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Abstract. We show how to solve in polynomial time the multicut and the

maximum integral multiflow problems in rings. Moreover, we give linear-time

procedures to solve both problems in rings with uniform capacities.

Keywords. Combinatorial optimization, maximum integral multiflow, multicut, ring networks.

1. Introduction

Let G be a graph, with a positive integral capacity (or weight) ue on each edge

e, and let L be a list of K pairs of terminal vertices {sk ∈ G, tk ∈ G} (sk 6= tk),

k ∈ {1, . . . ,K}. The multicut problem MCP consists in finding a minimum weight

set of edges whose removal leaves no chain between sk and tk for each pair {sk, tk}

of L. Associate a commodity with each pair {sk, tk}: the maximum integral mul-

tiflow problem IMFP consists in maximizing the sum over all commodities of the

integral flow corresponding to a commodity subject to capacity and flow conserva-

tion requirements. Both problems can be defined similarly in digraphs, by replacing

“edge” by “arc” and “chain” by “path”. For K = 1 the problems are the classical min

cut-max flow problems solvable in polynomial time, but both problems are known

to be NP-hard and APX-hard for arbitrary K, even in trees [9].

A ring R is a connected graph where all vertices have degree 2. Such structures

are encountered for instance in telecommunications because of the deployment of

fiber equipment (SONET: Synchronous Optical Networks [4, 13, 14]). In an undi-

rected ring the flow routed from sk to tk can be split into two parts. One part is

routed in a clockwise direction and the other in a counterclockwise direction. In
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order to separate sk from tk, the multicut must contain at least one edge between

sk and tk in each direction. In a directed ring the flow from sk to tk is routed

entirely in a clockwise (for instance) direction; the multicut must contain at least

one arc of the unique path from sk to tk. We will see in Section 2 that, in rings, an

undirected instance of IMFP or MCP can be reduced to a directed instance of the

same problem.

Consider a directed ring R = (V,A). Let pk be the only path from sk to tk, let

fk be the flow routed on pk, k ∈ {1, . . . ,K}, and let ca, a ∈ A, be a binary variable

such that ca = 1 if arc a belongs to the cut, and ca = 0 otherwise. MCP and IMFP

can be stated as two integer linear programs:

max
K∑
k=1

fk

(P − IMFP ) s. t.
∑

k s.t. a∈pk

fk ≤ ua ∀a ∈ A (1)

fk ∈ N ∀k ∈ {1, . . . ,K}

min
∑
a∈A

uaca

(P −MCP ) s. t.
∑
a∈pk

ca ≥ 1 ∀k ∈ {1, . . . ,K} (2)

ca ∈ {0, 1} ∀a ∈ A

Note that the continuous relaxations of the linear programming formulations of

MCP and IMFP are dual; this is also the case in unrestricted graphs [8].

Except in some special cases such as directed trees [5], there is in general a gap

between the optimal values of MCP and IMFP. This is also the case in rings. An ex-

ample is given by a directed ring with 3 vertices v1, v2, v3, 3 arcs of weight/capacity

5 and 3 pairs {sk, tk} such that s1 = t2 = v1, s2 = t3 = v2 and s3 = t1 = v3. The

optimal values of MCP and IMFP in this instance are 10 and 7 respectively.

Let R be a ring and let n be the number of vertices and edges (or arcs) of R.

If we consider the special case of IMFP where all the edge capacities are equal to

1 we get MEDP, the maximum edge disjoint paths problem, which is polynomial-

time solvable in rings [15]. Several authors also consider the multicommodity flow

problem with demands: one wishes to send dk units of flow from sk to tk, k ∈
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{1, . . . ,K}, and the problem is to decide whether this is possible or not. This

problem can be solved in O
(
n3
)
time in bidirected rings with uniform capacities

[14] and in O
(
n2
)
time in undirected rings [11]. The case where the capacities

are on the nodes is also polynomial-time solvable [7]. However, when we require

that the flows are unsplittable, i.e., that each demand must be routed entirely in

a clockwise or counterclockwise direction, the edge-capacitated problem was shown

to be NP-hard [4]. A related problem is the ring loading problem, where one seeks

to minimize the maximum load on the edges while enforcing all the demands. This

problem is NP-hard when the demands cannot be split [13], but can be solved

by a linear-time algorithm when demand splitting is allowed [16]. It should be

noticed that these problems with demands cannot be reduced to the corresponding

maximization problems without losing the ring structure [6].

In this paper, we first propose in Section 2 some preliminary reduction rules.

Then, in Section 3, we show that MCP can be solved in rings by using a polynomial

algorithm for chain networks [10], and, using some ideas from [2, 3], we derive a

polynomial algorithm solving IMFP in rings; we also prove that the integrality gap

for this problem is strictly smaller than 1. In Section 4 we propose O(n) algorithms

to solve IMFP and MCP in uniform (reduced) rings, i.e., in rings where all the

capacities are equal and where all the reductions have been made.

2. Simplifications and reductions

With any instance of MCP or IMFP in an undirected ring we can associate an

equivalent instance in a directed ring by doubling the number of terminal pairs.

With each pair {sk, tk}, k ∈ {1, . . . ,K}, we associate a new pair {sk+K , tk+K}

where sk+K (resp. tk+K) lies on the same vertex as tk (resp. sk). The path from

sk+K to tk+K in the directed ring corresponds to the chain from sk to tk in a

counterclockwise direction of the undirected ring. It is clear that to any solution

of MCP or IMFP obtained in the directed (resp. undirected) ring corresponds a

solution with the same value in the undirected (resp. directed) ring. Now, we show

how to simplify a directed instance in such a way that the resulting instance has a

source and/or a sink lying on each vertex, and contains only proper pairs, i.e., no

path pi is a subpath of pj for i 6= j.
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Contracting arcs. First, a path without terminals, except for its endpoints, can

be replaced by a single arc, which is the lowest weighted arc of the path. Second,

consider two adjacent arcs (u, v) and (v, w) such that there is only a source sk lying

on v. If the capacity of (u, v) is greater than or equal to the one of (v, w) then the

arc (u, v) can be contracted into a single vertex (u = v), since (v, w) can be selected

in place of (u, v) in any minimal multicut and since (v, w) is more constraining for

the flow than (u, v). Now, sk lies on u. In the same way, if there is only a sink lying

on v and if the capacity of (u, v) is smaller than or equal to the one of (v, w) then

(v, w) can be contracted into a single vertex.

Suppressing pairs. Each pair {sk, tk} corresponding to a path pk which con-

tains as a subpath (or which is equivalent to) a path pj can be removed from the

list L. Indeed, first, a multicut for L \ {sk, tk} is a multicut for L since if sj is

separated from tj , so is sk from tk. Second, any flow unit routed from sk to tk can

be re-routed from sj to tj . A set of pairs such that no pair can be removed is called

a “proper set” of pairs (as in [2]). Note that a proper set of pairs contains at most

n pairs, since two pairs in L cannot have their sources lying on the same vertex.

The two reductions (contracting arcs and suppressing pairs) must be iterated

recursively until no more reductions can be made. Since at least one arc or one pair

is suppressed by each reduction, the ring can be reduced in O (K + n) time. Note

that the suppressing pairs reduction can be efficiently implemented by using a stack

(each pair will be seen twice).

Therefore, for the remainder of the paper, it is no loss of generality to consider

a reduced ring, denoted by R = (V,A), directed in a clockwise direction, and to

assume, on the one hand, that there is a source and/or a sink lying on each vertex

and, on the other hand, that the list L is a proper set of pairs. The vertices and the

arcs are numbered from 1 to n, and the sources and the sinks are numbered from 1

to K, K ≤ n, in a clockwise direction.

3. Polynomial algorithms for general rings

In this section, we give polynomial algorithms to solve MCP and IMFP.
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Proposition 1. MCP can be solved in O
(
n2
)
time in rings.

Proof. The path pi from si to ti must contain a cut arc, for all i. Hence, we solve

O(n) MCP instances in paths: the jth instance is obtained by deleting the jth arc of

pk, the shortest path among the pi’s, and is solvable in O(K + n) time [10] (K ≤ n

here). The cost of the solution for the jth instance includes the cost of the jth

deleted arc. We keep the best solution among the O(n) solutions obtained: the

initial reduction step runs in O(K+n) time, so the overall complexity is O(n2). �

Now, we show that IMFP is polynomial-time solvable in rings. Our approach

borrows ideas given in [2] to solve special cases of the Pre-routed Call Admission

Control problem (PCAC) in rings. Roughly speaking, the unweighted case of PCAC

in rings is a restricted version of IMFP in directed rings where the flow routed

from sk to tk can only be either 0 or 1 for each k. It should be noticed that our

approach is more direct than the one in [2], since it gives an explicit link between our

problem and problems involving interval matrices, without the need of introducing

new variables. We prove the following theorem:

Theorem 1. IMFP can be solved in polynomial time in rings.

Proof. We make a binary search on the value of
∑K
i=1 fi ≤ Kumax, where umax is

the maximum arc capacity of the ring. Once the value of this sum is fixed and equal

to an integer F , we can add to (P − IMFP ) the constraint (Λ0):
∑K
i=1 fi = F .

Note that there exists an integer multiflow of value F ′ for any integer F ′ ≤ F iff

there exists an integer multiflow of value F . Our problem is now a decision problem:

does there exist a feasible solution? Consider the constraint matrix of (P−IMFP ).

There are two kinds of rows: either the 1’s are consecutive or they are not, and in

this case the 0’s are consecutive (this property is known as the circular 1’s property).

For each constraint (Λ) involving nonconsecutive flows (i.e., where the 1’s are not

consecutive), we define a new constraint (Λ′)← (Λ0)−(Λ) and remove (Λ): in (Λ′),

all the 1’s are consecutive. Therefore, we obtain an equivalent problem whose 0− 1

constraint matrix verifies the consecutive 1’s property (interval matrix) and thus is

totally unimodular [1], with an integer vector on the right-hand side. Hence, there

exists an integer solution iff there exists a fractional one. Since each interval matrix

is a network matrix, the solution can be found in strongly polynomial time [12]. �
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Note that we do not need to transform the rows where the 1’s are already con-

secutive, while in [2, 3] some of these rows have to transformed (more precisely, a

particular transformation was applied when both the 1’s and the 0’s are consecutive,

the 0’s preceding the 1’s in the row). Also note that our approach implies that:

Corollary 1. In rings, the absolute gap between the value of a maximum fractional

multiflow and the value of a maximum integer multiflow is strictly smaller than 1.

Proof. The existence of a fractional solution of value F ∗ implies the existence of

a fractional solution of value bF ∗c. Now, apply the transformation of constraints

described in the proof of Theorem 1 with (Λ0):
∑K
i=1 fi = bF ∗c. The resulting

(equivalent) program has a totally unimodular constraint matrix with an integral

vector on the right-hand side. This implies the existence of an integer solution of

value bF ∗c. �

4. The case of uniform rings

In this section, we propose O(n) algorithms to solve MCP and IMFP in uniform

(reduced) rings, i.e., where all the arcs have the same capacity, denoted by U . First

note that, in a uniform ring, we can assume w.l.o.g. that there is exactly one source

and one sink lying on each vertex: this results from the reductions of Section 2.

Indeed, if there is only one terminal lying on a vertex v, then one of the two arcs

incident to v is contracted. Hence, the number of terminal pairs K is now equal to

the number of vertices n, and all the paths pk have the same length, denoted by

L. We number the arcs and the terminal pairs as previously: there are exactly L

successive flows routed through each arc, assuming that f1 follows fn.

We make the following preliminary remark:

Remark 1. The optimal values of the continuous relaxations of (P − IMFP ) and

(P −MCP ) are both nU
L in uniform rings with capacity U , since optimal solutions

for these two problems are obtained by setting fk = U
L for all k ∈ {1, . . . , n} and

ca = 1
L for all a ∈ A, respectively.
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Theorem 2. MCP can be solved in O(n) time in uniforms rings.

Proof. By summing the constraints (2) and using the integrality of the variables ca,

we get
∑
a∈A ca ≥

⌈
n
L

⌉
, and so

∑
a∈A uaca ≥

⌈
n
L

⌉
U . Eventually, one can define a

multicut of value
⌈
n
L

⌉
U (and thus optimal). Indeed, for j ∈ {1, . . . , n}, set caj = 1

if j ∈ {1+pL, p ∈ {0, . . . ,
⌈
n
L

⌉
−1}}, and caj

= 0 otherwise. This provides a feasible

multicut with
⌈
n
L

⌉
arcs in O(n) time. �

Now consider the two integers β = nU − L
⌊
nU
L

⌋
and δ =

⌊
nU
L

⌋
− n

⌊
U
L

⌋
. Note

that 0 ≤ β < L and 0 ≤ δ < n, because β is the remainder of the Euclidean division

of nU by L, and δ is the remainder of the Euclidean division of
⌊
nU
L

⌋
by n.

Algorithm 1 Max_integral_multiflow_uniform_rings

Ensure: An integral multiflow f̂ =
(
f̂j , j ∈ {1, . . . , n}

)
such that

∑n
j=1 f̂j = bnUL c

for j = 1 to n do

f̂j :=
⌊
U
L

⌋
;

end for

j := 1;

for i = 1 to δ do

f̂j := f̂j + 1;

if j + L < n+ 1 then

j := j + L;

else

j := j + L− n;

end if

end for

Theorem 3. IMFP can be solved in O(n) time in uniforms rings by applying Al-

gorithm 1.

Proof. First, let us show that no capacity constraint is violated by f̂ . In the second

loop of Algorithm 1, we add a flow unit to the load of each arc at most
⌈
δL
n

⌉
times

(since we turn around a ring with n arcs by making δ leaps of length L). Since L

flows cross each arc, the total amount of flow routed through each arc is at most⌊
U
L

⌋
L+

⌈
δL
n

⌉
≤
⌊
U
L

⌋
L+

⌈
δL
n + β

n

⌉
=
⌊
U
L

⌋
L+

⌈
L
n

⌊
nU
L

⌋
− L

⌊
U
L

⌋
+ U − L

n

⌊
nU
L

⌋⌉
=
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⌊
U
L

⌋
L+dU−

⌊
U
L

⌋
Le =

⌊
U
L

⌋
L+(U−

⌊
U
L

⌋
L), and thus at most U . This solution has

value
∑
i f̂i = n

⌊
U
L

⌋
+ δ =

⌊
nU
L

⌋
, and thus, from Remark 1, is optimal. Eventually,

the complexity of Algorithm 1 is O(n), because 0 ≤ δ < n. �

5. Concluding remarks

First, let us point out that the approach used in the proof of Theorem 1 can in

fact be extended to solve in polynomial time any integer linear program such that:

• the 0− 1 constraint matrix satisfies the circular 1’s property,

• all the coefficients in the objective function are equal and nonnegative,

• and all the constraints are packing-type (if we want to maximize the objec-

tive function) or cover-type constraints (if we want to minimize it).

In particular, one may apply the same approach to a “Ring-representable” Set Cover

problem (in reference to the “Tree-representable” Set Cover problem considered in

[9]). Second, note that generally the complexity of MCP and IMFP is affected by

considering directed or undirected graphs [6], but we have shown that this is not the

case in rings. Finally, in these graphs, the Multiterminal Flow and Cut problems

can trivially be solved in O (K + n) time. Recall that in these special cases of IMFP

and MCP, we are given a set {r1, r2, . . . , rp} of terminal vertices, and the terminal

pairs are (rj , rk) for all j 6= k in {1, . . . , p} (and hence K = p(p − 1)). Here, the

optimum value of both problems is equal to the sum of the weights of the arcs

remaining in the ring after the reduction step.
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