (u1, u2)) = Opt(INP ) = K∗. The idea is then to solve (INP (u1, u2))
for each pair (u1, u2) such that u1 and u2 both lie on the same border line.
Note that we have to do it for both the uppermost and the lowermost lines.
So we need to solve at most O(n2) linear programs to decide whether (INP )
admits an optimal solution that satisfies (7) or not.

Eventually, using the above ideas, we can check if there is a solution satisfying
(5) by solving O(n) linear programs (indeed, there are only O(n) pairs (u1,
u2) to be considered). Therefore, we need to solve O(max(2, n, n2)) linear
programs to decide whether Opt(MaxEDP) is equal to K∗ or not. 2

We shall see in Section 6 that n = O(K), and thus, solving O(K2) linear
programs suffices. Eventually, once we have computed Opt(MaxEDP) and
decided which nets have to be routed, we can use the algorithms given in [7]
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or [18] to actually route the edge disjoint paths.

It can be noticed that (CNP ) is integral even for the weighted case, i.e.,
even if we assign a weight to each net and want to maximize the total weight
of the routed nets (let us denote by (WINP ) the corresponding generaliza-
tion of (INP )). It is then natural to try to generalize the results obtained for
MaxEDP to the corresponding Weighted MaxEDP problem (WMEDP). In
fact, whenever m is odd and m < d, we have Opt(WMEDP) = Opt(WINP )
(this generalizes Corollary 8), and, in all other cases (including m ≥ d),
WMEDP can be solved by using the algorithm given in Theorem 9. However,
note that, when looking for a solution satisfying (6), we must try all the nets
crossing vL or vR (and not only lL∗ and lR∗), but this does not increase the
running time in the worst case.

4 Solving MinMCUG

4.1 Preliminary results

In this section, we introduce several notions and results that will be useful in
Sections 4.2 and 5. First, we recall the definition of the well-known demand
multiflow problem. In this problem, we are given a supply graph G = (V,E)
and a demand graph H = (T,N ), whose vertices T ⊆ V are the terminals and
whose edges are the nets. Each edge e in E is valued by a capacity U(e) and
each edge (or net) l in N is valued by a demand D(l). The problem is to decide
whether it is possible to route all the demands. For notational convenience,
we shall use N instead of H = (T,N ) (T being implicit), and the expression
demand set instead of demand graph. Given a subset X ⊆ V , we define the cut
δG(X) (resp. δN (X)) as the set of edges (ui, uj) in E (resp. in N ) such that
ui ∈ X and uj ∈ V \X. For L ⊆ E and L′ ⊆ N , we define U(L) =

∑
l∈L U(l)

and D(L′) =
∑
l∈L′ D(l). Then, a necessary condition for the solvability is the

well-known cut condition:

∀X ⊆ V , U(δG(X)) ≥ D(δN (X))

A vertex v is odd if U(δG({v})) + D(δN ({v})) is odd. Furthermore, we say
that (G,N ) satisfies the eulerian condition iff it has no odd vertex, i.e.,

∀v ∈ V , U(δG({v})) +D(δN ({v})) is even (12)

Okamura and Seymour prove the following [16]:
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Theorem 10 (Okamura and Seymour) Let G = (V,E) be a planar supply
graph with demand set N . Let U and D be the capacity and demand functions
respectively. Assume that the terminal vertices are on the boundary of the outer
face of G. Then there exists a feasible fractional multiflow if and only if the cut
condition holds. If moreover U and D are integer-valued and (G,N ) satisfies
the eulerian condition, then there is an integer multiflow.

In the following, we assume that an instance I of the demand multiflow prob-
lem is given by I = (G,N , U,D) with G, N , U and D defined as above.

Let G = (V,E) be a two-sided grid and let I = (G,N , U,D) be an instance
of the demand multiflow problem. Recall that, for each net lk = (sk, tk), ek
and e′k are the edges adjacent to sk and tk respectively. Obviously, a necessary
condition for the solvability of I is that min(U(ek), U(e′k)) ≥ D((sk, tk)) for
each k ∈ {1, . . . , K}. So, assume it is satisfied: then, solving the demand
multiflow problem on (G,N ) is equivalent to solving it on the grid obtained
from (G,N ) by contracting every ek and every e′k into a single vertex (and
whose set of edges is thus E ′ = E \ ⋃

k∈{1,...,K}{ek, e′k}). For this problem, we
can then assume that (G,N ) is not an augmented grid. We will use Theorem
10 in Sections 4.2 and 5. First, we need the following result concerning the cut
condition in two-sided non augmented grids.

Lemma 11 Let (G,N ) be a two-sided non augmented grid where
(a) all the horizontal edges have the same capacity Uh,
(b) all the vertical edges have the same capacity Uv ≥ max

l∈N
D(l), except the

ones located on the leftmost and rightmost columns, whose capacities are at
most Uv,
(c) each horizontal strip hi satisfies

∑
e is an edge of hi U(e) ≥ ∑K

k=1D(lk),
(d) either Uh = Uv or each vertical edge on the leftmost and rightmost columns
is also valued by Uv.

Then the cut condition is satisfied by any X ⊆ V if and only if it is satisfied
by any X ⊆ V such that δG(X) is a vertical strip of the grid.

The proof of Lemma 11 is given in Appendix A. In the following, we shall see
that the grids we need to consider always satisfy the assumptions of Lemma
11, and thus Theorem 10 will apply if and only if the cut condition holds for
each vertical strip, i.e., for Uh = 1, if and only if m ≥ d.

4.2 Solving MinMCUG by linear programming

First recall that, since we assume that all the edges are valued by the same
integer, solving MinMCUG is equivalent to finding a minimum set of edges
whose removal separates sk from tk for each net (so, in the following of Section
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4.2, we will assume that c = 1, unless a different value is explicitly mentioned).
We solve MinMCUG in the two-sided case by using an approach based on a
duality relationship. We start by proposing a linear programming formulation,
and we show how this provides a feasible solution for MinMCUG. Then, we
prove that there exists a fractional multicommodity flow having the same
value as this particular solution.

Let yj, j ∈ {1, . . . , n − 1}, be the dual variables associated with constraints
(8) and let wk, k ∈ {1, . . . , K}, be the ones associated with constraints (10).
The dual linear program of (CNP ) is given by:

min
K∑
k=1

wk +m
n−1∑
j=1

yj

(CD) s. t. wk +
∑

j s. t. lk crosses vj

yj ≥ 1 ∀k ∈ {1, . . . , K} (13)

yj ≥ 0 ∀j ∈ {1, . . . , n− 1} (14)

wk ≥ 0 ∀k ∈ {1, . . . , K} (15)

Lemma 12 (CD) admits an optimal solution that defines a multicut.

Proof. Since the objective function of (CD) is to be minimized and has only
positive coefficients, then from constraints (13) any optimal solution satisfies
yj ≤ 1 for all j, and wk ≤ 1 for all k. From Lemma 6, the constraint matrix of
(CD) is totally unimodular. Thus, if we consider only basic solutions, we can
replace the constraints (14) and (15) by yj ∈ {0, 1} for all j and wk ∈ {0, 1}
for all k respectively, and get an integer program such that any of its solutions
defines a particular multicut C whose value is

∑K
k=1wk+m

∑n−1
j=1 yj, and whose

edges are given by (see Figure 2):

• wk = 1⇔ ek ∈ C;
• yj = 1⇔ vj is in C, i.e., all the edges of vj belong to C.

Figure 2. A cut given by (CD).

C is indeed a multicut since, from (13), for each net lk = (sk, tk), either wk = 1
and so ek is in C (thus, sk is separated from the grid and so from tk), or there

15



exists a j such that lk crosses vj and yj = 1 (so, there exists a vertical strip
between sk and tk whose (horizontal) edges are in C). 2

If (G,N ) satisfies m ≥ d, then for convenience we shall write K∗ for K.
Let (w∗, y∗) be an integer optimal solution for (CD). By the duality relation-
ship between the linear programs (CNP ) and (CD), we have Opt(CNP ) =
Opt(CD) = K∗ =

∑K
k=1w

∗
k + m

∑n−1
j=1 y

∗
j . Thus we can obtain, in polynomial

time, a feasible solution for MinMCUG that contains K∗ edges, i.e., which
is optimal among all the multicuts associated with integer solutions of (CD).
But there can exist other types of multicuts, and we have to prove that this
solution is also optimal for MinMCUG, i.e., that there always exists an opti-
mal multicut of this type: from Section 3, the optimal value of MaxEDP can
be K∗− 1 (see Figure 1 in Section 3), so this leaves a gap of one unit between
Opt(MaxEDP) and Opt(CD).

Lemma 13 In two-sided grids with unit capacities, the optimal value of the
maximum fractional multiflow problem is K∗.

Proof. We turn to the demand multiflow problem described in Section 4.1.
We build an instance I of this problem to prove Lemma 13: the idea is to
work on (G,N−). (G,N−) has K∗ nets, and we have U(e) = 1 for every edge
e. We define demands as D(l) = 1 for every net l in N−, and we consider
I = (G,N−, U,D). (G,N−) has a density equal to m, thus the cut condition
holds for each vertical strip. Moreover, I satisfies (a), (b), (c) and (d), thus,
from Lemma 11, (G,N−) satisfies the cut condition, and, from the first part
of Theorem 10, Lemma 13 follows. 2

If all the edges are valued by a unique integer c ≥ 2, then the optimal values of
both (CD) and the maximum fractional multiflow problem are K∗c: we define
U(e) = c for every edge e and D(l) = c for every net l in (G,N−), and we
apply Lemma 11. The value of any feasible multiflow being at most the value
of any multicut [4], Lemma 13 implies that there is no integrality gap for the
multicut problem, and hence:

Corollary 14 In the two-sided case, an optimal solution for MinMCUG is
obtained by solving (CD).

In Section 6, we propose an efficient combinatorial algorithm that solves (CD)
and thus, from Corollary 14, that computes an optimal multicut.
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5 Solving MaxIMFUG

In this section, we solve MaxIMFUG in the two-sided case, under the as-
sumption that c ≥ 2 (Section 3 deals with the case c = 1). Recall that
K∗ = Opt(CNP ) if m < d, and K∗ = K otherwise. The main result is
stated in the following theorem:

Theorem 15 If (5) does not hold, c is odd, K = n and d ≤ m < d dc
c−1
e, then

Opt(MaxIMFUG) = Kc− 1; Otherwise Opt(MaxIMFUG) = K∗c.

The proof of Theorem 15 is given in Appendix B, where the different cases
are settled by four lemmas (see Table B.1 in Appendix B). The details of
the proof also show that solving MaxIMFUG when c ≥ 2 only requires
finding (G,N−), i.e., solving a single linear program. This is in contrast with
MaxEDP, where Theorem 9 shows that, in the worst case, we need to solve
O(K2) linear programs.

Furthermore, it can be noticed that the optimum value of MaxIMFUG when
c ≥ 2 is equal to K∗c whenever m < d, and whenever m is large enough (i.e.,
m ≥ d dc

c−1
e) as well; whereas the optimum value of MaxEDP is not always

equal to K∗ when m < d, and is never equal to K when m ≥ d, (5) does not
hold and K = n (even if m is very large).

6 Algorithmic aspects

6.1 Solving (INP ) and (CD)

In Sections 3 and 5, we show how (INP ) can be used to solve MaxEDP
and MaxIMFUG respectively. In Section 4, we show, by means of a duality
relationship, that an integer optimal solution for (CD) is an optimal solution
for MinMCUG.

In this section, we describe two combinatorial algorithms, CAN and CAC,
solving (INP ) and (CD) respectively. Furthermore, the proof given in Section
6.2 shows that CAN also provides an optimal solution for all (INP (u1, u2))
(as required in the proof of Theorem 9, in Section 3).

PROCEDURE CAN // CAN solves (INP )
Input: The grid (G,N ), with N = {l1, . . . , lK}
Output: N− ⊆ N such that |N−| = K∗ and the density of (G,N−) is m
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Sort the nets such that lk+1 is R-longer than lk, for each k ∈ {1, . . . ,K − 1};
For each k from 1 to K do

Select lk in N− if it does not increase any density to more than m;

// If solving (INP (u1, u2)), just replace m by m−1 for all vj,j∈{col(u1),...,col(u2)−1}
EndFor

One can run CAC only after running CAN , since N− must have been com-
puted. To describe CAC, we need to introduce the forbidden area notion. We
will see in Section 6.2 that a net selected in CAN must be cut only once.
Therefore, at the moment a vertical strip vj crossed by a selected net (say lk)
is added to the cut, one knows that no other vertical strip crossed by lk will
be added to the cut. In order to guarantee this, we define l∗j as the L-longest
selected net crossing vj, and the forbidden area of vj as the region between vj
and the left terminal of l∗j . Any vertical strip on the left of vj which is crossed
by l∗j is said to be in the forbidden area of vj. At each step, the whole forbidden
area is defined as the union of all the forbidden areas already defined. Hence,
when vj is the current vertical strip examined by the algorithm, updating the
forbidden area means finding l∗j . For instance, in Figure 2, v2 is in the cut and
its forbidden area is defined by l1 = (s1, t1) (or by (s3, t3)): then, no other
vertical strip between v2 and the leftmost vertical line (where s1, the left ter-
minal of l1, lies) will be added to the cut. Thus, in this example, v2 is the only
vertical strip that is in the cut.

PROCEDURE CAC // CAC solves (CD)
Input: The grid (G,N−)
Output: A multicut C ⊆ E such that |C| = K∗

forbidden area := ∅;
C := ∅; // initially, the cut is empty
1. For each vertical strip vj from right to left do

If vj is saturated in (G,N−) then

If vj is not in the forbidden area then

C := C ∪ {edges in vj}; // vj is added to the cut

Update the forbidden area;

EndIf
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EndIf
EndFor
2. For each net lk selected in CAN which is not already cut do

C := C ∪ {ek}; // lk is cut on its source
EndFor

6.2 Correctness

In this section, we prove the optimality of CAN and CAC by using the comple-
mentary slackness conditions associated with the dual linear programs (CNP )
and (CD). Recall that M is totally unimodular and let x∗ and (w∗, y∗) denote
integer optimal solutions for (CNP ) and (CD) respectively. Then, the com-
plementary slackness conditions are given by:

• From (8): y∗j (m−
∑
k/lk crosses vj x

∗
k) = 0. It means:

vj is in the cut (y∗j = 1) only if it is saturated (
∑

k/lk crosses vj

x∗k = m) (16)

• From (10): w∗k(1− x∗k) = 0. It means:

a removed net (x∗k = 0) cannot be cut on its source (w∗k = 0) (17)

• From (13): x∗k((w
∗
k +

∑
j/lk crosses vj y

∗
j )− 1) = 0. It means:

a selected net (x∗k = 1) is cut only once (w∗k +
∑

j/lk crosses vj

y∗j = 1) (18)

First, note that the solution given by CAN is feasible. Moreover, the solutions
given by CAN and CAC satisfy the complementary slackness conditions. In-
deed, on the one hand we select in the cut only vertical strips which are
saturated (16), on the other hand a net not selected in CAN is never cut on
its source (17), and eventually every net that has been selected in CAN is cut
once in CAC (at least in step 2), but never twice or more (i.e., we never have
w∗k +

∑
j/lk crosses vj y

∗
j ≥ 2) because of the forbidden area notion (18). We still

have to prove that the solution given by CAC defines a multicut, i.e., that
every removed net is actually cut.

Lemma 16 Every net removed in CAN is cut in CAC.

Proof. Assume there exists a removed net which is not cut, l. Let v be the
leftmost vertical strip crossed by l which is saturated in (G,N−) (v exists,
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since otherwise l would have been selected in CAN). Let v̂ be the leftmost
vertical strip on the right of v being in the cut (v̂ exists, since otherwise v is
the rightmost saturated vertical strip in (G,N−), and so v is in the cut and
l is cut), and let l̂ be the net defining the forbidden area of v̂. v is in this
forbidden area, since otherwise v is in the cut and so l is cut.

l has been examined before l̂, since l̂ is strictly R-longer than l (because l̂
crosses v̂ and l does not). Moreover, by the choice of v, all the saturated
vertical strips crossed by l are crossed by l̂. So l should have been selected
instead of l̂ in CAN , a contradiction. Lemma 16 follows. 2

6.3 Efficient implementation

In this section, we show that CAN and CAC run in O(K), and thus that
both have asymptotically optimal running times. From Theorem 4, we do not
change the solvability of the instance if we assume that there are no more than
two consecutive columns without terminals in the grid. Since there are 2K
terminals, we can assume without loss of generality that n ≤ 6K. Moreover,
since (G,N , c) is a grid, giving c, m, n and the K pairs (col(sk), col(tk)) and
(lin(sk), lin(tk)) is sufficient to fully describe the input. So, we assume that
the input of CAN is a table T of length n = Θ(K), where the jth element
contains, for each one of the two (or less) terminals being on the jth column
of the grid, the column of its mate. If, for instance, a set of pairs (col(sk),
col(tk)) is given, one can easily compute T in O(K), by going through this set
of pairs once.

Running CAN can be done by solving an instance of the CallControl
problem on a chain (see [1] for details): each vertical strip of the grid vj
becomes an edge fj of the chain, each net becomes a call, and the capacity of
each fj is m if solving (INP ), and m − 1 (if j ∈ {col(u1), . . . , col(u2) − 1})
or m (otherwise) if solving (INP (u1, u2)) for some (u1, u2). It is shown in [1]
that this problem can be solved in O(p+q), where p is the number of calls and
q the number of edges. In our case, we have p = K and q = n− 1 = O(K), so
CAN can be solved in O(K).

Now, we show that CAC also runs in O(K). The main difficulty for CAC is
to efficiently update the forbidden area. Let the output of CAN be the table
T ′ = T \ {removed nets}. One can compute in O(K) the densities of this new
grid by using (1), and store them in a new table called D. At each step, D
will be used to know whether the current vertical strip is saturated or not. If
this strip is added to the cut, T ′ will then be used to find the net that defines
its forbidden area.

Let v̄j and v̄j+1 be two consecutive vertical strips of the cut. The net defining
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the forbidden area of v̄j cannot have its right endpoint on the right of v̄j+1,
since otherwise this net crosses both v̄j and v̄j+1, and so is strictly L-longer
than the net defining the forbidden area of v̄j+1: a contradiction. So, when
a vertical strip is added to the cut, finding its forbidden area only requires
examining the nets whose right terminals are between this vertical strip and
the previous one being in the cut. Thus, during the whole execution of CAC,
each column in T ′ is examined only once. Since the same holds for each vertical
strip, the running time of step 1 is O(max(|T ′|, |D|)) = O(K). Moreover, at
the moment a net is examined, one can know whether it will cross a vertical
strip that belongs to the cut, and remove it from T ′ if it does. Step 2 consists
then in cutting on its source each net that remains in T ′: it takes O(K) time.
Thus, CAC runs in O(K).

7 Conclusion

We have solved MaxIMFUG and MinMCUG in the two-sided case by us-
ing several results concerning decision problems related to our optimization
problems [7; 8; 9; 16]. On the algorithmic side, we have given two combinato-
rial algorithms to solve them, and the one solving MinMCUG runs in linear
time, while the one solving MaxIMFUG runs in linear time whenever c ≥ 2
or m ≥ d or m is odd. Furthermore, we have proved that the gap between the
optimal values of MaxIMFUG and MinMCUG is at most one, and we have
shown how to determine the very special cases where these two values are not
equal. For MaxEDP, we are always able to compute in linear time a solution
whose value is at least the optimal value of MaxEDP minus one, even when
our algorithm would take more time (i.e., O(n3) time) to find an optimal solu-
tion. Nevertheless, we do not know whether the part O(n2) in the expression
of Theorem 9 could be improved or not. Moreover, we would like to point out
that, throughout the paper, the running times of the routing algorithms are
omitted on purpose. Thus, the complexity results given for MaxIMFUG and
MaxEDP only provide the time needed to decide how many units of flow
are routed for each net. If one wants to explicitly construct the routing, the
algorithms given in [7; 8; 16; 18] can be used.

It would be quite interesting to extend our results to more general graphs,
when a good characterization is known for the decision problem. For instance,
Frank proves in [8] that, when all the terminals are on the boundary of the
outer face, EDP is polynomial-time solvable in planar graphs more general
than grids, i.e., inner eulerian planar graphs, including outerplanar graphs
(a very special class of planar graphs, having all their vertices lying on the
outer face). However, Garg et al. prove in [11] that MaxEDP is NP-hard
in outerplanar graphs (by showing that MaxIMF is NP-hard in trees with
capacities 1 and 2). Furthermore, they show that MinMC is NP-hard in
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stars with unit capacities. Thus, it seems that, even in classes of graphs where
EDP can be solved efficiently, for MaxEDP and MinMCUG, only very
special cases are likely to be polynomial-time solvable.
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A Proof of Lemma 11

Lemma 11 Let (G,N ) be a two-sided non augmented grid where
(a) all the horizontal edges have the same capacity Uh,
(b) all the vertical edges have the same capacity Uv ≥ max

l∈N
D(l), except the

ones located on the leftmost and rightmost columns, whose capacities are at
most Uv,
(c) each horizontal strip hi satisfies

∑
e is an edge of hi U(e) ≥ ∑K

k=1D(lk),
(d) either Uh = Uv or each vertical edge on the leftmost and rightmost columns
is also valued by Uv.

Then the cut condition is satisfied by any X ⊆ V if and only if it is satisfied
by any X ⊆ V such that δG(X) is a vertical strip of the grid.

Proof. The necessity of the cut condition on each vertical strip being obvious,
we show the sufficiency. Let X ⊆ V be such that U(δG(X)) < D(δN (X)). We
can assume w.l.o.g. that X is connected. Let us show that we can find a vertical
strip that violates the cut condition.

Let D∗ = maxl∈N D(l) and let n be the number of columns of the grid. X is
“bounded” by two columns, cλ on its left and cρ on its right: it means that for
every vertex u in X, u is between the λth and the ρth column inclusive (take
λ as large as possible and ρ as small as possible). The proof is organized as
follows: in the first part, we assume that λ > 1 and ρ < n; in the second part,
we consider the case where λ = 1 or ρ = n.

First assume that λ > 1 and ρ < n. If X does not contain any vertex from
the uppermost and lowermost lines, |δN (X)| = 0, a contradiction. If X does
not contain any vertex from the uppermost (resp. lowermost) horizontal line,
then, X being connected, δG(X) contains at least ρ − λ + 1 vertical edges
(one from each column between cλ and cρ), whereas δN (X) contains at most
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ρ− λ+ 1 edges, since there are at most ρ− λ+ 1 terminals between cλ and cρ
on the lowermost (resp. uppermost) line. Thus, from (b)

U(δG(X)) ≥ (ρ− λ+ 1)Uv ≥ (ρ− λ+ 1)D∗ ≥ D(δN (X)) (A.1)

a contradiction. Hence, X contains at least one vertex from the uppermost
line and one vertex from the lowermost line: X “reaches” both lines.

Given a subset Y ⊆ V , let δvG(Y ) (resp. δhG(Y )) denote the set of vertical (resp.
horizontal) edges in δG(Y ). We have δG(Y ) = δvG(Y )∪ δhG(Y ) and U(δG(Y )) =
U(δvG(Y )) +U(δhG(Y )). We transform X into the subset X ′ ⊆ V containing all
the vertices between cλ and cρ (i.e., X ′ is the smallest rectangle containing X,
see case I in Figure A.1). Since X is connected and reaches both the uppermost
and the lowermost lines, |δhG(X)| ≥ 2m, and thus we have

U(δhG(X)) ≥ 2mUh = U(δhG(X ′)) (A.2)

For notational convenience, we shall let δN (X − X ′) denote the set of nets
being in δN (X) and not in δN (X ′). Obviously, one has D(δN (X − X ′)) ≥
D(δN (X))−D(δN (X ′)). For each vertical edge e that was removed from δvG(X)
when transforming X into X ′, at most one net has been removed from δN (X)
(a net having a terminal on the same column as e), thus

|δN (X −X ′)| ≤ |δvG(X)| − |δvG(X ′)| = |δvG(X)| (A.3)

since |δvG(X ′)| = 0. So, we have

D(δN (X))−D(δN (X ′)) ≤ D(δN (X −X ′))
≤ D∗|δN (X −X ′)|
≤︸︷︷︸

from (b)

Uv|δN (X −X ′)|

≤︸︷︷︸
from (A.3)

Uv|δvG(X)| = U(δvG(X)) (A.4)

Combining (A.2), (A.4), and D(δN (X)) > U(δG(X)), we get

D(δN (X ′)) ≥ D(δN (X))− U(δvG(X))

> U(δG(X))− U(δvG(X)) = U(δhG(X))

⇒ D(δN (X ′)) >︸︷︷︸
from (A.2)

U(δhG(X ′)) = U(δG(X ′)) (A.5)
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Hence, X ′ also violates the cut condition. (A.5) implies

D(δN (X ′)) =
∑

lk crossing vλ−1

D(lk) +
∑

lk crossing vρ

D(lk) > U(δG(X ′)) = 2mUh

⇒ either
∑

lk crossing vλ−1

D(lk) > mUh or
∑

lk crossing vρ

D(lk) > mUh

Thus, either vλ−1 or vρ violates the cut condition, and Lemma 11 follows.
Now, we turn to the case where X reaches the leftmost and/or the rightmost
column.

Assume that λ = 1 and ρ < n (the case where ρ = n and λ > 1 can be dealt
with in a symmetrical way). If X does not reach both the uppermost and
lowermost lines, (d) implies that δG(X) contains at least ρ edges valued by
Uv, since it contains at least an horizontal edge belonging to vρ, has at least
ρ vertical edges (at most one from each column) and, from (b), at most one
column has edges whose capacities are less than Uv. This implies that contra-
diction (A.1) still holds, and hence X necessarily reaches both the uppermost
and the lowermost lines.

Moreover, for each vertical edge (u ∈ X,w ∈ V \ X) on the first column
(such an edge is not in δG(X ′)), there exists an horizontal edge fw on the
same line as w which is in δG(X) and not in δG(X ′), and which is such that,
on this horizontal line, there is no vertex in X between w and the leftmost
vertex of fw (since otherwise w ∈ X, see case II in Figure A.1). From (b) and
(d), either U((u,w)) = Uv ≥ D∗ or U(fw) = Uv ≥ max(U((u,w)), D∗), and
thus, by replacing “= U(δvG(X))” by “≤ U(δvG(X) ∪ {fw/∃(u,w) ∈ δG(X)})”,
(A.4) still holds in this case. Eventually, U(δhG(X) \ {fw/∃(u,w) ∈ δG(X)}) ≥
mUh = U(δhG(X ′)), hence a proof similar to the one given above shows that
(A.5) remains true. δG(X ′) being the ρth vertical strip, Lemma 11 follows.

Now, assume that λ = 1 and ρ = n. If X does not reach both the uppermost
and the lowermost lines, then we have a contradiction since there exist edges
f1, . . . , fn in δG(X) such that

∑n
p=1 U(fp) ≥

∑K
k=1D(lk) (≥ D(δN (X))). In-

deed, either each vertical edge is valued by Uv ≥ D∗ (so we choose a vertical
edge belonging to δG(X) on each one of the n columns and we are done), or
δG(X) is either an horizontal strip or the union of two horizontal strips (so we
apply (c), see case III in Figure A.1), or δG(X) contains an horizontal edge ê
(see case IV in Figure A.1), and, from (d), ê is valued by Uv (so we construct
a subset S of δG(X) by choosing fn to be ê and, for p ∈ {1, . . . , n− 1}, fp to
be a vertical edge from the pth column; then, from (b), the horizontal strip hi
containing f1 satisfies (U(δG(X)) ≥) U(S) ≥ ∑

e is an edge of hi U(e), and we can
apply (c)).
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Figure A.1. Examples for Lemma 11.

Hence, X reaches the uppermost and lowermost lines. Then, for the same
reasons as in the case where λ = 1 and ρ < n, (A.4) continues to hold, and
since U(δhG(X ′)) = 0, it can be proved as previously that (A.5) remains true.
Since |δG(X ′)| = |δN (X ′)| = 0, we get a contradiction. 2

B Proof of Theorem 15

Recall that K∗ = Opt(CNP ) if m < d, and K∗ = K otherwise.

Theorem 15 If (5) does not hold, c is odd, K = n and d ≤ m < d dc
c−1
e, then

Opt(MaxIMFUG) = Kc− 1; Otherwise Opt(MaxIMFUG) = K∗c.

Proof. We need to distinguish between several cases. The proof of Theorem
15 will directly follow from the proofs of the next four lemmas. In the follow-
ing, as in Section 4, whenever m ≥ d holds, we do not distinguish between
(G,N ) and (G,N−). Also recall that, whenever we deal with an instance of
the demand multiflow problem, we can transform this instance into an equiva-
lent one having a non augmented grid (see Section 4.1). So, when considering
this problem, we always assume that grids are non augmented.

Table B.1 sums up the results of Lemmas 17, 18, 20 and 21.
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c ≥ 2

c is even c is odd

Lemma 17 m < d d ≤ m < d dcc−1e m ≥ d dcc−1e

Opt. value Lemma 18 K < n or (5) K = n and (5) K < n or (5) K = n and (5)

= K∗c Opt. value holds does not hold holds does not hold

= K∗c Lemma 18 Lemma 21 Lemma 18 Lemma 20

Opt. value Opt. value Opt. value Opt. value

= Kc = Kc− 1 = Kc = Kc
Table B.1
Summary of the proof of Theorem 15 (K∗ = K whenever m ≥ d)

The case where c is even is straightforward.

Lemma 17 Assume c is even. Then Opt(MaxIMFUG) = K∗c.

Proof. As in the proof of Lemma 13, we consider (G,N−) and define an
instance I = (G,N−, U,D) of the demand multiflow problem, such that
D(lk) = c for each net lk in N−. Recall that the capacity function is de-
fined by U(e) = c, for each edge e. Obviously, c being integral, U and D are
integer-valued. Moreover, U(e) and D(lk) being even for each edge e and net lk
respectively, the eulerian condition (12) holds. Since (G,N−) satisfies m ≥ d,
then

∑
lk crossing vj D(lk) ≤ dc ≤ mc =

∑
e is an horizontal edge of vj U(e) holds for

each j, and so the cut condition holds for each vertical strip. Furthermore, I
satisfies (a), (b), (c) and (d) (see Appendix A), so, from Lemma 11, Theorem
10 applies. From Corollary 14, this provides an integer multiflow having the
same value as a multicut, and thus which is optimal: Lemma 17 follows. The
proof of Theorem 10 being constructive, it also provides an algorithm to route
the integral flows. 2

In the following of Section 5, we assume that c is odd. Lemma 18 settles several
cases.

Lemma 18 Assume that c is odd. Assume that m < d, or that m ≥ d and ei-
ther K∗ = K < n or (5) is satisfied. Then, the optimal value of MaxIMFUG
is K∗c.

Proof. If m < d and m is odd then, by Corollary 8, Opt(MaxEDP) = K∗. If
m < d, m is even and (G,N−) satisfies (5) or (6) or (7), then, by Theorem 4,
we also have Opt(MaxEDP) = K∗. The same holds when either m ≥ d and
(5) is satisfied, or m > d and K < n. Moreover, if m = d and m is odd then,
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by Proposition 7, (G,N ) satisfies (6) and hence Opt(MaxEDP) = K = K∗.
Note that this is also true when m = d, m is even and (G,N ) satisfies either
(6) or (7). In all these cases, we prove Lemma 18 by using the fact that,
for MaxIMFUG, a feasible solution of value K∗c is obtained by routing
c units of flow on each one of the K∗ edge disjoint paths. As in the proof of
Lemma 17, Corollary 14 implies that this provides an integer multiflow having
the same value as a multicut, and thus which is optimal. In particular, this
shows that whenever (G,N−) satisfies the assumptions of Theorem 4, solving
MaxIMFUG is achieved by solving MaxEDP.

The last case to consider in this lemma is the case where c is odd, m ≤ d,
K∗ < n, m is even and (G,N−) satisfies none of the three conditions (5), (6)
and (7).

To settle this case, we only need to show that the instance of the demand
multiflow problem I = (G,N−, U,D), with U(e) = c for each edge e and
D(lk) = c for each net lk in N−, admits an integer solution. This will yield
an integer multiflow of value |N−|c = K∗c. We start by transforming the
instance into a new one by decreasing the capacity of several edges and by
adding virtual nets to (G,N−), so that the resulting instance satisfies the
eulerian condition (12), and then we apply Theorem 10. Obviously, if the new
instance is solvable, then the initial one admits an integer solution. First, for
(G,N−), we claim the following:

Claim 19 Let s be the number of saturated vertical strips in (G,N−). When
(G,N−) satisfies none of the three conditions (5), (6) and (7), then it is such
that, in each set Xj, j ∈ {2, . . . , s}, containing all the vertices of the uppermost
and lowermost lines which are located between the j−1th and the jth saturated
vertical strip, there is exactly zero or two non terminal vertices. Furthermore,
let X1 (resp. Xs+1) be the set of vertices of the uppermost and lowermost
lines which are located on the left (resp. on the right) of the leftmost (resp.
rightmost) saturated strip: then, any vertex in X1 (resp. Xs+1) is a terminal.

Proof. Consider the second part of Claim 19 first: from Theorem 4, X1 (resp.
Xs+1) is such that all of its vertices are terminal vertices, since otherwise
(G,N−) satisfies (6). Furthermore, in every Xj, j ∈ {2, . . . , s}, there is at
most two non terminal vertices (one being on the uppermost line, the other
on the lowermost line), since otherwise (G,N−) satisfies (7). To prove the first
part of Claim 19, assume there exists a j such that in Xj, there is a unique
non terminal vertex u. Let v∗i be the ith saturated vertical strip in (G,N−),
and let d∗i denote its density. Note that in (G,N−) there is an even number
of free vertices on the lowermost and uppermost lines, since a net has two
terminals. Thus, we can pair these non terminal vertices together, forming
new virtual nets and obtaining a full grid: let (G, N̂−) be this new grid. u
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has been paired with a vertex w: assume without loss of generality that w is
on the right of v∗j . Recall that in (G,N−), both d∗j−1 and d∗j are equal to m.
Because of the structure of (G,N−), all the new virtual nets crossing v∗j (resp.

v∗j−1) cross v∗j−1 (resp. v∗j ), except (u,w) which crosses only v∗j . Thus, if K̂j−1

denotes the number of virtual nets crossing v∗j−1, the new densities of v∗j−1 and

v∗j in (G, N̂−), respectively denoted by d̂j−1 and d̂j, are given by:

d̂j−1 = d∗j−1 + K̂j−1 = m+ K̂j−1 (B.1)

and

d̂j = d∗j + (K̂j−1 + 1) = m+ K̂j−1 + 1 (B.2)

(G, N̂−) being a full grid, all its densities are even (see (3) in Section 3). How-
ever, from (B.1) and (B.2), d̂j−1 and d̂j have a different parity, a contradiction.
Claim 19 follows. 2

Now, let us transform the (non augmented) grid into a new one satisfying
the eulerian condition. For each odd vertex u in a Xj, j ∈ {2, . . . , s}, u is a
non terminal vertex (since all the other vertices have a degree equal to 4c),
and, from Claim 19, there always exists another unique non terminal vertex
on the lowermost or on the uppermost line that belongs to Xj, say w: we
add the net (u, w) to (G,N−). Call such nets virtual nets, as in Claim 19.
Let u1, . . . , um and u

′
1, . . . , u

′
m be the vertices on the leftmost and rightmost

columns respectively, such that, for each i, ui and u
′
i are on the ith horizontal

line. For each i ∈ {1, . . . , m
2
}, we decrease the capacity of the edges (u2i−1, u2i)

and (u
′
2i−1, u

′
2i) by one.

Let (G, N̂−) be the grid obtained from (G,N−) by adding the virtual nets
and then decreasing the capacities as explained above. We have U((u2i−1, u2i))
= U((u

′
2i−1, u

′
2i)) = c − 1 for each i, and U(e) = c for any other edge e. We

define D((u,w)) = 1 for each virtual net (u,w), and D(lk) = c for each net
lk in N−. Let Î = (G, N̂−, U,D). U and D are integer-valued, and (G, N̂−)
satisfies the eulerian condition, since, for each v ∈ V , U(δG(v))+D(δN̂−(v)) ∈
{3c−1, 3c+1, 4c}. Moreover, a virtual net does not cross any saturated vertical
strip, so (G, N̂−) satisfies m ≥ d, since (G,N−) does. Obviously, Î satisfies
(a), (b) and (d). Eventually, we show that (c) also holds. On the one hand,
for each horizontal strip hi,

∑
e is an edge of hi U(e) ≥ nc− 2. On the other hand,

∑
lk∈N̂−

D(lk) =
∑

lk∈N−
D(lk) +

∑
(u,w) is a virtual net

D((u,w))

=K∗c + |{virtual nets}|
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≤K∗c + (n−K∗) = K∗(c− 1) + n

Since K∗ ≤ n− 1, K∗(c− 1) + n ≤ nc + (1− c). We have c ≥ 2 and c is odd,
so 1 − c ≤ −2. Hence

∑
lk∈N̂− D(lk) ≤ nc − 2 ≤ ∑

e is an edge of hi U(e). Then

(c) holds, and thus Lemma 11 and Theorem 10 apply. As a consequence, Î is
solvable and admits an integer solution, so we can route an integer multiflow
of value K∗c + |{virtual nets}| for Î, and thus of value K∗c for the initial
instance I. Lemma 18 follows. 2

We still have to deal with the case where m ≥ d, K∗ = K = n, c is odd and
(G,N ) does not satisfy (5).

Lemma 20 If c is odd, K = n and m ≥ d dc
c−1
e, then Opt(MaxIMFUG) =

Kc.

Proof. For each net lk in N , we define D(lk) = c. We use the same idea as
in Lemma 18 and transform the (non augmented) grid into a new one that
satisfies the eulerian condition. The only odd vertices are the ones located on
the leftmost and rightmost vertical lines, since all the other vertices have a
degree equal to 4c. We construct the new grid by decreasing the capacity of
each horizontal edge by one, and so we have U(e) = c− 1 for each horizontal
edge e and U(e′) = c for each vertical edge e′. Let (G, N̂ ) be this new grid
and let Î = (G, N̂ , U,D). U and D are integer-valued, and (G, N̂ ) satisfies
(a), (b), (c) and (d), and the eulerian condition as well, since, for each v ∈ V ,
U(δG({v})) + D(δN̂ ({v})) ∈ {3c − 1, 4c − 2}. Moreover, (G, N̂ ) satisfies the
cut condition on each vertical strip vj since, for each j,

∑
lk crossing vj D(lk) ≤

dc ≤ (d dc
c−1
e)(c− 1) ≤ m(c− 1) =

∑
e is an edge of vj U(e). Hence, Lemma 11 and

Theorem 10 apply, and Î is solvable and admits an integer solution: Lemma
20 follows. 2

Lemma 21 settles the last case.

Lemma 21 Assume (G,N ) does not satisfy (5), c is odd, K = n and d ≤
m < d dc

c−1
e. Then, the optimal value of MaxIMFUG is Kc− 1.

Proof. First, we show that one can route at most Kc− 1 units of flow. To do
this, we just have to prove that the instance of the demand multiflow problem
I = (G,N , U,D), with U(e) = c for each edge e and D(lk) = c for each net
lk in N , does not admit an integer solution. Assume it does. The main point
is that only an even amount of flow can cross each horizontal edge. Indeed,
the total amount of flow to be routed is exactly equal to the capacity of each
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horizontal strip, hence, for each horizontal edge e, for each unit of flow routed
“from right to left” through e, there must be one unit of flow routed “from
left to right” through e. Thus, given a feasible routing, the unused capacity on
each horizontal edge is at least one, and we can reduce each horizontal capacity
from c to c− 1 without affecting the routing. But then, m(c− 1) < dc (since
m < d dc

c−1
e) and the cut condition no longer holds, a contradiction.

Now, we show that we can route an integer multiflow of value Kc − 1. Let
l1 = (s1, t1) be the net in N whose left terminal is u1, the left upper corner
of the (non augmented) grid (assume without loss of generality that u1 is s1).
We remove lines from (G,N ) until m = d. Obviously, d (and thus m) is even
since K = n implies that (G,N ) is a full grid (see (3) in Section 3). We add
the new virtual net (um, t1) (if um 6= t1), and we decrease by one the capacity
of each edge (u2i, u2i+1), i ∈ {1, . . . , m2 − 1}, and of each edge (u′2i−1, u

′
2i),

i ∈ {1, . . . , m
2
}. We define demands as D(lk) = c for each net lk 6= l1 in N ,

D(l1) = c − 1 and D((um, t1)) = 1 (if um 6= t1). We have U(e) = c for each
edge e, except the (vertical) ones whose capacities have been decreased to c−1
as explained. Let (G, N̂ ) be the grid obtained from (G,N ) by adding (um, t1)
(if um 6= t1) and then decreasing the capacities, and let Î = (G, N̂ , U,D).

(G, N̂ ) satisfies the cut condition on each vertical strip since (i) (G,N ) does,
(ii) D(l1) has been decreased by 1, (iii) D((um, t1)) has been set to 1 and (iv)
l1 crosses exactly the same vertical strips as (um, t1) does. Moreover, U and
D are integer-valued, and the eulerian condition (12) holds, since, for each
v ∈ V , U(δG({v})) +D(δN̂ ({v})) ∈ {3c− 1, 3c + 1, 4c} if um 6= t1, {3c− 1, 4c}
otherwise. Because of the way we decreased the capacities, there is exactly
one vertical edge on each horizontal strip whose capacity has been decreased
to c− 1, so (c) holds. (a), (b) and (d) also holding, Lemma 11 and Theorem
10 apply, so Î admits an integer solution. Lemma 21 follows. 2

This completes the proof of Theorem 15. 2
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Figure and table legends:

Legend of Figure 1: An instance with only K∗ − 1 edge disjoint paths (in
dashed lines).

Legend of Figure 2: A cut given by (CD).

Legend of Figure A.1: Examples for Lemma 11.

Legend of Table B.1: Summary of the proof of Theorem 15 (K∗ = K whenever
m ≥ d)
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Table B.1:

c ≥ 2

c is even c is odd

Lemma 17 m < d d ≤ m < d dcc−1e m ≥ d dcc−1e

Opt. value Lemma 18 K < n or (5) K = n and (5) K < n or (5) K = n and (5)

= K∗c Opt. value holds does not hold holds does not hold

= K∗c Lemma 18 Lemma 21 Lemma 18 Lemma 20

Opt. value Opt. value Opt. value Opt. value

= Kc = Kc− 1 = Kc = Kc

33



Figure 1:

34



Figure 2:
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Figure A.1:
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