
Erratum to: “C. Bentz, M.-C. Costa, F. Roupin.

Maximum integer multiflow and minimum multicut

problems in two-sided uniform grid graphs [Journal

of Discrete Algorithms 5 (2007) 36–54]”

The proof of Lemma 21 is buggy. Indeed, at the end of the proof, we use
Lemma 11 on a grid (G, N̂ ) that is not two-sided (since both l1 and (um, t1)
lie on t1).

The proof of this lemma can be corrected by adapting the proof of
Lemma 11. However, this is quite tedious. In order to obtain a simpler
way to correct it, we first give an alternative proof to Lemma 11. This proof
is due to Guyslain Naves, to whom we are very grateful.

The idea is to use a “local argument” to prove that, if X is a connected
subset violating the cut condition, then there exists a rectangle X ′ that
contains X and also violates this condition. The proof that X reaches both
the uppermost and the lowermost lines is unchanged, but the rest of the
proof can be modified in order to deal with all the cases (λ > 1 and ρ < n,
λ > 1 and ρ = n, λ = 1 and ρ < n, λ = 1 and ρ = n) at the same time.

So, assume X violates the cut condition, is connected, and reaches the
uppermost and lowermost lines. If X is not a rectangle, then there exist two
consecutive lines i and i′ (i.e., i = i′ + 1 or i′ = i + 1) and two consecutive
columns j and j′ (i.e., j = j′+ 1 or j′ = j+ 1) such that g(i, j), g(i′, j′) ∈ X
and g(i′, j) /∈ X (where g(i, j) is the vertex of the grid lying on line i and
column j). The idea is to prove that we can add g(i′, j) to X and still have
a set violating the cut condition. (This will allow us to conclude that X can
be transformed into a rectangle, and the rest of the proof will be the same
as in our paper.) Let X+ = X ∪ {g(i′, j)}.

• If g(i′, j) does not lie on one of the four border lines of the grid, then
U(δG(X+)) = U(δG(X)) and D(δN (X+)) = D(δN (X)) ⇒ Ok.

• If g(i′, j) lies on one of the two vertical border lines of the grid (but not
on a corner), then U(δG(X+)) = U(δG(X))−Uh−capacity of a vertical
edge e1 + capacity of another vertical edge e2 ≤ U(δG(X)) (because,
from (d), either Uh = Uv or all the vertical edges are valued by Uv)
and D(δN (X+)) = D(δN (X)) ⇒ Ok.
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• If g(i′, j) lies on one of the two horizontal border lines of the grid
(but not on a corner), then U(δG(X+)) = U(δG(X)) − Uh − Uv +
Uh = U(δG(X)) − Uv and D(δN (X+)) ≥ D(δN (X)) − a demand ≥
D(δN (X))− Uv ⇒ Ok.

• If g(i′, j) lies on a corner, then U(δG(X+)) = U(δG(X)) − Uh −
capacity of a vertical edge e1 and D(δN (X+)) ≥ D(δN (X))− a single
demand ≥ D(δN (X))− Uv ⇒ Ok (because, from (d), either Uh = Uv

or all the vertical edges are valued by Uv).

This concludes the alternative proof of Lemma 11. Now, let us show how
to adapt this proof in order to prove Lemma 21.

We have U(e) = c for each horizontal edge e, except the ones on the
lowermost line that lie on the left of t1 (their capacity is c − 1). We have
U(e) = c for each vertical edge that lies neither on the leftmost column
nor on the rightmost column. Eventually, we have U(u2i, u2i+1) = c− 1 for
each i ∈ {1, . . . , m

2 − 1}, and U(u
′
2i−1, u

′
2i) = c − 1 for each i ∈ {1, . . . , m

2 }.
The capacity of any other vertical edge lying on the leftmost and rightmost
columns is c. We also have D(lk) = c for each net lk 6= l1 and D(l1) = c− 1.

We want to prove that, if there exists in this grid a set violating the cut
condition, then there exists a vertical strip that also violates this condition.
(Since obviously there exists no such vertical strip, this will prove Lemma
21.) So, we define X, i′ and j as previously, and follow the alternative proof
of Lemma 11. We first have to prove that X reaches both the lowermost
and the uppermost lines. Assume this is not the case:

• If X reaches neither the lowermost nor the uppermost line, then we
have δN (X) = ∅ ⇒ U(δG(X)) ≥ 0 = D(δN (X)).

• If λ > 1 or ρ < n (or if λ = 1 and ρ = n and δG(X) contains at least
one horizontal edge), then X contains at most ρ−λ+ 1 vertical edges
and one horizontal edge, whereas δN (X) contains at most ρ − λ + 1
(demand) edges. We have U(δG(X)) ≥ (ρ − λ + 1)c − 2 + (c − 1) ≥
(ρ − λ + 1)c (since c ≥ 3) and D(δN (X)) ≤ (ρ − λ + 1)c. Hence, X
does not violate the cut condition.

• Otherwise, δG(X) is a horizontal strip, and U(δG(X)) = D(δN (X)) =
Kc− 1. Hence, X does not violate the cut condition.

We get a contradiction. Therefore, X reaches both the lowermost and
the uppermost lines (and can be assumed to be connected). Now:

• If g(i′, j) does not lie on one of the four border lines of the grid, then
the proof is the same as in Lemma 11.
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• If g(i′, j) lies on one of the two vertical border lines of the grid (but not
on a corner), then U(δG(X+)) = U(δG(X))− capacity of a horizontal
edge e1 − capacity of a vertical edge e2 + capacity of another vertical
edge e3 ≤ U(δG(X))− (c− 1)− (c− 1) + c < U(δG(X)) (since c > 2)
and D(δN (X+)) = D(δN (X)) ⇒ Ok.

• If g(i′, j) lies on one of the two horizontal border lines of the grid
(but not on a corner), then we have three cases. If i′ = 1, then
the proof is similar to the one of Lemma 11. If i′ = n and j < j′,
then U(δG(X+)) ≤ U(δG(X)) − c[−c + c](or [−(c− 1) + (c− 1)]) ≤
U(δG(X))−c andD(δN (X+)) ≥ D(δN (X))−a demand ≥ D(δN (X))−
c⇒ Ok. If i′ = n and j′ < j, then either U(δG(X+)) ≤ U(δG(X))−c−
(c−1)+c ≤ U(δG(X))−(c−1) and D(δN (X+)) ≥ D(δN (X))−D(l1) ≥
D(δN (X)) − (c − 1) (if t1 lies on j), or U(δG(X+)) ≤ U(δG(X)) −
c[−(c − 1) + (c − 1)](or [−c+ c]) ≤ U(δG(X)) − c and D(δN (X+)) ≥
D(δN (X))− c (otherwise) ⇒ Ok.

• If g(i′, j) lies on a corner of the grid, then either U(δG(X+)) = U(δG(X))
−c− (c−1) < U(δG(X))− c and D(δN (X+)) ≥ D(δN (X))− c (if t1 6=
u

′
m), or U(δG(X+)) = U(δG(X))−(c−1)−(c−1) < U(δG(X))−(c−1)

and D(δN (X+)) ≥ D(δN (X))− (c− 1) (if t1 = u
′
m) ⇒ Ok.
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